Bijections for permutation tableaux

Philippe Nadeau

Fakultät für Mathematik Universität Wien

SLC 60 March 31st, 2008

P. Nadeau (Uni Wien)

Permutation Tableaux

SLC 60 March 31st, 2008 1 / 15

< 回 > < 回 > < 回 >

Permutation Tableaux

Definition

A permutation tableau is a filling of a Ferrers diagram with 0 and 1 such that :

- there is at least one 1 in each column;
- there is no 0 with a 1 above it in the same column and a 1 to its left in the same row.

4 3 5 4 3 5

Permutation Tableaux

Definition

A permutation tableau is a filling of a Ferrers diagram with 0 and 1 such that :

- there is at least one 1 in each column;
- there is no 0 with a 1 above it in the same column and a 1 to its left in the same row.

P. Nadeau (Uni Wien)

Definitions and motivation

Permutation Tableaux

The length of a permutation tableau is its half perimeter, which is the sum of its number of rows and its number of columns.

(4) (3) (4) (4) (4)

Permutation Tableaux

The length of a permutation tableau is its half perimeter, which is the sum of its number of rows and its number of columns.

Thus there are 6 tableaux of length 3 :

Theorem (Postnikov)

There are <u>n!</u> tableaux of length n.

P. Nadeau (Uni Wien)

< 回 > < 三 > < 三 >

Definitions and motivation

Permutation Tableaux

• Origin : algebraic geometry [Postnikov ~00]

A B F A B F

< 6 b

Definitions and motivation

Permutation Tableaux

- Origin : algebraic geometry [Postnikov ~00]
- Link with a statistical mechanics model, the PASEP
 → the tableaux explain the underlying combinatorics of the model
 [Corteel and Williams 06,07]

Permutation Tableaux

- Origin : algebraic geometry [Postnikov ~00]
- Link with a statistical mechanics model, the PASEP
 → the tableaux explain the underlying combinatorics of the model
 [Corteel and Williams 06,07]
- Close relation with permutations
 → Several bijections exist already [Steimgrimsson and Williams 07],[Corteel 06],[Burstein 06]

A B F A B F

Definitions

Let T be a permutation tableau.

- A superfluous 1 is a 1 in *T* which is not the highest 1 in its column.
- A restricted 0 is a 0 in T such that there is a 1 higher in its column.

P. Nadeau (Uni Wien)	
-------------	-----------	--

Enumeration

Let $t(n, k, \ell)$ be the number of permutation tableaux of length *n*, with k + 1 unrestricted rows and ℓ entries 1 in the first row. Then

$$t(n,k,\ell) = \sum_{j=k}^{n-1} {j \choose k} t(n-1,j,\ell-1) + {j \choose k-1} t(n-1,j,\ell)$$

< 🗇 > < 🖻 > < 🖻 >

Enumeration

Let $t(n, k, \ell)$ be the number of permutation tableaux of length *n*, with k + 1 unrestricted rows and ℓ entries 1 in the first row. Then

$$t(n,k,\ell) = \sum_{j=k}^{n-1} {j \choose k} t(n-1,j,\ell-1) + {j \choose k-1} t(n-1,j,\ell)$$

Let $T_n(x, y) = \sum_{k, \ell} t(n, k, \ell) x^k y^\ell$

Theorem

If n > 1,

$$T_n(x, y) = \prod_{i=0}^{n-2} (x + y + i)$$

P. Nadeau (Uni Wien)	
-------------	-----------	--

Enumeration

Theorem

If n > 1*,*

$$T_n(x, y) = \prod_{i=0}^{n-2} (x + y + i)$$

Consequences :

- There are *n*! tableaux of length *n*
- $t(n,k,\ell) = t(n,\ell,k)$
- The number of tableaux of length *n* with ℓ + 1 unrestricted rows is equal to the number of permutations of size *n* with ℓ cycles.

< 回 > < 三 > < 三 >

We define some parameters on permutations :

 $\sigma = 28451637$

A descent in σ = σ₁...σ_n is an entry σ_i such that σ_i > σ_{i+1}; the other entries are then called ascents.

