Group of substitution with prefunction and boson normal ordering problem

Laurent Poinsot

LIPN - UMR CNRS 7030 Université Paris-Nord XIII

60th Séminaire Lotharingien de Combinatoire

Laurent Poinsot Substitution with prefunction and boson normal ordering

Outline of the talk

Motivations: Boson normal ordering problem

- ID harmonic oscillator
- Boson operators

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline of the talk

Motivations: Boson normal ordering problem

- ID harmonic oscillator
- Boson operators

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline of the talk

Motivations: Boson normal ordering problem

- ID harmonic oscillator
- Boson operators
- Infinite matrices

伺 とくき とくき と

1*D* harmonic oscillator Boson operators

Outline of the talk

Infinite matrices

3 Group of substitution with prefunction

1*D* harmonic oscillator Boson operators

One-dimensional harmonic oscillator: quantum mechanics

In quantum mechanics, the Hamiltonian operator of a particle of mass m subject to a certain potential is given by the following operators equation

$$H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 X^2$$

where X is the **position** operator and P the **momentum** operator both of them acting on a given Hilbert space.

ヘロト 人間 ト ヘヨト ヘヨト

1*D* harmonic oscillator Boson operators

One-dimensional harmonic oscillator: quantum mechanics

Solving the equation for the Hamiltonian operator is in fact equivalent to the spectral analysis of H that is the determination of the eigenvalues of the Hamiltonian

$$Hv = \lambda v$$

where the eigenvalue λ is the energy associated to the eigenvector *v*.

ヘロト 人間 ト ヘヨト ヘヨト

1*D* harmonic oscillator Boson operators

One-dimensional harmonic oscillator: quantum mechanics

In order to simplify the problem, three new operators are introduced:

・ロン・西方・ ・ ヨン・

1

1*D* harmonic oscillator Boson operators

One-dimensional harmonic oscillator: quantum mechanics

In order to simplify the problem, three new operators are introduced:

• Annihilation operator: $a = k(X + \frac{i}{m\omega}P);$

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

1*D* harmonic oscillator Boson operators

One-dimensional harmonic oscillator: quantum mechanics

In order to simplify the problem, three new operators are introduced:

- Annihilation operator: $a = k(X + \frac{i}{m\omega}P);$
- 2 Creation operator: $a^{\dagger} = k(X \frac{i}{m\omega}P);$

イロト イポト イヨト イヨト

э.

1*D* harmonic oscillator Boson operators

One-dimensional harmonic oscillator: quantum mechanics

In order to simplify the problem, three new operators are introduced:

- Annihilation operator: $a = k(X + \frac{i}{m\omega}P);$
- 2 Creation operator: $a^{\dagger} = k(X \frac{i}{m\omega}P);$
- 3 Number operator: $N = a^{\dagger}a$.

1*D* harmonic oscillator Boson operators

One-dimensional harmonic oscillator: quantum mechanics

In order to simplify the problem, three new operators are introduced:

- Annihilation operator: $a = k(X + \frac{i}{m\omega}P);$
- 2 Creation operator: $a^{\dagger} = k(X \frac{i}{m\omega}P);$
- 3 Number operator: $N = a^{\dagger}a$.

The equation satisfied by the Hamiltonian becomes

$$H=\hbar\omega(N+\frac{1}{2}).$$

ヘロト 人間 とくほ とくほ とう

э.

One-dimensional harmonic oscillator: quantum mechanics

In order to simplify the problem, three new operators are introduced:

- Annihilation operator: $a = k(X + \frac{i}{m\omega}P);$
- 2 Creation operator: $a^{\dagger} = k(X \frac{i}{m\omega}P);$
- 3 Number operator: $N = a^{\dagger}a$.

The equation satisfied by the Hamiltonian becomes

$$H=\hbar\omega(N+\frac{1}{2}).$$

Therefore the eigenvectors of H and N are the same.

ヘロト 人間 ト ヘヨト ヘヨト

1*D* harmonic oscillator Boson operators

One-dimensional harmonic oscillator: quantum mechanics

Some properties :

- a^{\dagger} is the adjoint of *a*;
- 2 Commutation relation: $[a, a^{\dagger}] = 1$ *i.e.* $aa^{\dagger} = 1 + a^{\dagger}a$;
- Sigenvalues of *N* are the positive integers.

1*D* harmonic oscillator Boson operators

One-dimensional harmonic oscillator: quantum mechanics

Some properties :

- a^{\dagger} is the adjoint of *a*;
- 2 Commutation relation: $[a, a^{\dagger}] = 1$ *i.e.* $aa^{\dagger} = 1 + a^{\dagger}a$;
- Sector Sector

Conclusion: In the quantum case, there is a discrete range of possible values for the energy of the harmonic oscillator.

・ロト ・ 理 ト ・ ヨ ト ・

1*D* harmonic oscillator Boson operators

Outline of the talk

Infinite matrices

3 Group of substitution with prefunction

Fock space

1*D* harmonic oscillator Boson operators

Let us denote by v_n the eigenvector of the number operator N associated to the eigenvalue n:

$$Nv_n = nv_n$$
.

Interpretation: they are exactly *n* bosons in the state v_n .

1*D* harmonic oscillator Boson operators

Let us denote by v_n the eigenvector of the number operator N associated to the eigenvalue n:

$$Nv_n = nv_n$$
.

Interpretation: they are exactly *n* bosons in the state v_n . The one-particle Hilbert space of (quantum) states, called **Fock space**, is spanned by the **number states** v_n for $n \in \mathbb{N}$.

< □ > < 同 > < 回 > < 回

4

1*D* harmonic oscillator Boson operators

Occupation number representation

In this situation the operators a and a^{\dagger} act on the number states as follows

$$a \ v_n = \sqrt{n} \ v_{n-1}$$
 ;
 $a^{\dagger} \ v_n = \sqrt{n+1} \ v_{n+1}$.

