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Definitions and motivation

Permutation Tableaux

Definition

A permutation tableau is a filling of a Ferrers diagram with 0 and 1
such that :

@ there is at least one 1 in each column ;

@ there is no 0 with a 1 above it in the same column and a 1 to its
left in the same row.
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Definitions and motivation

Permutation Tableaux

The length of a permutation tableau is its half perimeter, which is the
sum of its number of rows and its number of columns.
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Definitions and motivation

Permutation Tableaux

The length of a permutation tableau is its half perimeter, which is the
sum of its number of rows and its number of columns.
Thus there are 6 tableaux of length 3 :

o] [ [

Theorem (Postnikov)
There are n! tableaux of length n.
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Definitions and motivation

Permutation Tableaux

@ Origin : algebraic geometry [Postnikov ~00]
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— the tableaux explain the underlying combinatorics of the model
[Corteel and Williams 06,07]
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Definitions and motivation

Permutation Tableaux

@ Origin : algebraic geometry [Postnikov ~00]

@ Link with a statistical mechanics model, the PASEP
— the tableaux explain the underlying combinatorics of the model
[Corteel and Williams 06,07]

@ Close relation with permutations
— Several bijections exist already [Steimgrimsson and Williams
07],[Corteel 06],[Burstein 06]

P. Nadeau (Uni Wien) Permutation Tableaux SLC 60 March 31st, 2008 4/15



Definitions and motivation

Definitions

Let T be a permutation tableau.

@ A superfluous 1isa1in T which is not the highest 1 in its column.
@ Arestricted Oisa 0in T such that there is a 1 higher in its column.
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Definitions and motivation

Enumeration

Let t(n, k, ¢) be the number of permutation tableaux of length n, with
k + 1 unrestricted rows and ¢ entries 1 in the first row.

Then
() j
t(n,k,é):j_zk<k>t(n—1,/,€—1)+ (k_1)t(n—1,j,€)
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Definitions and motivation

Enumeration

Let t(n, k, ¢) be the number of permutation tableaux of length n, with
k + 1 unrestricted rows and ¢ entries 1 in the first row.
Then

t(n,k,é):g(lj;)t(n—1,j,€—1)+ (kj )t(n—1,j,€)

j=k -1
Let Tn(Xv y) = Zk,é t(nv ka Z)Xkyg
Theorem
Ifn>1,
n—2
To(x,y) = [[(x+y +1)
i=0
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Definitions and motivation

Enumeration
Theorem
Ifn>1,
n—2
To(x,y) = [[(x+y +1)
i=0
Consequences :

@ There are n! tableaux of length n
@ t(n,k,l) =t(n ¢, k)

@ The number of tableaux of length n with £ + 1 unrestricted rows is
equal to the number of permutations of size n with ¢ cycles.
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Definitions and motivation

Permutations
We define some parameters on permutations :

o = 28451637

@ Adescentino =oq...0pis anentry o; such that o; > o, 1; the
other entries are then called ascents.

28451637
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Definitions and motivation

Permutations

We define some parameters on permutations :

o = 28451637

@ Adescentino =oq...0pis anentry o; such that o; > o, 1; the
other entries are then called ascents.

28451637
@ A RL-minimum is an entry smaller than those to its right in .

28451637

@ An occurrence of the pattern 31 — 2 in a permutation o = o4 --- 0o

is the data of indices / < j of o such that o; > o; > 1.

28451637,28451637,28451637,28451637
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Definitions and motivation

Permutations

We associate to each permutation a Ferrers diagram based on its
descents and ascents :

28451637  — ) 4
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Main bijection

Theorem

Theorem

There is a bijection £ between permutations of length n and
permutation tableaux of length n, such that when T = {(o) :

@ the shapes of o and T are identical ;

g
olo]: ——» 25143
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Main bijection

Theorem

Theorem

There is a bijection £ between permutations of length n and

permutation tableaux of length n, such that when T = {(o) :
@ the shapes of o and T are identical ;

@ the number of superfluous 1s in T is equal to the number of
occurrences of 31 — 2 in o.

g
olo]: ——» 25143
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Main bijection

Theorem

Theorem

There is a bijection £ between permutations of length n and
permutation tableaux of length n, such that when T = {(o) :

@ the shapes of o and T are identical ;

@ the number of superfluous 1s in T is equal to the number of
occurrences of 31 — 2 in o.

@ i is an RL-minimum in o iff i is the label of an unrestricted row of T.

g
olo]: ——» 25143
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Main bijection

Recursive decomposition

Reduction of a tableau according to the content of the bottom right
cell :

I I

O ooo o
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Main bijection

Recursive decomposition

Reduction of a tableau according to the content of the bottom right
cell :

O ooo o

I I

Idea of the bijection : find a recursive decomposition of permutations
that mimics this.

— We will define ¢ recursively : supposing we know how to define £ on
a tableau T, how can we define it on the tableau T to which a row, a
column or a cell has been added ?
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Main bijection

Example

1|11
oo
1
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Main bijection

Example

| [1]1] [2]2 11 1]1 11
ol o oo ol o oo
1] 1
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Main bijection

Example

||1|1|111111 1|1
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Main bijection
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Main bijection

Example

||1|1|111111 1] 1

1 21 321
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Main bijection

Example

| | 1| 1 | 1|1 1] 1 1|1 1] 1
olo olo ol o ol o

B 1|1

1 21 321 2431 24315 25314 25143
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Extensions

Encoding by a lattice path

NolooinnfoE
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Extensions

Encoding by a lattice path

Bijection £ + the encoding
— Allows to enumerate bijectively permutations

@ without any occurrence of 31 — 2 [Knuth 75]

1 2n
n+1\ n

@ with exactly one occurrence of 31 — 2 [Claesson and Mansour

02]
2n
(n"3)
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Extensions

Permutations with no occurrence of 32 — 1

An L-tableau is a tableau such that all its necessary 1 are the leftmost
1 of their rows.

Theorem

L-tableaux of length n are in bijection with permutations of length n
avoiding 32 — 1.
The bijection preserves shapes.

@ The same result is true with R-tableaux.
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Extensions

Corteel and N., Bijections for permutation tableaux, European
Journal of Combinatorics, to appear
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