# Group of substitution with prefunction and boson normal ordering problem 

Laurent Poinsot

LIPN - UMR CNRS 7030
Université Paris-Nord XIII

60th Séminaire Lotharingien de Combinatoire

## Outline of the talk

(1) Motivations: Boson normal ordering problem

- $1 D$ harmonic oscillator
- Boson operators


## Outline of the talk

(1) Motivations: Boson normal ordering problem

- $1 D$ harmonic oscillator
- Boson operators
(2) Infinite matrices


## Outline of the talk

(1) Motivations: Boson normal ordering problem

- $1 D$ harmonic oscillator
- Boson operators
(2) Infinite matrices
(3) Group of substitution with prefunction

Motivations: Boson normal ordering problem
Infinite matrices
Group of substitution with prefunction

## Outline of the talk

(1) Motivations: Boson normal ordering problem

- $1 D$ harmonic oscillator
- Boson operatorsInfinite matrices

3 Group of substitution with prefunction

## One-dimensional harmonic oscillator: quantum

In quantum mechanics, the Hamiltonian operator of a particle of mass $m$ subject to a certain potential is given by the following operators equation

$$
H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} X^{2}
$$

where $X$ is the position operator and $P$ the momentum operator both of them acting on a given Hilbert space.

## One-dimensional harmonic oscillator: quantum

Solving the equation for the Hamiltonian operator is in fact equivalent to the spectral analysis of $H$ that is the determination of the eigenvalues of the Hamiltonian

$$
H v=\lambda v
$$

where the eigenvalue $\lambda$ is the energy associated to the eigenvector $v$.

## One-dimensional harmonic oscillator: quantum

In order to simplify the problem, three new operators are introduced:

## One-dimensional harmonic oscillator: quantum

In order to simplify the problem, three new operators are introduced:
(1) Annihilation operator: $a=k\left(X+\frac{i}{m \omega} P\right)$;

## One-dimensional harmonic oscillator: quantum

In order to simplify the problem, three new operators are introduced:
(1) Annihilation operator: $a=k\left(X+\frac{i}{m_{\omega}} P\right)$;
(2) Creation operator: $a^{\dagger}=k\left(X-\frac{i}{m \omega} P\right)$;

## One-dimensional harmonic oscillator: quantum

In order to simplify the problem, three new operators are introduced:
(1) Annihilation operator: $a=k\left(X+\frac{i}{m_{\omega}} P\right)$;
(2) Creation operator: $\mathrm{a}^{\dagger}=k\left(X-\frac{i}{m \omega} P\right)$;
(3) Number operator: $N=a^{\dagger} a$.

## One-dimensional harmonic oscillator: quantum

In order to simplify the problem, three new operators are introduced:
(1) Annihilation operator: $a=k\left(X+\frac{i}{m_{\omega}} P\right)$;
(2) Creation operator: $\mathrm{a}^{\dagger}=k\left(X-\frac{i}{m \omega} P\right)$;
(3) Number operator: $N=a^{\dagger} a$.

The equation satisfied by the Hamiltonian becomes

$$
H=\hbar \omega\left(N+\frac{1}{2}\right) .
$$

## One-dimensional harmonic oscillator: quantum

In order to simplify the problem, three new operators are introduced:
(1) Annihilation operator: $a=k\left(X+\frac{i}{m \omega} P\right)$;
(2) Creation operator: $a^{\dagger}=k\left(X-\frac{i}{m_{\omega}} P\right)$;
(3) Number operator: $N=a^{\dagger} a$.

The equation satisfied by the Hamiltonian becomes

$$
H=\hbar \omega\left(N+\frac{1}{2}\right) .
$$

Therefore the eigenvectors of $H$ and $N$ are the same.

## One-dimensional harmonic oscillator: quantum

Some properties :
(1) $a^{\dagger}$ is the adjoint of $a$;
(2) Commutation relation: $\left[a, a^{\dagger}\right]=1$ i.e. $a a^{\dagger}=1+a^{\dagger} a$;
(3) Eigenvalues of $N$ are the positive integers.

## One-dimensional harmonic oscillator: quantum

Some properties :
(1) $a^{\dagger}$ is the adjoint of $a$;
(2) Commutation relation: $\left[a, a^{\dagger}\right]=1$ i.e. $a a^{\dagger}=1+a^{\dagger} a$;
(0) Eigenvalues of $N$ are the positive integers.