ヘロア 人間 アメヨア 人口 ア

э

1*D* harmonic oscillator Boson operators

Occupation number representation

In this situation the operators a and a^{\dagger} act on the number states as follows

$$a \quad v_n = \sqrt{n} \quad v_{n-1}; a^{\dagger} \quad v_n = \sqrt{n+1} \quad v_{n+1}.$$

Interpretation :

• The annihilation operator *a* changes each state v_n to another containing n - 1 particles;

1*D* harmonic oscillator Boson operators

Occupation number representation

In this situation the operators a and a^{\dagger} act on the number states as follows

$$a \quad v_n = \sqrt{n} \quad v_{n-1}; a^{\dagger} \quad v_n = \sqrt{n+1} \quad v_{n+1}.$$

Interpretation :

- The annihilation operator *a* changes each state v_n to another containing n 1 particles;
- 2 The creation operator a^{\dagger} changes each state v_n to another containing n + 1 particles.

1*D* harmonic oscillator Boson operators

Boson normal ordering

Noncommutativity of annihilation and creation operators may cause difficulties in defining an operator calculus in quantum mechanics.

1*D* harmonic oscillator Boson operators

Boson normal ordering

Noncommutativity of annihilation and creation operators may cause difficulties in defining an operator calculus in quantum mechanics.

To solve these problems one has to <u>fix the order</u> of the operators involved in a sequence of Boson operators.

1*D* harmonic oscillator Boson operators

Boson normal ordering

Noncommutativity of annihilation and creation operators may cause difficulties in defining an operator calculus in quantum mechanics.

To solve these problems one has to <u>fix the order</u> of the operators involved in a sequence of Boson operators. This leads to the notion of **normal ordered form** of the boson operators in which all a^{\dagger} stand to the left of all the factors *a*.

1*D* harmonic oscillator Boson operators

Boson normal ordering

There are two well-defined procedures on the boson expressions yielding a normally ordered form:

1*D* harmonic oscillator Boson operators

Boson normal ordering

There are two well-defined procedures on the boson expressions yielding a normally ordered form:

Double-dot operation;

1*D* harmonic oscillator Boson operators

Boson normal ordering

There are two well-defined procedures on the boson expressions yielding a normally ordered form:

- Double-dot operation;
- 2 Normal ordering operation.

1*D* harmonic oscillator Boson operators

Boson normal ordering: Double-dot operation

Let $P(a, a^{\dagger})$ be a word in $\{a, a^{\dagger}\}^*$.

イロト イポト イヨト イヨト

æ

1*D* harmonic oscillator Boson operators

Boson normal ordering: Double-dot operation

Let $P(a, a^{\dagger})$ be a word in $\{a, a^{\dagger}\}^*$. The application of the double-dot operation on $P(a, a^{\dagger})$ leads to the monomial : $P(a, a^{\dagger})$: obtained by moving all the annihilation operators *a* to the right without taking into account the commutation relation

1*D* harmonic oscillator Boson operators

Boson normal ordering: Double-dot operation

Let $P(a, a^{\dagger})$ be a word in $\{a, a^{\dagger}\}^*$. The application of the double-dot operation on $P(a, a^{\dagger})$ leads to the monomial : $P(a, a^{\dagger})$: obtained by moving all the annihilation operators *a* to the right without taking into account the commutation relation *i.e.* moving all annihilation operators *a* to the right as if they commute with the creation operators a^{\dagger} $([a, a^{\dagger}] = 0)$.

1*D* harmonic oscillator Boson operators

Boson normal ordering: Double-dot operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$.

1*D* harmonic oscillator Boson operators

Boson normal ordering: Double-dot operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

 $: aa^{\dagger}aaa^{\dagger}a : = a^{\dagger}a^{\dagger}aaaa$.

・ロン・西方・ ・ ヨン・

э

1*D* harmonic oscillator Boson operators

Boson normal ordering: Double-dot operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

 $: aa^{\dagger}aaa^{\dagger}a : = a^{\dagger}a^{\dagger}aaaa$.

Note that in general, as operators : $P(a, a^{\dagger}) : \neq P(a, a^{\dagger})$. The equality holds only for operators which are already in normal form.

1*D* harmonic oscillator Boson operators

Boson normal ordering: Normal ordering operation

Let $P(a, a^{\dagger})$ be a word in $\{a, a^{\dagger}\}^*$.

Laurent Poinsot Substitution with prefunction and boson normal ordering

ヘロト 人間 ト ヘヨト ヘヨト

æ

1*D* harmonic oscillator Boson operators

Boson normal ordering: Normal ordering operation

Let $P(a, a^{\dagger})$ be a word in $\{a, a^{\dagger}\}^*$. The application of the normal ordering operation on $P(a, a^{\dagger})$ leads to the polynomial $\mathcal{N}(P(a, a^{\dagger}))$ which is obtained by moving all the annihilation operators *a* to the right using the commutation relation $[a, a^{\dagger}] = 1$.

1*D* harmonic oscillato Boson operators

Boson normal ordering: Normal ordering operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$.

