Lefschetz algebras and Eulerian numbers

Martina Kubitzke

Fachbereich Mathematik und Informatik Philipps-Universität Marburg

April 1, 2008

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Combinatorial g-Theorems: Classical and new results
- Inequalities for the refined Eulerian statistics on permutations

Outline

- 2 Combinatorial g-Theorems: Classical and new results
- Inequalities for the refined Eulerian statistics on permutations

Simplicial Complexes

A simplicial complex Δ on vertex set Ω is a collection of subsets of Ω such that $F \in \Delta, G \subseteq F \Rightarrow G \in \Delta$.

The elements of Δ are called faces of Δ and for a face $F \in \Delta$ dim(F) := #F - 1 is the dimension of *F*.

dim $\Delta := \max\{ \dim(F) \mid F \in \Delta \}$ is the dimension of Δ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Simplicial Complexes

A simplicial complex Δ on vertex set Ω is a collection of subsets of Ω such that $F \in \Delta, G \subseteq F \Rightarrow G \in \Delta$.

The elements of Δ are called faces of Δ and for a face $F \in \Delta$ dim(F) := #F - 1 is the dimension of *F*.

dim $\Delta := \max\{ \dim(F) \mid F \in \Delta \}$ is the dimension of Δ .

Simplicial Complexes

A simplicial complex Δ on vertex set Ω is a collection of subsets of Ω such that

 $F \in \Delta, \ G \subseteq F \Rightarrow G \in \Delta.$

The elements of Δ are called faces of Δ and for a face $F \in \Delta$ dim(F) := #F - 1 is the dimension of F.

dim Δ := max{ dim(F) | $F \in \Delta$ } is the dimension of Δ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Simplicial Complexes

A simplicial complex Δ on vertex set Ω is a collection of subsets of Ω such that

 $F \in \Delta, \ G \subseteq F \Rightarrow G \in \Delta.$

The elements of Δ are called faces of Δ and for a face $F \in \Delta$ dim(F) := #F - 1 is the dimension of F.

dim $\Delta := \max\{ \dim(F) \mid F \in \Delta \}$ is the dimension of Δ .

Combinatorial invariants for simplicial complexes

The vector $\mathfrak{f}^{\Delta} = (f_{-1}^{\Delta}, f_0^{\Delta}, \dots, f_{\dim \Delta}^{\Delta})$, where $f_i^{\Delta} = \#\{F \in \Delta \mid \dim(F) = i\}$, is called the \mathfrak{f} -vector of Δ .

The *h*-vector of Δ is the vector $\mathfrak{h}^{\Delta} = (h_0^{\Delta}, h_1^{\Delta}, \dots, h_{\dim \Delta+1}^{\Delta})$, where

 $\sum_{0 \le i \le \dim \Delta + 1} h_i^{\Delta} x^{\dim \Delta + 1 - i} = \sum_{0 \le i \le d} f_{i-1}^{\Delta} (x-1)^{\dim \Delta + 1 - i}.$

We call $\mathfrak{g}^{\Delta} := (g_0^{\Delta}, g_1^{\Delta}, \dots, g_{\lfloor \frac{\dim \Delta + 1}{2} \rfloor}^{\Delta})$ the *g*-vector of Δ , where $g_0^{\Delta} = 1$ and $g_i^{\Delta} = h_i^{\Delta} - h_{i-1}^{\Delta}$ for $1 \le i \le \lfloor \frac{\dim \Delta + 1}{2} \rfloor$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Combinatorial invariants for simplicial complexes

The vector $\mathfrak{f}^{\Delta} = (f_{-1}^{\Delta}, f_0^{\Delta}, \dots, f_{\dim \Delta}^{\Delta})$, where $f_i^{\Delta} = \#\{ F \in \Delta \mid \dim(F) = i \}$, is called the \mathfrak{f} -vector of Δ .

The *h*-vector of Δ is the vector $\mathfrak{h}^{\Delta} = (h_0^{\Delta}, h_1^{\Delta}, \dots, h_{\dim \Delta+1}^{\Delta})$, where

$$\sum_{0 \le i \le \dim \Delta + 1} h_i^{\Delta} x^{\dim \Delta + 1 - i} = \sum_{0 \le i \le d} f_{i-1}^{\Delta} (x - 1)^{\dim \Delta + 1 - i}$$

We call $\mathfrak{g}^{\Delta} := (g_0^{\Delta}, g_1^{\Delta}, \dots, g_{\lfloor \frac{\dim \Delta + 1}{2} \rfloor}^{\Delta})$ the *g*-vector of Δ , where $g_0^{\Delta} = 1$ and $g_i^{\Delta} = h_i^{\Delta} - h_{i-1}^{\Delta}$ for $1 \le i \le \lfloor \frac{\dim \Delta + 1}{2} \rfloor$.

