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Simplicial Complexes

A simplicial complex ∆ on vertex set Ω is a collection of subsets
of Ω such that
F ∈ ∆, G ⊆ F ⇒ G ∈ ∆.

The elements of ∆ are called faces of ∆ and for a face F ∈ ∆
dim(F ) := #F − 1 is the dimension of F .

dim ∆ := max{ dim(F ) | F ∈ ∆} is the dimension of ∆.
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Combinatorial invariants for simplicial complexes

The vector f∆ =
(
f ∆
−1, f ∆

0 , . . . , f ∆
dim ∆

)
,

where f ∆
i = #{ F ∈ ∆ | dim(F ) = i}, is called the f-vector of ∆.

The h-vector of ∆ is the vector h∆ = (h∆
0 , h∆

1 , . . . , h∆
dim ∆+1),

where∑
0≤i≤dim ∆+1 h∆

i xdim ∆+1−i =
∑

0≤i≤d f ∆
i−1(x − 1)dim ∆+1−i .

We call g∆ := (g∆
0 , g∆

1 , . . . , g∆
b dim ∆+1

2 c) the g-vector of ∆, where

g∆
0 = 1 and g∆

i = h∆
i − h∆

i−1 for 1 ≤ i ≤ bdim ∆+1
2 c.
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The barycentric subdivision

The barycentric subdivision sd(∆) of a simplicial complex ∆ is
the simplicial complex on vertex set ∆̊ := ∆ \ {∅} whose
simplices are flags

A0 ( A1 ( . . . ( At

of elements Aj ∈ ∆̊ for 0 ≤ j ≤ t .
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M-sequence

Given an integer d > 0 any a ∈ N can uniquely be written in the
form

a =

(
kd

d

)
+

(
kd−1

d − 1

)
+ · · ·+

(
kj

j

)
,

where kd > kd−1 > · · · > kj ≥ j ≥ 1.

We define a<d> :=
(kd+1

d+1

)
+

(kd−1+1
d

)
+ · · ·+

(kj+1
j+1

)
and set

0<d> = 0.

A sequence (a0, . . . , at) ∈ Nt+1 is called an M-sequence if
a0 = 1 and ai+1 ≤ a<i>

i for 1 ≤ i ≤ t − 1.
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The classical g-theorem and the g-conjecture

Theorem (Stanley, Billera, Lee)
(h0, . . . , hd) is the h-vector of a d-dimensional simplicial
polytope if and only if hi = hd−i for all 0 ≤ i ≤ d ,
h0 ≤ h1 ≤ · · · ≤ hb d

2 c
and the vector

(h0, h1 − h0, h2 − h1, . . . , hb d
2 c
− hb d

2 c−1) is an M-sequence.

Conjecture (McMullen)
Let ∆ be a simplicial sphere. Then its g-vector is an
M-sequence.



logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

The classical g-theorem and the g-conjecture

Theorem (Stanley, Billera, Lee)
(h0, . . . , hd) is the h-vector of a d-dimensional simplicial
polytope if and only if hi = hd−i for all 0 ≤ i ≤ d ,
h0 ≤ h1 ≤ · · · ≤ hb d

2 c
and the vector

(h0, h1 − h0, h2 − h1, . . . , hb d
2 c
− hb d

2 c−1) is an M-sequence.

Conjecture (McMullen)
Let ∆ be a simplicial sphere. Then its g-vector is an
M-sequence.



logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

The classical g-theorem and the g-conjecture

Theorem (Stanley, Billera, Lee)
(h0, . . . , hd) is the h-vector of a d-dimensional simplicial
polytope if and only if hi = hd−i for all 0 ≤ i ≤ d ,
h0 ≤ h1 ≤ · · · ≤ hb d

2 c
and the vector

(h0, h1 − h0, h2 − h1, . . . , hb d
2 c
− hb d

2 c−1) is an M-sequence.