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

1*D* harmonic oscillato Boson operators

Boson normal ordering: Normal ordering operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

 $\mathcal{N}(aa^{\dagger}aaa^{\dagger}a) = (a^{\dagger})^2 a^4 + 4a^{\dagger}a^3 + 2a^2$

・ 回 ト ・ ヨ ト ・ ヨ ト

1*D* harmonic oscillator Boson operators

Boson normal ordering: Normal ordering operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

$$\mathcal{N}(aa^{\dagger}aaa^{\dagger}a) = (a^{\dagger})^2 a^4 + 4a^{\dagger}a^3 + 2a^2$$

because

・ 回 ト ・ ヨ ト ・ ヨ ト

1*D* harmonic oscillator Boson operators

Boson normal ordering: Normal ordering operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

$$\mathcal{N}(aa^{\dagger}aaa^{\dagger}a) = (a^{\dagger})^2 a^4 + 4a^{\dagger}a^3 + 2a^2$$

because

 $aa^{\dagger}aaa^{\dagger}a = (1 + a^{\dagger}a)a(1 + a^{\dagger})a$

ヘロト ヘアト ヘビト ヘビト

1

1*D* harmonic oscillator Boson operators

Boson normal ordering: Normal ordering operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

$$\mathcal{N}(aa^{\dagger}aaa^{\dagger}a) = (a^{\dagger})^2 a^4 + 4a^{\dagger}a^3 + 2a^2$$

because

$$aa^{\dagger}aaa^{\dagger}a = (1 + a^{\dagger}a)a(1 + a^{\dagger})a$$

= $a^2 + aa^{\dagger}a^2 + a^{\dagger}a^3 + a^{\dagger}aaa^{\dagger}a^2$

1*D* harmonic oscillato Boson operators

Boson normal ordering: Normal ordering operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

$$\mathcal{N}(aa^{\dagger}aaa^{\dagger}a) = (a^{\dagger})^2 a^4 + 4a^{\dagger}a^3 + 2a^2$$

because

$$aa^{\dagger}aaa^{\dagger}a = (1 + a^{\dagger}a)a(1 + a^{\dagger})a = a^{2} + aa^{\dagger}a^{2} + a^{\dagger}a^{3} + a^{\dagger}aaa^{\dagger}a^{2} = a^{2} + (1 + a^{\dagger}a)a^{2} + a^{\dagger}a^{2} + a^{\dagger}a(1 + a^{\dagger}a)a^{2}$$

1*D* harmonic oscillato Boson operators

Boson normal ordering: Normal ordering operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

$$\mathcal{N}(aa^{\dagger}aaa^{\dagger}a) = (a^{\dagger})^2 a^4 + 4a^{\dagger}a^3 + 2a^2$$

because

$$aa^{\dagger} aaa^{\dagger} a = (1 + a^{\dagger} a)a(1 + a^{\dagger})a$$

= $a^{2} + aa^{\dagger} a^{2} + a^{\dagger} a^{3} + a^{\dagger} aaa^{\dagger} a^{2}$
= $a^{2} + (1 + a^{\dagger} a)a^{2} + a^{\dagger} a^{2} + a^{\dagger} a(1 + a^{\dagger} a)a^{2}$
= $2a^{2} + 3a^{\dagger} a^{3} + a^{\dagger} aa^{3}$

1*D* harmonic oscillato Boson operators

Boson normal ordering: Normal ordering operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

$$\mathcal{N}(aa^{\dagger}aaa^{\dagger}a) = (a^{\dagger})^2 a^4 + 4a^{\dagger}a^3 + 2a^2$$

because

$$aa^{\dagger} aaa^{\dagger} a = (1 + a^{\dagger} a)a(1 + a^{\dagger})a$$

= $a^{2} + aa^{\dagger} a^{2} + a^{\dagger} a^{3} + a^{\dagger} aaa^{\dagger} a^{2}$
= $a^{2} + (1 + a^{\dagger} a)a^{2} + a^{\dagger} a^{2} + a^{\dagger} a(1 + a^{\dagger} a)a^{2}$
= $2a^{2} + 3a^{\dagger} a^{3} + a^{\dagger} aa^{\dagger} a^{3}$
= $2a^{2} + 3a^{\dagger} a^{3} + a^{\dagger} (1 + a^{\dagger} a)a^{3}$

1*D* harmonic oscillato Boson operators

Boson normal ordering: Normal ordering operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

$$\mathcal{N}(aa^{\dagger}aaa^{\dagger}a) = (a^{\dagger})^2 a^4 + 4a^{\dagger}a^3 + 2a^2$$

because

$$aa^{\dagger} aaa^{\dagger} a = (1 + a^{\dagger} a)a(1 + a^{\dagger})a$$

= $a^{2} + aa^{\dagger} a^{2} + a^{\dagger} a^{3} + a^{\dagger} aaa^{\dagger} a^{2}$
= $a^{2} + (1 + a^{\dagger} a)a^{2} + a^{\dagger} a^{2} + a^{\dagger} a(1 + a^{\dagger} a)a^{2}$
= $2a^{2} + 3a^{\dagger} a^{3} + a^{\dagger} aa^{\dagger} a^{3}$
= $2a^{2} + 3a^{\dagger} a^{3} + a^{\dagger} (1 + a^{\dagger} a)a^{3}$
= $2a^{2} + 4a^{\dagger} a^{3} + (a^{\dagger})^{2} a^{4}$.

1*D* harmonic oscillato Boson operators

Boson normal ordering: Normal ordering operation

Example: Consider the word $aa^{\dagger}aaa^{\dagger}a$. Then we have:

$$\mathcal{N}(aa^{\dagger}aaa^{\dagger}a) = (a^{\dagger})^2 a^4 + 4a^{\dagger}a^3 + 2a^2$$

because

$$aa^{\dagger} aaa^{\dagger} a = (1 + a^{\dagger} a)a(1 + a^{\dagger})a = a^{2} + aa^{\dagger} a^{2} + a^{\dagger} a^{3} + a^{\dagger} aaa^{\dagger} a^{2} = a^{2} + (1 + a^{\dagger} a)a^{2} + a^{\dagger} a^{2} + a^{\dagger} a(1 + a^{\dagger} a)a^{2} = 2a^{2} + 3a^{\dagger} a^{3} + a^{\dagger} aa^{\dagger} a^{3} = 2a^{2} + 3a^{\dagger} a^{3} + a^{\dagger} (1 + a^{\dagger} a)a^{3} = 2a^{2} + 4a^{\dagger} a^{3} + (a^{\dagger})^{2} a^{4}.$$

Note that as operators, $P(a, a^{\dagger}) = \mathcal{N}(P(a, a^{\dagger}))$.