Combinatorial invariants for simplicial complexes

The vector
$$\mathfrak{f}^{\Delta} = (f_{-1}^{\Delta}, f_0^{\Delta}, \dots, f_{\dim \Delta}^{\Delta})$$
,
where $f_i^{\Delta} = \#\{ F \in \Delta \mid \dim(F) = i \}$, is called the \mathfrak{f} -vector of Δ .

The *h*-vector of Δ is the vector $\mathfrak{h}^{\Delta} = (h_0^{\Delta}, h_1^{\Delta}, \dots, h_{\dim \Delta+1}^{\Delta})$, where

$$\sum_{0 \le i \le \dim \Delta + 1} h_i^{\Delta} x^{\dim \Delta + 1 - i} = \sum_{0 \le i \le d} f_{i-1}^{\Delta} (x-1)^{\dim \Delta + 1 - i}.$$

We call $\mathfrak{g}^{\Delta} := (g_0^{\Delta}, g_1^{\Delta}, \dots, g_{\lfloor \frac{\dim \Delta + 1}{2} \rfloor}^{\Delta})$ the *g*-vector of Δ , where $g_0^{\Delta} = 1$ and $g_i^{\Delta} = h_i^{\Delta} - h_{i-1}^{\Delta}$ for $1 \leq i \leq \lfloor \frac{\dim \Delta + 1}{2} \rfloor$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The barycentric subdivision

The barycentric subdivision $sd(\Delta)$ of a simplicial complex Δ is the simplicial complex on vertex set $\mathring{\Delta} := \Delta \setminus \{\emptyset\}$ whose simplices are flags

$$A_0 \subsetneq A_1 \subsetneq \ldots \subsetneq A_t$$

of elements $A_j \in \mathring{\Delta}$ for $0 \leq j \leq t$.

M-sequence

Given an integer d > 0 any $a \in \mathbb{N}$ can uniquely be written in the form

$$a = \binom{k_d}{d} + \binom{k_{d-1}}{d-1} + \cdots + \binom{k_j}{j},$$

where $k_d > k_{d-1} > \cdots > k_j \ge j \ge 1$.

We define $a^{<d>} := {\binom{k_d+1}{d+1}} + {\binom{k_{d-1}+1}{d}} + \dots + {\binom{k_j+1}{j+1}}$ and set $0^{<d>} = 0.$

A sequence $(a_0, \ldots, a_t) \in \mathbb{N}^{t+1}$ is called an *M*-sequence if $a_0 = 1$ and $a_{i+1} \leq a_i^{<i>}$ for $1 \leq i \leq t-1$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

M-sequence

Given an integer d > 0 any $a \in \mathbb{N}$ can uniquely be written in the form

$$a = \binom{k_d}{d} + \binom{k_{d-1}}{d-1} + \cdots + \binom{k_j}{j},$$

where $k_d > k_{d-1} > \cdots > k_j \ge j \ge 1$.

We define $a^{<d>} := {\binom{k_d+1}{d+1}} + {\binom{k_{d-1}+1}{d}} + \dots + {\binom{k_j+1}{j+1}}$ and set $0^{<d>} = 0$.

A sequence $(a_0, \ldots, a_t) \in \mathbb{N}^{t+1}$ is called an *M*-sequence if $a_0 = 1$ and $a_{i+1} \leq a_i^{<i>}$ for $1 \leq i \leq t-1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

M-sequence

Given an integer d > 0 any $a \in \mathbb{N}$ can uniquely be written in the form

$$a = \binom{k_d}{d} + \binom{k_{d-1}}{d-1} + \cdots + \binom{k_j}{j},$$

where $k_d > k_{d-1} > \cdots > k_j \ge j \ge 1$.

We define $a^{<d>} := {\binom{k_d+1}{d+1}} + {\binom{k_{d-1}+1}{d}} + \dots + {\binom{k_j+1}{j+1}}$ and set $0^{<d>} = 0$.