Conclusion: In the quantum case, there is a discrete range of possible values for the energy of the harmonic oscillator.

## Outline of the talk

(1) Motivations: Boson normal ordering problem

- 1D harmonic oscillator
- Boson operatorsInfinite matrices

3 Group of substitution with prefunction

## Fock space

Let us denote by $v_{n}$ the eigenvector of the number operator $N$ associated to the eigenvalue $n$ :

$$
N v_{n}=n v_{n}
$$

Interpretation: they are exactly $n$ bosons in the state $v_{n}$.

## Fock space

Let us denote by $v_{n}$ the eigenvector of the number operator $N$ associated to the eigenvalue $n$ :

$$
N v_{n}=n v_{n} .
$$

Interpretation: they are exactly $n$ bosons in the state $v_{n}$. The one-particle Hilbert space of (quantum) states, called Fock space, is spanned by the number states $v_{n}$ for $n \in \mathbb{N}$.

## Occupation number representation

In this situation the operators $a$ and $a^{\dagger}$ act on the number states as follows

## Occupation number representation

In this situation the operators $a$ and $a^{\dagger}$ act on the number states as follows

Interpretation :
(1) The annihilation operator a changes each state $v_{n}$ to another containing $n-1$ particles;

## Occupation number representation

In this situation the operators $a$ and $a^{\dagger}$ act on the number states as follows

Interpretation :
(1) The annihilation operator a changes each state $v_{n}$ to another containing $n-1$ particles;
(2) The creation operator $a^{\dagger}$ changes each state $v_{n}$ to another containing $n+1$ particles.

## Boson normal ordering

Noncommutativity of annihilation and creation operators may cause difficulties in defining an operator calculus in quantum mechanics.

## Boson normal ordering

Noncommutativity of annihilation and creation operators may cause difficulties in defining an operator calculus in quantum mechanics.
To solve these problems one has to fix the order of the operators involved in a sequence of Boson operators.

## Boson normal ordering

Noncommutativity of annihilation and creation operators may cause difficulties in defining an operator calculus in quantum mechanics.
To solve these problems one has to fix the order of the operators involved in a sequence of Boson operators. This leads to the notion of normal ordered form of the boson operators in which all $a^{\dagger}$ stand to the left of all the factors $a$.

## Boson normal ordering

## There are two well-defined procedures on the boson expressions yielding a normally ordered form:

## Boson normal ordering

There are two well-defined procedures on the boson expressions yielding a normally ordered form:
(1) Double-dot operation;

## Boson normal ordering

There are two well-defined procedures on the boson expressions yielding a normally ordered form:
© Double-dot operation;
(2) Normal ordering operation.

## Boson normal ordering: Double-dot operation

Let $P\left(a, a^{\dagger}\right)$ be a word in $\left\{a, a^{\dagger}\right\}^{*}$.

## Boson normal ordering: Double-dot operation

Let $P\left(a, a^{\dagger}\right)$ be a word in $\left\{a, a^{\dagger}\right\}^{*}$.
The application of the double-dot operation on $P\left(a, a^{\dagger}\right)$ leads to the monomial : $P\left(a, a^{\dagger}\right)$ : obtained by moving all the annihilation operators $a$ to the right without taking into account the commutation relation

## Boson normal ordering: Double-dot operation

Let $P\left(a, a^{\dagger}\right)$ be a word in $\left\{a, a^{\dagger}\right\}^{*}$.
The application of the double-dot operation on $P\left(a, a^{\dagger}\right)$ leads to the monomial : $P\left(a, a^{\dagger}\right)$ : obtained by moving all the annihilation operators $a$ to the right without taking into account the commutation relation i.e. moving all annihilation operators a to the right as if they commute with the creation operators $a^{\dagger}$ ( $\left[a, a^{\dagger}\right]=0$ ).

## Boson normal ordering: Double-dot operation

## Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$.

## Boson normal ordering: Double-dot operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have: $: a^{\dagger} a a a^{\dagger} a:=a^{\dagger} a^{\dagger} a a a a$.