ヘロト ヘアト ヘビト ヘビト

1

1*D* harmonic oscillato Boson operators

Boson normal ordering: Normal ordering problem

We say that the normal ordering problem for $P(a, a^{\dagger})$ is solved if, and only if, we are able to find an operator $Q(a, a^{\dagger})$ for which the following equality on operators holds

1*D* harmonic oscillator Boson operators

Boson normal ordering: Normal ordering problem

We say that the normal ordering problem for $P(a, a^{\dagger})$ is solved if, and only if, we are able to find an operator $Q(a, a^{\dagger})$ for which the following equality on operators holds

$$P(a, a^{\dagger}) = : Q(a, a^{\dagger}) : .$$

1*D* harmonic oscillato Boson operators

Boson normal ordering: powers of a word

Let $\omega \in \{a, a^{\dagger}\}^*$. Let *e* be the difference between the number of creation operators and annihilation operators in ω .

(本間) (本語) (本語)

1*D* harmonic oscillato Boson operators

Boson normal ordering: powers of a word

Let $\omega \in \{a, a^{\dagger}\}^*$. Let *e* be the difference between the number of creation operators and annihilation operators in ω . For each positive integer *n*, we have (P. Blasiak *et al.*, 2003)

$$\mathcal{N}(\omega^n) = \left\{ egin{array}{ll} (a^\dagger)^{ne} \left(\sum_{k\geq 0} S_\omega(n,k) (a^\dagger)^k a^k
ight) & ext{if } e\geq 0 \;, \ \left(\sum_{k\geq 0} S_\omega(n,k) (a^\dagger)^k a^k
ight) (a)^{n|e|} & ext{if } e< 0 \;. \end{array}
ight.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

1*D* harmonic oscillator Boson operators

Boson normal ordering: powers of a word

Let $\omega \in \{a, a^{\dagger}\}^*$. Let *e* be the difference between the number of creation operators and annihilation operators in ω . For each positive integer *n*, we have (P. Blasiak *et al.*, 2003)

$$\mathcal{N}(\omega^n) = \left\{ egin{array}{ll} (a^\dagger)^{ne} \left(\sum_{k\geq 0} S_\omega(n,k) (a^\dagger)^k a^k
ight) & ext{if } e\geq 0 \;, \ \left(\sum_{k\geq 0} S_\omega(n,k) (a^\dagger)^k a^k
ight) (a)^{n|e|} & ext{if } e< 0 \;. \end{array}
ight.$$

This is a generalization of the following (Katriel, 1974): if $\omega = a^{\dagger}a$, then $S_{\omega}(n, k)$ are the usual Stirling numbers of the second kind.

ヘロア 人間 アメヨア 人口 ア

1*D* harmonic oscillator Boson operators

Boson normal ordering: powers of a word

The normal form of *n*th powers of a word a very important because they are used to find the normal form of evolution operators $e^{\lambda\omega}$.

1*D* harmonic oscillato Boson operators

Boson normal ordering: powers of a word with only one annihilation operator

For any word ω , we consider the doubly-infinite matrix $S_{\omega} = (S_{\omega}(n, k))_{n \ge 0, k \ge 0}$ given by the previous equations.

1*D* harmonic oscillator Boson operators

Boson normal ordering: powers of a word with only one annihilation operator

For any word ω , we consider the doubly-infinite matrix $S_{\omega} = (S_{\omega}(n,k))_{n \ge 0, k \ge 0}$ given by the previous equations. Let us consider a string of boson operators with only one annihilation operator of the following form:

$$\omega = (a^{\dagger})^{r-p} a (a^{\dagger})^{p}$$
 .

1*D* harmonic oscillator Boson operators

Boson normal ordering: powers of a word with only one annihilation operator

For any word ω , we consider the doubly-infinite matrix $S_{\omega} = (S_{\omega}(n,k))_{n \ge 0, k \ge 0}$ given by the previous equations. Let us consider a string of boson operators with only one annihilation operator of the following form:

$$\omega = (a^{\dagger})^{r-p} a (a^{\dagger})^{p}$$
 .

Then S_{ω} is a unipotent matrix *i.e.* a lower triangular matrix with diagonal elements equal to 1.

1*D* harmonic oscillator Boson operators

<u>Conclusion</u>: We want to study topological, algebraic or combinatorial properties of these doubly-infinite matrices in order to understand the meaning of the coefficients $S_{\omega}(n, k)$ in the particular case of a word with only one annihilation operator.

Topological properties of:

$\mathbb{C}^{\mathbb{N}\times\mathbb{N}}\supset\mathbb{C}^{\mathbb{N}\times(\mathbb{N})}\simeq\mathcal{L}(\mathbb{C}^{\mathbb{N}})\supset\text{Lt}(\mathbb{N},\mathbb{C})\supset\text{Lt}^{\times}(\mathbb{N},\mathbb{C})\supset\text{Ut}(\mathbb{N},\mathbb{C})\;.$

Laurent Poinsot Substitution with prefunction and boson normal ordering

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fréchet space

A Fréchet space is a metrizable complete and locally convex topological vector space.

Laurent Poinsot Substitution with prefunction and boson normal ordering

A Fréchet space is a metrizable complete and locally convex topological vector space. For instance any Banach space (a complete normed space) is a Fréchet space. (The reciprocal assertion is false.)

- ∢ ⊒ →

The Fréchet space of $\mathbb{N} \times \mathbb{N}$ infinite matrices

Let $\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$ be the vector space of infinite matrices $(M_{n,k})_{n\in\mathbb{N},k\in\mathbb{N}}$.