A sequence $(a_0, \ldots, a_t) \in \mathbb{N}^{t+1}$ is called an *M*-sequence if $a_0 = 1$ and $a_{i+1} \leq a_i^{\leq i>}$ for $1 \leq i \leq t-1$.

Combinatorial g-Theorems: Classical and new results

Inequalities for the refined Eulerian statistics on permutations

The classical *g*-theorem and the *g*-conjecture

Theorem (Stanley, Billera, Lee)

 (h_0, \ldots, h_d) is the *h*-vector of a *d*-dimensional simplicial polytope if and only if $h_i = h_{d-i}$ for all $0 \le i \le d$,

 $h_0 \leq h_1 \leq \cdots \leq h_{\lfloor \frac{d}{2} \rfloor}$ and the vector $(h_0, h_1 - h_0, h_2 - h_1, \dots, h_{\lfloor \frac{d}{2} \rfloor} - h_{\lfloor \frac{d}{2} \rfloor - 1})$ is an *M*-sequence.

Conjecture (McMullen)

Let Δ be a simplicial sphere. Then its *g*-vector is an *M*-sequence.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = 少へぐ

シック・ 川 ・ 川田・ 小田・ 小田・

The classical *g*-theorem and the *g*-conjecture

Theorem (Stanley, Billera, Lee)

 (h_0, \ldots, h_d) is the *h*-vector of a *d*-dimensional simplicial polytope if and only if $h_i = h_{d-i}$ for all $0 \le i \le d$, $h_0 \le h_1 \le \cdots \le h_{\lfloor \frac{d}{2} \rfloor}$ and the vector $(h_0, h_1 - h_0, h_2 - h_1, \ldots, h_{\lfloor \frac{d}{2} \rfloor} - h_{\lfloor \frac{d}{2} \rfloor - 1})$ is an *M*-sequence.

Conjecture (McMullen)

Let Δ be a simplicial sphere. Then its *g*-vector is an *M*-sequence.

The classical g-theorem and the g-conjecture

Theorem (Stanley, Billera, Lee)

 (h_0, \ldots, h_d) is the *h*-vector of a *d*-dimensional simplicial polytope if and only if $h_i = h_{d-i}$ for all $0 \le i \le d$, $h_0 \le h_1 \le \cdots \le h_{\lfloor \frac{d}{2} \rfloor}$ and the vector $(h_0, h_1 - h_0, h_2 - h_1, \ldots, h_{\lfloor \frac{d}{2} \rfloor} - h_{\lfloor \frac{d}{2} \rfloor - 1})$ is an *M*-sequence.

Conjecture (McMullen)

Let Δ be a simplicial sphere. Then its *g*-vector is an *M*-sequence.

The classical g-theorem and the g-conjecture

Theorem (Stanley, Billera, Lee)

 (h_0, \ldots, h_d) is the *h*-vector of a *d*-dimensional simplicial polytope if and only if $h_i = h_{d-i}$ for all $0 \le i \le d$, $h_0 \le h_1 \le \cdots \le h_{\lfloor \frac{d}{2} \rfloor}$ and the vector $(h_0, h_1 - h_0, h_2 - h_1, \ldots, h_{\lfloor \frac{d}{2} \rfloor} - h_{\lfloor \frac{d}{2} \rfloor - 1})$ is an *M*-sequence.

Conjecture (McMullen)

Let Δ be a simplicial sphere. Then its *g*-vector is an *M*-sequence.

g-Theorems for barycentric subdivisions of certain classes of simplicial complexes

Theorem (K., Nevo)

Let Δ be a (d - 1)-dimensional Cohen-Macaulay simplicial complex. Then the *g*-vector of its barycentric subdivision sd(Δ) is an *M*-sequence.

In particular, the *g*-conjecture holds for barycentric subdivisions of simplicial spheres, of homology spheres and of doubly Cohen-Macaulay complexes.

Furthermore, $h_i^{\operatorname{sd}(\Delta)} \leq h_{d-1-i}^{\operatorname{sd}(\Delta)}$ for any $0 \leq i \leq \lfloor \frac{d-2}{2} \rfloor$.