## Boson normal ordering: Double-dot operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have:

$$
: a a^{\dagger} a a a^{\dagger} a:=a^{\dagger} a^{\dagger} a a a a
$$

Note that in general, as operators : $P\left(a, a^{\dagger}\right): \neq P\left(a, a^{\dagger}\right)$. The equality holds only for operators which are already in normal form.

## Boson normal ordering: Normal ordering operation

Let $P\left(a, a^{\dagger}\right)$ be a word in $\left\{a, a^{\dagger}\right\}^{*}$.

## Boson normal ordering: Normal ordering operation

Let $P\left(a, a^{\dagger}\right)$ be a word in $\left\{a, a^{\dagger}\right\}^{*}$.
The application of the normal ordering operation on $P\left(a, a^{\dagger}\right)$ leads to the polynomial $\mathcal{N}\left(P\left(a, a^{\dagger}\right)\right)$ which is obtained by moving all the annihilation operators $a$ to the right using the commutation relation $\left[a, a^{\dagger}\right]=1$.

## Boson normal ordering: Normal ordering operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$.

## Boson normal ordering: Normal ordering operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have:

$$
\mathcal{N}\left(a a^{\dagger} a a a^{\dagger} a\right)=\left(a^{\dagger}\right)^{2} a^{4}+4 a^{\dagger} a^{3}+2 a^{2}
$$

## Boson normal ordering: Normal ordering operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have:

$$
\mathcal{N}\left(a a^{\dagger} a a a^{\dagger} a\right)=\left(a^{\dagger}\right)^{2} a^{4}+4 a^{\dagger} a^{3}+2 a^{2}
$$

because
$a a^{\dagger} a a a^{\dagger} a$

## Boson normal ordering: Normal ordering operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have:

$$
\mathcal{N}\left(a a^{\dagger} a a a^{\dagger} a\right)=\left(a^{\dagger}\right)^{2} a^{4}+4 a^{\dagger} a^{3}+2 a^{2}
$$

because

$$
a a^{\dagger} a a a^{\dagger} a=\left(1+a^{\dagger} a\right) a\left(1+a^{\dagger}\right) a
$$

## Boson normal ordering: Normal ordering operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have:

$$
\mathcal{N}\left(a a^{\dagger} a a a^{\dagger} a\right)=\left(a^{\dagger}\right)^{2} a^{4}+4 a^{\dagger} a^{3}+2 a^{2}
$$

because

$$
\begin{aligned}
a a^{\dagger} a a a^{\dagger} a & =\left(1+a^{\dagger} a\right) a\left(1+a^{\dagger}\right) a \\
& =a^{2}+a a^{\dagger} a^{2}+a^{\dagger} a^{3}+a^{\dagger} a a a^{\dagger} a^{2}
\end{aligned}
$$

## Boson normal ordering: Normal ordering operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have:

$$
\mathcal{N}\left(a a^{\dagger} a a a^{\dagger} a\right)=\left(a^{\dagger}\right)^{2} a^{4}+4 a^{\dagger} a^{3}+2 a^{2}
$$

because

$$
\begin{aligned}
\text { aa }^{\dagger} a a^{\dagger} a & =\left(1+a^{\dagger} a\right) a\left(1+a^{\dagger}\right) a \\
& =a^{2}+a a^{\dagger} a^{2}+a^{\dagger} a^{3}+a^{\dagger} a a a^{\dagger} a^{2} \\
& =a^{2}+\left(1+a^{\dagger} a\right) a^{2}+a^{\dagger} a^{2}+a^{\dagger} a\left(1+a^{\dagger} a\right) a^{2}
\end{aligned}
$$

## Boson normal ordering: Normal ordering operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have:

$$
\mathcal{N}\left(a a^{\dagger} a a a^{\dagger} a\right)=\left(a^{\dagger}\right)^{2} a^{4}+4 a^{\dagger} a^{3}+2 a^{2}
$$

because

$$
\begin{aligned}
\text { aa }^{\dagger} a a^{\dagger} a & =\left(1+a^{\dagger} a\right) a\left(1+a^{\dagger}\right) a \\
& =a^{2}+a a^{\dagger} a^{2}+a^{\dagger} a^{3}+a^{\dagger} a a a^{\dagger} a^{2} \\
& =a^{2}+\left(1+a^{\dagger} a\right) a^{2}+a^{\dagger} a^{2}+a^{\dagger} a\left(1+a^{\dagger} a\right) a^{2} \\
& =2 a^{2}+3 a^{\dagger} a^{3}+a^{\dagger} a a^{\dagger} a^{3}
\end{aligned}
$$