ヘロン 人間 とくほ とくほ とう

1

The Fréchet space of $\mathbb{N} \times \mathbb{N}$ infinite matrices

Let $\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$ be the vector space of infinite matrices $(M_{n,k})_{n\in\mathbb{N},k\in\mathbb{N}}$. Equiped with the weakest topology for which the natural projections

$$\operatorname{pr}_{n,k}: \mathbb{C}^{\mathbb{N} imes \mathbb{N}} o \mathbb{C}$$

 $M \mapsto M_{n,k}$

are continuous (the topology of simple convergence), $\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$ is a Fréchet space.

ヘロト ヘアト ヘビト ヘビト

1

The Fréchet space of $\mathbb{N} \times \mathbb{N}$ infinite matrices

Let $\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$ be the vector space of infinite matrices $(M_{n,k})_{n\in\mathbb{N},k\in\mathbb{N}}$. Equiped with the weakest topology for which the natural projections

$$\operatorname{pr}_{n,k}: \mathbb{C}^{\mathbb{N} imes \mathbb{N}} o \mathbb{C}$$

 $M \mapsto M_{n,k}$

are continuous (the topology of simple convergence), $\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$ is a Fréchet space.

 $\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$ is not a Banach space (because every neighborhood of zero contains a non trivial subvector space).

ヘロン 不通 とくほ とくほ とう

Row-finite matrices

Let $\mathbb{C}^{\mathbb{N}\times(\mathbb{N})}$ be the subvector space of $\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$ which consists in row-finite matrices *i.e.* matrices for which every row has a finite support.

Row-finite matrices

Let $\mathbb{C}^{\mathbb{N}\times(\mathbb{N})}$ be the subvector space of $\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$ which consists in row-finite matrices *i.e.* matrices for which every row has a finite support.

For instance S_{ω} previously introduced (for a word with only one annihilation operator) is row-finite since it is a unipotent matrix.

▲◎ ▶ ▲ 臣 ▶ ▲ 臣

Row-finite matrices

Let $\mathbb{C}^{\mathbb{N}\times(\mathbb{N})}$ be the subvector space of $\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$ which consists in row-finite matrices *i.e.* matrices for which every row has a finite support.

For instance S_{ω} previously introduced (for a word with only one annihilation operator) is row-finite since it is a unipotent matrix. $\mathbb{C}^{\mathbb{N}\times(\mathbb{N})}$ is an associative unital noncommutative algebra.

Row-finite matrices

The vector space $\mathbb{C}^{\mathbb{N}}$ of complex sequences is a Fréchet (but not a Banach) space when equiped with the weakest topology for which every natural projection $\operatorname{pr}_k((u_n)_{n\in\mathbb{N}}) = u_k$ is continuous.

< 回 > < 回 >

Row-finite matrices

The vector space $\mathbb{C}^{\mathbb{N}}$ of complex sequences is a Fréchet (but not a Banach) space when equiped with the weakest topology for which every natural projection $\operatorname{pr}_k((u_n)_{n\in\mathbb{N}}) = u_k$ is continuous.

Let denote by $\mathcal{L}(\mathbb{C}^{\mathbb{N}})$ the algebra of continuous endomorphisms of $\mathbb{C}^{\mathbb{N}}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Row-finite matrices

The vector space $\mathbb{C}^{\mathbb{N}}$ of complex sequences is a Fréchet (but not a Banach) space when equiped with the weakest topology for which every natural projection $\operatorname{pr}_k((u_n)_{n\in\mathbb{N}}) = u_k$ is continuous.

Let denote by $\mathcal{L}(\mathbb{C}^{\mathbb{N}})$ the algebra of continuous endomorphisms of $\mathbb{C}^{\mathbb{N}}$.

Proposition

As complex algebras, $\mathcal{L}(\mathbb{C}^{\mathbb{N}})$ and $\mathbb{C}^{\mathbb{N} \times (\mathbb{N})}$ are isomorphic.

ヘロト ヘアト ヘビト ヘビト

Row-finite matrices

The vector space $\mathbb{C}^{\mathbb{N}}$ of complex sequences is a Fréchet (but not a Banach) space when equiped with the weakest topology for which every natural projection $\operatorname{pr}_k((u_n)_{n\in\mathbb{N}}) = u_k$ is continuous.

Let denote by $\mathcal{L}(\mathbb{C}^{\mathbb{N}})$ the algebra of continuous endomorphisms of $\mathbb{C}^{\mathbb{N}}.$

Proposition

As complex algebras, $\mathcal{L}(\mathbb{C}^{\mathbb{N}})$ and $\mathbb{C}^{\mathbb{N} \times (\mathbb{N})}$ are isomorphic.

In particular S_{ω} defines a continuous operator of $\mathbb{C}^{\mathbb{N}}$.

ヘロア 人間 アメヨア 人口 ア

Infinite lower triangular matrices

Let ${\tt LT}(\mathbb{N},\mathbb{C})$ be the set of all infinite lower triangular matrices

Infinite lower triangular matrices

Let $LT(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices *i.e.* $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $LT(\mathbb{N}, \mathbb{C})$ if, and only if,

・ 同 ト ・ ヨ ト ・ ヨ ト

Infinite lower triangular matrices

Let $LT(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices *i.e.* $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $LT(\mathbb{N}, \mathbb{C})$ if, and only if,

 $M_{n,k} = 0 \quad \forall k > n$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Infinite lower triangular matrices

Let $LT(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices *i.e.* $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $LT(\mathbb{N}, \mathbb{C})$ if, and only if,

$$M_{n,k}=0 \quad \forall k>n$$
 .

For instance $S_{\omega} \in LT(\mathbb{N}, \mathbb{C})$ as a unipotent matrix.

・ 回 ト ・ ヨ ト ・ ヨ ト

Infinite lower triangular matrices

Let $LT(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices *i.e.* $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $LT(\mathbb{N}, \mathbb{C})$ if, and only if,

$$M_{n,k}=0 \quad \forall k>n$$
 .

For instance $S_{\omega} \in LT(\mathbb{N}, \mathbb{C})$ as a unipotent matrix.