2<mark>84516</mark>37

A (10) A (10)

We define some parameters on permutations :

 $\sigma = 28451637$

A descent in σ = σ₁...σ_n is an entry σ_i such that σ_i > σ_{i+1}; the other entries are then called ascents.

2<mark>84516</mark>37

• A *RL*-minimum is an entry smaller than those to its right in σ .

284516<mark>37</mark>

< ロ > < 同 > < 回 > < 回 >

We define some parameters on permutations :

 $\sigma = 28451637$

A descent in σ = σ₁...σ_n is an entry σ_i such that σ_i > σ_{i+1}; the other entries are then called ascents.

2<mark>84516</mark>37

• A *RL*-minimum is an entry smaller than those to its right in σ .

284516<mark>37</mark>

An occurrence of the pattern 31 − 2 in a permutation σ = σ₁ · · · σ_n is the data of indices *i* < *j* of σ such that σ_i > σ_i > σ_{i+1}.

28451637, 28451637, 28451637, 28451637

P. Nadeau (Uni Wien)

-

イロト 不得 トイヨト イヨト

We associate to each permutation a Ferrers diagram based on its descents and ascents :

28451637 →

6

Theorem

Theorem

There is a bijection ξ between permutations of length n and permutation tableaux of length n, such that when $T = \xi(\sigma)$:

• the shapes of σ and T are identical;

P. Nadeau (Uni Wien)

A (10) > A (10) > A (10)

Theorem

Theorem

There is a bijection ξ between permutations of length n and permutation tableaux of length n, such that when $T = \xi(\sigma)$:

- the shapes of σ and T are identical;
- the number of superfluous 1s in T is equal to the number of occurrences of 31 – 2 in σ.

< 回 > < 三 > < 三 >

Theorem

Theorem

There is a bijection ξ between permutations of length n and permutation tableaux of length n, such that when $T = \xi(\sigma)$:

- the shapes of σ and T are identical;
- the number of superfluous 1s in T is equal to the number of occurrences of 31 – 2 in σ.
- i is an RL-minimum in σ iff i is the label of an unrestricted row of T.

A B F A B F

4 A N

Recursive decomposition

Reduction of a tableau according to the content of the bottom right cell :

Recursive decomposition

Reduction of a tableau according to the content of the bottom right cell :

Idea of the bijection : find a recursive decomposition of permutations that mimics this.

 \hookrightarrow We will define ξ recursively : supposing we know how to define ξ on a tableau *T*, how can we define it on the tableau *T* to which a row, a column or a cell has been added ?

Example

1	1
0	0
1	1

P. Nadeau (U	Jni Wien)
--------------	-----------

-2

<ロ> <問> <問> < 同> < 同> < 同> 、

Example

P. Nadeau (Uni Wien)

Permutation Tableaux

SLC 60 March 31st. 2008 11 / 15

2

Example

1

æ

Example

1 21

P. Nadeau (Uni Wien)

Permutation Tableaux

SLC 60 March 31st. 2008 11 / 15

2

Example

1 21 321

P. Nadeau (Uni Wien)

Permutation Tableaux

SLC 60 March 31st. 2008 11 / 15

æ

Example

æ

Extensions

Encoding by a lattice path

P. Nadeau (Uni Wien)

Permutation Tableaux

SLC 60 March 31st, 2008 12 / 15

크

Encoding by a lattice path

Bijection ξ + the encoding

 \hookrightarrow Allows to enumerate bijectively permutations

• without any occurrence of 31 - 2 [Knuth 75]

$$\frac{1}{n+1}\binom{2n}{n}$$

with exactly one occurrence of 31 – 2 [Claesson and Mansour 02]

$$\binom{2n}{n-3}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

Permutations with no occurrence of 32 - 1

An L-tableau is a tableau such that all its necessary 1 are the leftmost 1 of their rows.

Theorem

L-tableaux of length n are in bijection with permutations of length n avoiding 32 - 1. The bijection preserves shapes.

• The same result is true with *R*-tableaux.

< 回 > < 三 > < 三 >

Corteel and N., *Bijections for permutation tableaux*, European Journal of Combinatorics, to appear