Bijections for permutation tableaux

Philippe Nadeau

Fakultät für Mathematik

Universität Wien

SLC 60
March 31st, 2008

Permutation Tableaux

Definition

A permutation tableau is a filling of a Ferrers diagram with 0 and 1 such that :
(1) there is at least one 1 in each column;
(2) there is no 0 with a 1 above it in the same column and a 1 to its left in the same row.

Permutation Tableaux

Definition

A permutation tableau is a filling of a Ferrers diagram with 0 and 1 such that:
(1) there is at least one 1 in each column;
(2) there is no 0 with a 1 above it in the same column and a 1 to its left in the same row.

1	1	0
0	0	0
1	(0)	1
0	0	1
1	7^{6}	5

Permutation Tableaux

The length of a permutation tableau is its half perimeter, which is the sum of its number of rows and its number of columns.

Permutation Tableaux

The length of a permutation tableau is its half perimeter, which is the sum of its number of rows and its number of columns.
Thus there are 6 tableaux of length 3 :

Theorem (Postnikov)

There are n! tableaux of length n.

Permutation Tableaux

- Origin : algebraic geometry [Postnikov~00]

Permutation Tableaux

- Origin : algebraic geometry [Postnikov ~00]
- Link with a statistical mechanics model, the PASEP
\hookrightarrow the tableaux explain the underlying combinatorics of the model [Corteel and Williams 06,07]

Permutation Tableaux

- Origin : algebraic geometry [Postnikov ~00]
- Link with a statistical mechanics model, the PASEP
\hookrightarrow the tableaux explain the underlying combinatorics of the model [Corteel and Williams 06,07]
- Close relation with permutations
\hookrightarrow Several bijections exist already [Steimgrimsson and Williams 07],[Corteel 06],[Burstein 06]

Definitions

Let T be a permutation tableau.

- A superfluous 1 is a 1 in T which is not the highest 1 in its column.
- A restricted 0 is a 0 in T such that there is a 1 higher in its column.

1	1	0	1
0	0	0	2
1	1	1	3
0	0	1	4
1	7^{6}	5	
8			
9			

Enumeration

Let $t(n, k, \ell)$ be the number of permutation tableaux of length n, with $k+1$ unrestricted rows and ℓ entries 1 in the first row. Then

$$
t(n, k, \ell)=\sum_{j=k}^{n-1}\binom{j}{k} t(n-1, j, \ell-1)+\binom{j}{k-1} t(n-1, j, \ell)
$$

Enumeration

Let $t(n, k, \ell)$ be the number of permutation tableaux of length n, with $k+1$ unrestricted rows and ℓ entries 1 in the first row.
Then

$$
t(n, k, \ell)=\sum_{j=k}^{n-1}\binom{j}{k} t(n-1, j, \ell-1)+\binom{j}{k-1} t(n-1, j, \ell)
$$

Let $T_{n}(x, y)=\sum_{k, \ell} t(n, k, \ell) x^{k} y^{\ell}$
Theorem
If $n>1$,

$$
T_{n}(x, y)=\prod_{i=0}^{n-2}(x+y+i)
$$

Enumeration

Theorem
If $n>1$,

$$
T_{n}(x, y)=\prod_{i=0}^{n-2}(x+y+i)
$$

Consequences :

- There are n ! tableaux of length n
- $t(n, k, \ell)=t(n, \ell, k)$
- The number of tableaux of length n with $\ell+1$ unrestricted rows is equal to the number of permutations of size n with ℓ cycles.

Permutations

We define some parameters on permutations :

$$
\sigma=28451637
$$

- A descent in $\sigma=\sigma_{1} \ldots \sigma_{n}$ is an entry σ_{i} such that $\sigma_{i}>\sigma_{i+1}$; the other entries are then called ascents.

28451637

Permutations

We define some parameters on permutations :

$$
\sigma=28451637
$$

- A descent in $\sigma=\sigma_{1} \ldots \sigma_{n}$ is an entry σ_{i} such that $\sigma_{i}>\sigma_{i+1}$; the other entries are then called ascents.

28451637

- A $R L$-minimum is an entry smaller than those to its right in σ.

28451637

Permutations

We define some parameters on permutations :

$$
\sigma=28451637
$$

- A descent in $\sigma=\sigma_{1} \ldots \sigma_{n}$ is an entry σ_{i} such that $\sigma_{i}>\sigma_{i+1}$; the other entries are then called ascents.

28451637

- A $R L$-minimum is an entry smaller than those to its right in σ. 28451637
- An occurrence of the pattern 31-2 in a permutation $\sigma=\sigma_{1} \cdots \sigma_{n}$ is the data of indices $i<j$ of σ such that $\sigma_{i}>\sigma_{j}>\sigma_{i+1}$.

28451637, 28451637, 28451637, 28451637

Permutations

We associate to each permutation a Ferrers diagram based on its descents and ascents :

Theorem

Theorem

There is a bijection ξ between permutations of length n and permutation tableaux of length n, such that when $T=\xi(\sigma)$:

- the shapes of σ and T are identical;

Theorem

Theorem

There is a bijection ξ between permutations of length n and permutation tableaux of length n, such that when $T=\xi(\sigma)$:

- the shapes of σ and T are identical;
- the number of superfluous $1 s$ in T is equal to the number of occurrences of $31-2$ in σ.

Theorem

Theorem

There is a bijection ξ between permutations of length n and permutation tableaux of length n, such that when $T=\xi(\sigma)$:

- the shapes of σ and T are identical;
- the number of superfluous $1 s$ in T is equal to the number of occurrences of $31-2$ in σ.
- i is an RL-minimum in σ iff i is the label of an unrestricted row of T.

Recursive decomposition

Reduction of a tableau according to the content of the bottom right cell :

Recursive decomposition

Reduction of a tableau according to the content of the bottom right cell :

Idea of the bijection : find a recursive decomposition of permutations that mimics this.
\hookrightarrow We will define ξ recursively : supposing we know how to define ξ on a tableau T, how can we define it on the tableau T to which a row, a column or a cell has been added?

Example

1	1
0	0
1	1

Example

Example

1
1

1	1
0	0
1	1

Example

Example

Example

	1	1	1	1		1		1		1			1
				0		0		0		0	0		0
								1					1
1	21		21	24								51	

Encoding by a lattice path

Encoding by a lattice path

Bijection $\xi+$ the encoding
\hookrightarrow Allows to enumerate bijectively permutations

- without any occurrence of 31-2 [Knuth 75]

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

- with exactly one occurrence of 31-2 [Claesson and Mansour 02]

$$
\binom{2 n}{n-3}
$$

Permutations with no occurrence of $32-1$

An L-tableau is a tableau such that all its necessary 1 are the leftmost 1 of their rows.

Theorem
L-tableaux of length n are in bijection with permutations of length n avoiding $32-1$.
The bijection preserves shapes.

- The same result is true with R-tableaux.

Corteel and N., Bijections for permutation tableaux, European Journal of Combinatorics, to appear