 LT(N, C) is a closed subvector space of C^{N×N} and so is a Fréchet space;

・ 同 ト ・ ヨ ト ・ ヨ ト

Infinite lower triangular matrices

Let $LT(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices *i.e.* $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $LT(\mathbb{N}, \mathbb{C})$ if, and only if,

$$M_{n,k}=0 \quad \forall k>n$$
 .

For instance $S_{\omega} \in LT(\mathbb{N}, \mathbb{C})$ as a unipotent matrix.

- LT(N, C) is a closed subvector space of C^{N×N} and so is a Fréchet space;
- LT(N, C) is a unital associative noncommutative subalgebra of C^{N×(N)};

・ロト ・ 日本・ ・ 日本・

Infinite lower triangular matrices

Let $LT(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices *i.e.* $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $LT(\mathbb{N}, \mathbb{C})$ if, and only if,

$$M_{n,k}=0 \quad \forall k>n$$
 .

For instance $S_{\omega} \in LT(\mathbb{N}, \mathbb{C})$ as a unipotent matrix.

- LT(N, C) is a closed subvector space of C^{N×N} and so is a Fréchet space;
- ② LT(N, C) is a unital associative noncommutative subalgebra of C^{N×(N)};
- LT(N, C) is a topological algebra (*i.e.* its multiplication is continuous);

くロト (過) (目) (日)

Infinite lower triangular matrices

Let $LT(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices *i.e.* $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $LT(\mathbb{N}, \mathbb{C})$ if, and only if,

$$M_{n,k}=0 \quad \forall k>n$$
.

For instance $S_{\omega} \in LT(\mathbb{N}, \mathbb{C})$ as a unipotent matrix.

- LT(N, C) is a closed subvector space of C^{N×N} and so is a Fréchet space;
- IT(N, C) is a unital associative noncommutative subalgebra of C^{N×(N)};
- LT(N, C) is a topological algebra (*i.e.* its multiplication is continuous);
- The multiplicative group LT(N, C)[×] of invertible elements of LT(N, C), that is lower triangular matrices with nonzero elements on the diagonal, is a Hausdorff topological group.

Unipotent matrices

Let $UT(\mathbb{N}, \mathbb{C})$ be the set of all unipotent matrices.

Unipotent matrices

Let $UT(\mathbb{N}, \mathbb{C})$ be the set of all unipotent matrices. We can easily check that $UT(\mathbb{N}, \mathbb{C})$ is a subgroup of $LT(\mathbb{N}, \mathbb{C})^{\times}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Unipotent matrices

Let $UT(\mathbb{N}, \mathbb{C})$ be the set of all unipotent matrices. We can easily check that $UT(\mathbb{N}, \mathbb{C})$ is a subgroup of $LT(\mathbb{N}, \mathbb{C})^{\times}$. S_{ω} is an invertible matrix and therefore it induces a continuous isomorphism of $\mathbb{C}^{\mathbb{N}}$.

▲ □ ▶ ▲ □ ▶ ▲

It has been proved (G. Duchamp *et al.*, 2003) that for every word $\omega \in \{a, a^{\dagger}\}^*$ with only one annihilation operator, there are two formal power series: P(x) an invertible series with [1]P(x) = 1 and S(x) without constant term and such that [x]S(x) = 1 so that

・ 回 ト ・ ヨ ト ・ ヨ ト

It has been proved (G. Duchamp *et al.*, 2003) that for every word $\omega \in \{a, a^{\dagger}\}^*$ with only one annihilation operator, there are two formal power series: P(x) an invertible series with [1]P(x) = 1 and S(x) without constant term and such that [x]S(x) = 1 so that

$$\sum_{n\geq 0} S_{\omega}(n,k) \frac{x^n}{n!} = P(x) \frac{S(x)^k}{k!}$$

く 同 と く ヨ と く ヨ と

Sheffer group: prefunctions

Let denote $\mathcal{P} := \{ P(x) \in \mathbb{C}[[x]] | [1] P(x) = 1 \}.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Sheffer group: prefunctions

Let denote $\mathcal{P} := \{ P(x) \in \mathbb{C}[[x]] | [1] P(x) = 1 \}.$

It is well-known that \mathcal{P} is a group for the multiplication of formal power series (sometimes called *Appell group*). Its elements are called *prefunctions*.

Sheffer group: substitutions

Let denote $S := \{S(x) \in \mathbb{C}[[x]] | [1]S(x) = 0, [x]S(x) = 1\}.$

ヘロン 人間 とくほ とくほ とう

E DQC

Sheffer group: substitutions

Let denote $S := \{S(x) \in \mathbb{C}[[x]] | [1]S(x) = 0, [x]S(x) = 1\}$. This set is a group for the substitution of formal power series: $(S_1 \circ S_2)(x) = S_1(S_2(x))$ (sometimes called the *associated group*). Its elements are called *substitutions*.

ヘロン 人間 とくほ とくほ とう

1

Sheffer group: substitutions

Let denote $S := \{S(x) \in \mathbb{C}[[x]] | [1]S(x) = 0, [x]S(x) = 1\}$. This set is a group for the substitution of formal power series: $(S_1 \circ S_2)(x) = S_1(S_2(x))$ (sometimes called the *associated group*). Its elements are called *substitutions*. We denote by $S^{[-1]}(x)$ the compositional inverse of S(x): $S(S^{[-1]}(x)) = S^{[-1]}(S(x)) = x$.

ヘロト ヘアト ヘビト ヘビト

Sheffer group: substitutions with prefunctions

The cartesian product $\mathcal{P} \times \mathcal{S}$ is a semi-direct product when equiped with the group law:

Sheffer group: substitutions with prefunctions

The cartesian product $\mathcal{P}\times\mathcal{S}$ is a semi-direct product when equiped with the group law:

 $(P_1(x), S_1(x)) \rtimes (P_2(x), S_2(x)) = (P_1(S_2(x))P_2(x), S_1(S_2(x)))$.