・ロト・西ト・西ト・西ト・日・

(日) (日) (日) (日) (日) (日) (日)

g-Theorems for barycentric subdivisions of certain classes of simplicial complexes

Theorem (K., Nevo)

Let Δ be a (d - 1)-dimensional Cohen-Macaulay simplicial complex. Then the *g*-vector of its barycentric subdivision sd(Δ) is an *M*-sequence.

In particular, the *g*-conjecture holds for barycentric subdivisions of simplicial spheres, of homology spheres and of doubly Cohen-Macaulay complexes.

Furthermore, $h_i^{\mathrm{sd}(\Delta)} \leq h_{d-1-i}^{\mathrm{sd}(\Delta)}$ for any $0 \leq i \leq \lfloor \frac{d-2}{2} \rfloor$.

(日) (日) (日) (日) (日) (日) (日)

g-Theorems for barycentric subdivisions of certain classes of simplicial complexes

Theorem (K., Nevo)

Let Δ be a (d - 1)-dimensional Cohen-Macaulay simplicial complex. Then the *g*-vector of its barycentric subdivision sd(Δ) is an *M*-sequence.

In particular, the *g*-conjecture holds for barycentric subdivisions of simplicial spheres, of homology spheres and of doubly Cohen-Macaulay complexes.

Furthermore, $h_i^{sd(\Delta)} \le h_{d-1-i}^{sd(\Delta)}$ for any $0 \le i \le \lfloor \frac{d-2}{2} \rfloor$.

(日) (日) (日) (日) (日) (日) (日)

g-Theorems for barycentric subdivisions of certain classes of simplicial complexes

Theorem (K., Nevo)

Let Δ be a (d - 1)-dimensional Cohen-Macaulay simplicial complex. Then the *g*-vector of its barycentric subdivision sd(Δ) is an *M*-sequence.

In particular, the *g*-conjecture holds for barycentric subdivisions of simplicial spheres, of homology spheres and of doubly Cohen-Macaulay complexes.

Furthermore, $h_i^{\mathrm{sd}(\Delta)} \leq h_{d-1-i}^{\mathrm{sd}(\Delta)}$ for any $0 \leq i \leq \lfloor \frac{d-2}{2} \rfloor$.

g-Theorems for barycentric subdivisions of certain classes of simplicial complexes

Theorem (K., Nevo)

Let Δ be a (d - 1)-dimensional Cohen-Macaulay simplicial complex. Then the *g*-vector of its barycentric subdivision sd(Δ) is an *M*-sequence.

In particular, the *g*-conjecture holds for barycentric subdivisions of simplicial spheres, of homology spheres and of doubly Cohen-Macaulay complexes.

Furthermore,
$$h_i^{\operatorname{sd}(\Delta)} \leq h_{d-1-i}^{\operatorname{sd}(\Delta)}$$
 for any $0 \leq i \leq \lfloor \frac{d-2}{2} \rfloor$.

・ロト・西ト・西ト・西ト・日・ つんぐ

Outline

2 Combinatorial g-Theorems: Classical and new results

Inequalities for the refined Eulerian statistics on permutations

▲□▶▲□▶▲□▶▲□▶ □ のへで

The refined Eulerian statistics on permutations

Let S_d be the symmetric group on $\{1, ..., d\}$. For $\sigma \in S_d$ let $D(\sigma) := \{ i \in [d-1] | \sigma(i) > \sigma(i+1) \}$ be the descent set of σ and set $des(\sigma) := #D(\sigma)$.

For $d \ge 1$, $0 \le i \le d - 1$ and $1 \le j \le d$ we set

 $A(d, i, j) := \#\{ \sigma \in S_d \mid \operatorname{des}(\sigma) = i, \ \sigma(1) = j \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The refined Eulerian statistics on permutations

Let S_d be the symmetric group on $\{1, ..., d\}$. For $\sigma \in S_d$ let $D(\sigma) := \{ i \in [d-1] | \sigma(i) > \sigma(i+1) \}$ be the descent set of σ and set $des(\sigma) := #D(\sigma)$.

For $d \ge 1$, $0 \le i \le d-1$ and $1 \le j \le d$ we set

 $A(d, i, j) := \#\{ \sigma \in S_d \mid \operatorname{des}(\sigma) = i, \ \sigma(1) = j \}.$

New Inequalities for the refined Eulerian statistics (1)

Corollary

(i)
$$A(d, j, r) \leq A(d, d - 2 - j, r)$$

for $d \ge 1$, $1 \le r \le d$ and $0 \le j \le \lfloor \frac{d-3}{2} \rfloor$.