## Boson normal ordering: Normal ordering operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have:

$$
\mathcal{N}\left(a a^{\dagger} a a a^{\dagger} a\right)=\left(a^{\dagger}\right)^{2} a^{4}+4 a^{\dagger} a^{3}+2 a^{2}
$$

because

$$
\begin{aligned}
a^{\dagger} a a a^{\dagger} a & =\left(1+a^{\dagger} a\right) a\left(1+a^{\dagger}\right) a \\
& =a^{2}+a a^{\dagger} a^{2}+a^{\dagger} a^{3}+a^{\dagger} a a a^{\dagger} a^{2} \\
& =a^{2}+\left(1+a^{\dagger} a\right) a^{2}+a^{\dagger} a^{2}+a^{\dagger} a\left(1+a^{\dagger} a\right) a^{2} \\
& =2 a^{2}+3 a^{\dagger} a^{3}+a^{\dagger} a a^{\dagger} a^{3} \\
& =2 a^{2}+3 a^{\dagger} a^{3}+a^{\dagger}\left(1+a^{\dagger} a\right) a^{3}
\end{aligned}
$$

## Boson normal ordering: Normal ordering operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have:

$$
\mathcal{N}\left(a a^{\dagger} a a a^{\dagger} a\right)=\left(a^{\dagger}\right)^{2} a^{4}+4 a^{\dagger} a^{3}+2 a^{2}
$$

because

$$
\begin{aligned}
a^{\dagger} a a a^{\dagger} a & =\left(1+a^{\dagger} a\right) a\left(1+a^{\dagger}\right) a \\
& =a^{2}+a a^{\dagger} a^{2}+a^{\dagger} a^{3}+a^{\dagger} a a a^{\dagger} a^{2} \\
& =a^{2}+\left(1+a^{\dagger} a\right) a^{2}+a^{\dagger} a^{2}+a^{\dagger} a\left(1+a^{\dagger} a\right) a^{2} \\
& =2 a^{2}+3 a^{\dagger} a^{3}+a^{\dagger} a a^{\dagger} a^{3} \\
& =2 a^{2}+3 a^{\dagger} a^{3}+a^{\dagger}\left(1+a^{\dagger} a\right) a^{3} \\
& =2 a^{2}+4 a^{\dagger} a^{3}+\left(a^{\dagger}\right)^{2} a^{4} .
\end{aligned}
$$

## Boson normal ordering: Normal ordering operation

Example: Consider the word $a a^{\dagger} a a a^{\dagger} a$. Then we have:

$$
\mathcal{N}\left(a a^{\dagger} a a a^{\dagger} a\right)=\left(a^{\dagger}\right)^{2} a^{4}+4 a^{\dagger} a^{3}+2 a^{2}
$$

because

$$
\begin{aligned}
a a^{\dagger} a a a^{\dagger} a & =\left(1+a^{\dagger} a\right) a\left(1+a^{\dagger}\right) a \\
& =a^{2}+a a^{\dagger} a^{2}+a^{\dagger} a^{3}+a^{\dagger} a a a^{\dagger} a^{2} \\
& =a^{2}+\left(1+a^{\dagger} a\right) a^{2}+a^{\dagger} a^{2}+a^{\dagger} a\left(1+a^{\dagger} a\right) a^{2} \\
& =2 a^{2}+3 a^{\dagger} a^{3}+a^{\dagger} \dagger a^{\dagger} a^{3} \\
& =2 a^{2}+3 a^{\dagger} a^{3}+a^{\dagger}\left(1+a^{\dagger} a\right) a^{3} \\
& =2 a^{2}+4 a^{\dagger} a^{3}+\left(a^{\dagger}\right)^{2} a^{4} .
\end{aligned}
$$

Note that as operators, $P\left(a, a^{\dagger}\right)=\mathcal{N}\left(P\left(a, a^{\dagger}\right)\right)$.