イロト イ押ト イヨト イヨトー

э.

Sheffer group: substitutions with prefunctions

The cartesian product $\mathcal{P}\times\mathcal{S}$ is a semi-direct product when equiped with the group law:

 $(P_1(x), S_1(x)) \rtimes (P_2(x), S_2(x)) = (P_1(S_2(x))P_2(x), S_1(S_2(x)))$.

For this law, one has

$$(P(x), S(x))^{-1} = (\frac{1}{P(S^{[-1]}(x))}, S^{[-1]}(x)).$$

イロト イ押ト イヨト イヨトー

э.

Sheffer group: linear representation

There is a *natural* right linear representation of the semi-direct product $\mathcal{P} \rtimes \mathcal{S}$ on the complex vector space $\mathbb{C}[[x]]$:

・ 同 ト ・ ヨ ト ・ ヨ

Sheffer group: linear representation

There is a *natural* right linear representation of the semi-direct product $\mathcal{P} \rtimes \mathcal{S}$ on the complex vector space $\mathbb{C}[[x]]$:

$$f(x).(P(x),S(x))=P(x)f(S(x)),$$

 $\forall f(x) \in \mathbb{C}[[x]] \text{ and } \forall (P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Sheffer group: matrix representation

For every $(P(x), S(x)) \in \mathcal{P} \rtimes S$ there is one and only one $M_{P,S} \in UT(\mathbb{N}, \mathbb{C})$ defined by

ヘロト ヘアト ヘビト ヘビト

1

Sheffer group: matrix representation

For every $(P(x), S(x)) \in \mathcal{P} \rtimes S$ there is one and only one $M_{P,S} \in UT(\mathbb{N}, \mathbb{C})$ defined by

$$M_{P,S}(n,k) = \left[\frac{x^n}{n!}\right](P(x)\frac{S(x)^k}{k!})$$

ヘロト ヘアト ヘビト ヘビト

1

Sheffer group: matrix representation

For every $(P(x), S(x)) \in \mathcal{P} \rtimes S$ there is one and only one $M_{P,S} \in UT(\mathbb{N}, \mathbb{C})$ defined by

$$M_{P,S}(n,k) = \left[\frac{x^n}{n!}\right](P(x)\frac{S(x)^k}{k!})$$

or equivalently

$$\sum_{n\geq 0} M_{P,S}(n,k) \frac{x^n}{n!} = P(x) \frac{S(x)^k}{k!} = (\frac{x^k}{k!}) \cdot ((P(x), S(x))).$$

ヘロト 人間 ト ヘヨト ヘヨト

Sheffer group: matrix representation

For every $(P(x), S(x)) \in \mathcal{P} \rtimes S$ there is one and only one $M_{P,S} \in UT(\mathbb{N}, \mathbb{C})$ defined by

$$M_{P,S}(n,k) = \left[\frac{x^n}{n!}\right](P(x)\frac{S(x)^k}{k!})$$

or equivalently

$$\sum_{n\geq 0} M_{P,S}(n,k) \frac{x^n}{n!} = P(x) \frac{S(x)^k}{k!} = (\frac{x^k}{k!}) . ((P(x), S(x))).$$

We call $M_{P,S}$ the *(exponential)* Riordan matrix of (P(x), S(x)).

Sheffer group: matrix representation

In particular, every $(P(x), S(x)) \in \mathcal{P} \rtimes S$ defines a continuous invertible linear operator on $\mathbb{C}^{\mathbb{N}}$:

Sheffer group: matrix representation

In particular, every $(P(x), S(x)) \in \mathcal{P} \rtimes S$ defines a continuous invertible linear operator on $\mathbb{C}^{\mathbb{N}}$:

$$(u_n)_{n\in\mathbb{N}}\mapsto M_{\mathcal{P},\mathcal{S}}(u_n)_{n\in\mathbb{N}}=(\sum_{k\geq 0}M_{\mathcal{P},\mathcal{S}}(n,k)u_k)_{n\in\mathbb{N}}.$$

Sheffer group: matrix representation

In particular, every $(P(x), S(x)) \in \mathcal{P} \rtimes S$ defines a continuous invertible linear operator on $\mathbb{C}^{\mathbb{N}}$:

$$(u_n)_{n\in\mathbb{N}}\mapsto M_{P,S}(u_n)_{n\in\mathbb{N}}=(\sum_{k\geq 0}M_{P,S}(n,k)u_k)_{n\in\mathbb{N}}.$$

Obviously it can also be seen as a continuous invertible linear operator on $\mathbb{C}[[x]]$:

Sheffer group: matrix representation

In particular, every $(P(x), S(x)) \in \mathcal{P} \rtimes S$ defines a continuous invertible linear operator on $\mathbb{C}^{\mathbb{N}}$:

$$(u_n)_{n\in\mathbb{N}}\mapsto M_{P,S}(u_n)_{n\in\mathbb{N}}=(\sum_{k\geq 0}M_{P,S}(n,k)u_k)_{n\in\mathbb{N}}.$$

Obviously it can also be seen as a continuous invertible linear operator on $\mathbb{C}[[x]]$:

$$f(x) = \sum_{n \ge 0} a_n x^n \mapsto \sum_{n \ge 0} (\sum_{k \ge 0} M_{\mathcal{P},\mathcal{S}}(n,k)a_k) x^k .$$

(The topology on $\mathbb{C}[[x]]$ is not the usual topology induced by the discrete valuation but rather the weakest topology for which the projections $[x^n] : f(x) \mapsto [x^n]f(x)$ are continuous.)

(문) (문)

Riordan group

The set of all unipotent matrices $M_{P,S}$ is a group isomorphic to $\mathcal{P} \rtimes \mathcal{S}$ (the group law is the usual matrix multiplication).