(ii) $A(d, 0, r) \le A(d, 1, r) \le \ldots \le A(d, \lfloor \frac{d-1}{2} \rfloor, r)$

and

 $A(d, d-1, r) \leq A(d, d-2, r) \leq \ldots \leq A(d, \lceil \frac{d-1}{2} \rceil, r)$

for $d \ge 2$ and $1 \le r \le d$.

For *d* even, $A(d, \lfloor \frac{d-1}{2} \rfloor, r)$ may be larger or smaller than $A(d, \lceil \frac{d-1}{2} \rceil, r)$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

New Inequalities for the refined Eulerian statistics (1)

Corollary

(i)
$$A(d, j, r) \le A(d, d - 2 - j, r)$$

for
$$d \ge 1$$
, $1 \le r \le d$ and $0 \le j \le \lfloor \frac{d-3}{2} \rfloor$.
(ii) $A(d,0,r) \le A(d,1,r) \le \ldots \le A(d,\lfloor \frac{d-1}{2} \rfloor,r)$

and

$$A(d, d-1, r) \leq A(d, d-2, r) \leq \ldots \leq A(d, \lceil \frac{d-1}{2} \rceil, r)$$

for $d \ge 2$ and $1 \le r \le d$.

For *d* even, $A(d, \lfloor \frac{d-1}{2} \rfloor, r)$ may be larger or smaller than $A(d, \lceil \frac{d-1}{2} \rceil, r)$.

New Inequalities for the refined Eulerian statistics (1)

Corollary

(i)
$$A(d, j, r) \le A(d, d - 2 - j, r)$$

for
$$d \ge 1$$
, $1 \le r \le d$ and $0 \le j \le \lfloor \frac{d-3}{2} \rfloor$.

(ii)
$$A(d,0,r) \leq A(d,1,r) \leq \ldots \leq A(d,\lfloor \frac{d-1}{2} \rfloor,r)$$

and

$$A(d, d-1, r) \leq A(d, d-2, r) \leq \ldots \leq A(d, \lceil \frac{d-1}{2} \rceil, r)$$

for $d \ge 2$ and $1 \le r \le d$.

For *d* even, $A(d, \lfloor \frac{d-1}{2} \rfloor, r)$ may be larger or smaller than $A(d, \lceil \frac{d-1}{2} \rceil, r)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

New Inequalities for the refined Eulerian statistics (1)

Corollary

(i)
$$A(d, j, r) \le A(d, d - 2 - j, r)$$

for
$$d \ge 1$$
, $1 \le r \le d$ and $0 \le j \le \lfloor \frac{d-3}{2} \rfloor$.

(ii)
$$A(d,0,r) \leq A(d,1,r) \leq \ldots \leq A(d,\lfloor \frac{d-1}{2} \rfloor,r)$$

and

$$A(d, d-1, r) \leq A(d, d-2, r) \leq \ldots \leq A(d, \lceil \frac{d-1}{2} \rceil, r)$$

for $d \ge 2$ and $1 \le r \le d$.

For *d* even, $A(d, \lfloor \frac{d-1}{2} \rfloor, r)$ may be larger or smaller than $A(d, \lceil \frac{d-1}{2} \rceil, r)$.

New Inequalities for the refined Eulerian statistics (2)

Corollary

(i) $A(d, j, 1) \le A(d, j, 2) \le \ldots \le A(d, j, d)$

for $\lceil \frac{d}{2} \rceil = \lfloor \frac{d+1}{2} \rfloor \leq j \leq d-1$.

(ii) $A(d, j, 1) \ge A(d, j, 2) \ge ... \ge A(d, j, d)$

for $0 \le j \le \lfloor \frac{d-2}{2} \rfloor$.

 $\frac{1}{2}, 1) \leq A(d, \frac{1}{2}, 2) \leq \ldots \leq A(d, \frac{1}{2}, \frac{1}{2} + 1)$ $\geq A(d, \frac{d-1}{2}, \frac{d-1}{2} + 2) \geq \ldots \geq A(d, \frac{d-1}{2}, d)$

if *d* is odd.