Conjecture (McMullen)
Let ∆ be a simplicial sphere. Then its g-vector is an
M-sequence.



logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

The classical g-theorem and the g-conjecture

Theorem (Stanley, Billera, Lee)
(h0, . . . , hd) is the h-vector of a d-dimensional simplicial
polytope if and only if hi = hd−i for all 0 ≤ i ≤ d ,
h0 ≤ h1 ≤ · · · ≤ hb d

2 c
and the vector

(h0, h1 − h0, h2 − h1, . . . , hb d
2 c
− hb d

2 c−1) is an M-sequence.

Conjecture (McMullen)
Let ∆ be a simplicial sphere. Then its g-vector is an
M-sequence.



logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

g-Theorems for barycentric subdivisions of
certain classes of simplicial complexes

Theorem (K., Nevo)
Let ∆ be a (d − 1)-dimensional Cohen-Macaulay simplicial
complex. Then the g-vector of its barycentric subdivision sd(∆)
is an M-sequence.

In particular, the g-conjecture holds for barycentric subdivisions
of simplicial spheres, of homology spheres and of doubly
Cohen-Macaulay complexes.

Furthermore, hsd(∆)
i ≤ hsd(∆)

d−1−i for any 0 ≤ i ≤ bd−2
2 c.
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The refined Eulerian statistics on permutations

Let Sd be the symmetric group on {1, . . . , d}.
For σ ∈ Sd let D(σ) := { i ∈ [d − 1] | σ(i) > σ(i + 1)} be the
descent set of σ and set des(σ) := #D(σ).

For d ≥ 1, 0 ≤ i ≤ d − 1 and 1 ≤ j ≤ d we set

A(d , i , j) := #{ σ ∈ Sd | des(σ) = i , σ(1) = j}.
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New Inequalities for
the refined Eulerian statistics (1)

Corollary
(i) A(d , j , r) ≤ A(d , d − 2 − j , r)

for d ≥ 1, 1 ≤ r ≤ d and 0 ≤ j ≤ b d−3
2 c.

(ii) A(d , 0, r) ≤ A(d , 1, r) ≤ . . . ≤ A(d , bd−1
2 c, r)

and

A(d , d − 1, r) ≤ A(d , d − 2, r) ≤ . . . ≤ A(d , dd−1
2 e, r)

for d ≥ 2 and 1 ≤ r ≤ d .

For d even, A(d , bd−1
2 c, r) may be larger or smaller than

A(d , dd−1
2 e, r).
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New Inequalities for
the refined Eulerian statistics (2)

Corollary
(i) A(d , j , 1) ≤ A(d , j , 2) ≤ . . . ≤ A(d , j , d)

for d d
2 e = b d+1

2 c ≤ j ≤ d − 1.

(ii) A(d , j , 1) ≥ A(d , j , 2) ≥ . . . ≥ A(d , j , d)

for 0 ≤ j ≤ b d−2
2 c.

(iii) A(d , d−1
2 , 1) ≤ A(d , d−1

2 , 2) ≤ . . . ≤ A(d , d−1
2 , d−1

2 + 1)

≥ A(d , d−1
2 , d−1

2 + 2) ≥ . . . ≥ A(d , d−1
2 , d)

if d is odd.

(iv) A(d , j , 1) = A(d , j + 1, d)

for 0 ≤ j ≤ d − 2.
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What the proof essentially relies on

Theorem (Brenti, Welker):
Let ∆ be a (d − 1)-dimensional simplicial complex and let
sd(∆) be its barycentric subdivision. Then

hsd(∆)
j =

d∑
r=0

A(d + 1, j , r + 1)h∆
r

for 0 ≤ j ≤ d .
algebraical ’version’ of the combinatorial g-theorem for the
barycentric subdivisions of (d − 1)-dimensional simplicial
complexes
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Example for the refined Eulerian numbers

d = 6:



1 0 0 0 0 0
26 16 8 4 2 1
66 66 60 48 36 26
26 36 48 60 66 66
1 2 4 8 16 26
0 0 0 0 0 1
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Thank you for your attention!

Questions?
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