▲帰▶ ▲ 臣▶

Riordan group

The set of all unipotent matrices $M_{P,S}$ is a group isomorphic to $\mathcal{P} \rtimes S$ (the group law is the usual matrix multiplication). This group is a **closed** subgroup of $UT(\mathbb{N}, \mathbb{C})$ (actually it is a projective limit of affine algebraic groups).

Riordan group

The set of all unipotent matrices $M_{P,S}$ is a group isomorphic to $\mathcal{P} \rtimes \mathcal{S}$ (the group law is the usual matrix multiplication). This group is a **closed** subgroup of $UT(\mathbb{N}, \mathbb{C})$ (actually it is a projective limit of affine algebraic groups).

proposition

Let *M* be a Riordan matrix. For every $z \in \mathbb{C}$, M^z is also a Riordan matrix.

A ∰ > A ∃ >

Unipotent matrices which are Riordan matrices

Let *M* be a unipotent matrix. For every $k \in \mathbb{N}$, let define the exponential generating function $c_k(x)$ of the *k*th column of *M*:

$$c_k(x) = \sum_{n\geq 0} M(n,k) \frac{x^n}{n!} \; .$$

Unipotent matrices which are Riordan matrices

Let *M* be a unipotent matrix. For every $k \in \mathbb{N}$, let define the exponential generating function $c_k(x)$ of the *k*th column of *M*:

$$c_k(x) = \sum_{n\geq 0} M(n,k) \frac{x^n}{n!} \; .$$

Then *M* is a Riordan matrix associated to some element $(P(x), S(x)) \in \mathcal{P} \rtimes S$ if, and only if, for each $k \in \mathbb{N}$, one has

$$c_k(x) = c_0(x) \frac{(\frac{c_1(x)}{c_0(x)})^k}{k!}$$
.

・ 同 ト ・ ヨ ト ・ ヨ ト

Unipotent matrices which are Riordan matrices

Let *M* be a unipotent matrix. For every $k \in \mathbb{N}$, let define the exponential generating function $c_k(x)$ of the *k*th column of *M*:

$$c_k(x) = \sum_{n\geq 0} M(n,k) \frac{x^n}{n!} \; .$$

Then *M* is a Riordan matrix associated to some element $(P(x), S(x)) \in \mathcal{P} \rtimes S$ if, and only if, for each $k \in \mathbb{N}$, one has

$$c_k(x) = c_0(x) \frac{(\frac{c_1(x)}{c_0(x)})^k}{k!}$$
.

(Therefore $c_0(x) = P(x)$ and $\frac{c_1(x)}{c_0(x)} = S(x)$.)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Back to the normal form of ω^n

Laurent Poinsot Substitution with prefunction and boson normal ordering

イロト イポト イヨト イヨト

ъ

Back to the normal form of ω^n

In particular for every word $\omega \in \{a, a^{\dagger}\}$ with only one annihilation operator is associated one and only one $(P(x), S(x)) \in \mathcal{P} \rtimes S$ such that for every $n \in \mathbb{N}$, n > 0,

▲ □ ▶ ▲ □ ▶ ▲

Back to the normal form of ω^n

In particular for every word $\omega \in \{a, a^{\dagger}\}$ with only one annihilation operator is associated one and only one $(P(x), S(x)) \in \mathcal{P} \rtimes S$ such that for every $n \in \mathbb{N}$, n > 0,

$$\mathcal{N}(\omega^n) = (a^{\dagger})^{n(|\omega|_{a^{\dagger}}-1)} \left(\sum_{k \ge 0} \left[\frac{x^n}{n!} \right] (P(x) \frac{S(x)^k}{k!}) (a^{\dagger})^k a^k \right)$$

where $|\omega|_{a^{\dagger}}$ is the number of a^{\dagger} in ω .

< 同 > < 三 > < 三 >

Conclusion:

Laurent Poinsot Substitution with prefunction and boson normal ordering

イロン イロン イヨン イヨン

ъ

Conclusion:

Studying the Lie algebra of UT(N, C) because every such matrix belongs to one and only one one-parameter subgroup which gives a characterization of the sequence (N(ωⁿ))_n;

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion:

- Studying the Lie algebra of UT(N, C) because every such matrix belongs to one and only one one-parameter subgroup which gives a characterization of the sequence (N(ωⁿ))_n;
- ② Given a Riordan matrix *M* and *z* ∈ C, which function in *a* and *a*[†] is associated to *M^z* (and the converse) ?

・ 同 ト ・ ヨ ト ・ ヨ

Conclusion:

- Studying the Lie algebra of UT(N, C) because every such matrix belongs to one and only one one-parameter subgroup which gives a characterization of the sequence (*N*(ωⁿ))_n;
- ② Given a Riordan matrix *M* and *z* ∈ C, which function in *a* and *a*[†] is associated to *M^z* (and the converse) ?
- The "monic" Sheffer group is the "heart" of the machinery of general substitution with prefunction because

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion:

- Studying the Lie algebra of UT(N, C) because every such matrix belongs to one and only one one-parameter subgroup which gives a characterization of the sequence (N(ωⁿ))_n;
- ② Given a Riordan matrix *M* and *z* ∈ C, which function in *a* and *a*[†] is associated to *M^z* (and the converse) ?
- ³ The "monic" Sheffer group is the "heart" of the machinery of general substitution with prefunction because if $P(x) = \lambda_0 + \lambda_1 x + \dots$ with $\lambda_0 \neq 0$ and $S(x) = \mu_1 x + \mu_2 x^2 + \dots$ with $\mu_1 \neq 0$, then $M_{P,S} = \text{diag}(\lambda_0, \lambda_0, \dots) M_{\frac{P}{\lambda_0}, \frac{S}{\mu_1}} \text{diag}(1, \mu_1, \mu_1^2, \mu_1^3, \dots).$