(iv) A(d, j, 1) = A(d, j + 1, d)

New Inequalities for the refined Eulerian statistics (2)

Corollary

(i)
$$A(d, j, 1) \le A(d, j, 2) \le \ldots \le A(d, j, d)$$

for $\lceil \frac{d}{2} \rceil = \lfloor \frac{d+1}{2} \rfloor \leq j \leq d-1$.

(ii) $A(d, j, 1) \ge A(d, j, 2) \ge ... \ge A(d, j, d)$

for $0 \leq j \leq \lfloor \frac{d-2}{2} \rfloor$.

(iii) $A(d, \frac{d-1}{2}, 1) \le A(d, \frac{d-1}{2}, 2) \le \dots \le A(d, \frac{d-1}{2}, \frac{d-1}{2} + 1)$ $\ge A(d, \frac{d-1}{2}, \frac{d-1}{2} + 2) \ge \dots \ge A(d, \frac{d-1}{2}, d)$

if d is odd.

(iv) A(d, j, 1) = A(d, j + 1, d)

New Inequalities for the refined Eulerian statistics (2)

Corollary

(i)
$$A(d, j, 1) \le A(d, j, 2) \le \ldots \le A(d, j, d)$$

for
$$\lceil \frac{d}{2} \rceil = \lfloor \frac{d+1}{2} \rfloor \leq j \leq d-1$$
.

(ii)
$$A(d, j, 1) \ge A(d, j, 2) \ge ... \ge A(d, j, d)$$

for
$$0 \leq j \leq \lfloor \frac{d-2}{2} \rfloor$$
.

(iii)
$$A(d, \frac{d-1}{2}, 1) \le A(d, \frac{d-1}{2}, 2) \le \ldots \le A(d, \frac{d-1}{2}, \frac{d-1}{2} + 1)$$

 $\ge A(d, \frac{d-1}{2}, \frac{d-1}{2} + 2) \ge \ldots \ge A(d, \frac{d-1}{2}, d)$

if d is odd.

(iv) A(d, j, 1) = A(d, j + 1, d)

New Inequalities for the refined Eulerian statistics (2)

Corollary

(i)
$$A(d, j, 1) \le A(d, j, 2) \le \ldots \le A(d, j, d)$$

for
$$\left\lceil \frac{d}{2} \right\rceil = \left\lfloor \frac{d+1}{2} \right\rfloor \le j \le d-1$$
.

(ii)
$$A(d, j, 1) \ge A(d, j, 2) \ge ... \ge A(d, j, d)$$

for
$$0 \leq j \leq \lfloor \frac{d-2}{2} \rfloor$$
.

(iii)
$$A(d, \frac{d-1}{2}, 1) \le A(d, \frac{d-1}{2}, 2) \le \ldots \le A(d, \frac{d-1}{2}, \frac{d-1}{2} + 1)$$

 $\ge A(d, \frac{d-1}{2}, \frac{d-1}{2} + 2) \ge \ldots \ge A(d, \frac{d-1}{2}, d)$

if d is odd.

(iv)
$$A(d, j, 1) = A(d, j + 1, d)$$

What the proof essentially relies on

• Theorem (Brenti, Welker):

Let Δ be a (d-1)-dimensional simplicial complex and let $sd(\Delta)$ be its barycentric subdivision. Then

$$h_j^{\mathrm{sd}(\Delta)} = \sum_{r=0}^d A(d+1,j,r+1)h_r^{\Delta}$$

for $0 \leq j \leq d$.

 algebraical 'version' of the combinatorial *g*-theorem for the barycentric subdivisions of (*d* – 1)-dimensional simplicial complexes

What the proof essentially relies on

• Theorem (Brenti, Welker):

Let Δ be a (d - 1)-dimensional simplicial complex and let $sd(\Delta)$ be its barycentric subdivision. Then

$$h_j^{\mathrm{sd}(\Delta)} = \sum_{r=0}^d A(d+1,j,r+1)h_r^{\Delta}$$

for $0 \le j \le d$.

 algebraical 'version' of the combinatorial g-theorem for the barycentric subdivisions of (d – 1)-dimensional simplicial complexes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example for the refined Eulerian numbers

d = 6:

/ 1	0	0	0	0	0 \
26	16	8	4	2	1
26 66 26 1	66	60	48	36	26
26	36	48	60	66	66
1	2	4	8	16	26
0/	0	0	0	0	1/

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank you for your attention! Questions?