## Boson normal ordering: Normal ordering problem

We say that the normal ordering problem for $P\left(a, a^{\dagger}\right)$ is solved if, and only if, we are able to find an operator $Q\left(a, a^{\dagger}\right)$ for which the following equality on operators holds

## Boson normal ordering: Normal ordering problem

We say that the normal ordering problem for $P\left(a, a^{\dagger}\right)$ is solved if, and only if, we are able to find an operator $Q\left(a, a^{\dagger}\right)$ for which the following equality on operators holds

$$
P\left(a, a^{\dagger}\right)=: Q\left(a, a^{\dagger}\right): .
$$

## Boson normal ordering: powers of a word

Let $\omega \in\left\{a, a^{\dagger}\right\}^{*}$. Let $e$ be the difference between the number of creation operators and annihilation operators in $\omega$.

## Boson normal ordering: powers of a word

Let $\omega \in\left\{a, a^{\dagger}\right\}^{*}$. Let $e$ be the difference between the number of creation operators and annihilation operators in $\omega$. For each positive integer n, we have (P. Blasiak et al., 2003)

$$
\mathcal{N}\left(\omega^{n}\right)= \begin{cases}\left(a^{\dagger}\right)^{n e}\left(\sum_{k \geq 0} S_{\omega}(n, k)\left(a^{\dagger}\right)^{k} a^{k}\right) & \text { if } e \geq 0 \\ \left(\sum_{k \geq 0} S_{\omega}(n, k)\left(a^{\dagger}\right)^{k} a^{k}\right)(a)^{n|e|} & \text { if } e<0 .\end{cases}
$$

## Boson normal ordering: powers of a word

Let $\omega \in\left\{a, a^{\dagger}\right\}^{*}$. Let $e$ be the difference between the number of creation operators and annihilation operators in $\omega$. For each positive integer $n$, we have (P. Blasiak et al., 2003)

$$
\mathcal{N}\left(\omega^{n}\right)= \begin{cases}\left(a^{\dagger}\right)^{n e}\left(\sum_{k \geq 0} S_{\omega}(n, k)\left(a^{\dagger}\right)^{k} a^{k}\right) & \text { if } e \geq 0, \\ \left(\sum_{k \geq 0} S_{\omega}(n, k)\left(a^{\dagger}\right)^{k} a^{k}\right)(a)^{n|e|} & \text { if } e<0 .\end{cases}
$$

This is a generalization of the following (Katriel, 1974): if $\omega=a^{\dagger} a$, then $S_{\omega}(n, k)$ are the usual Stirling numbers of the second kind.

## Boson normal ordering: powers of a word

The normal form of $n$th powers of a word a very important because they are used to find the normal form of evolution operators $e^{\lambda \omega}$.

## Boson normal ordering: powers of a word with only one annihilation operator

For any word $\omega$, we consider the doubly-infinite matrix $S_{\omega}=\left(S_{\omega}(n, k)\right)_{n \geq 0, k \geq 0}$ given by the previous equations.

## Boson normal ordering: powers of a word with only one annihilation operator

For any word $\omega$, we consider the doubly-infinite matrix $S_{\omega}=\left(S_{\omega}(n, k)\right)_{n \geq 0, k \geq 0}$ given by the previous equations.
Let us consider a string of boson operators
with only one annihilation operator of the following form:

$$
\omega=\left(a^{\dagger}\right)^{r-p} a\left(a^{\dagger}\right)^{p}
$$

## Boson normal ordering: powers of a word with only one annihilation operator

For any word $\omega$, we consider the doubly-infinite matrix $S_{\omega}=\left(S_{\omega}(n, k)\right)_{n \geq 0, k \geq 0}$ given by the previous equations.
Let us consider a string of boson operators
with only one annihilation operator of the following form:

$$
\omega=\left(a^{\dagger}\right)^{r-p} a\left(a^{\dagger}\right)^{p}
$$

Then $S_{\omega}$ is a unipotent matrix i.e. a lower triangular matrix with diagonal elements equal to 1 .

Conclusion: We want to study topological, algebraic or combinatorial properties of these doubly-infinite matrices in order to understand the meaning of the coefficients $S_{\omega}(n, k)$ in the particular case of a word with only one annihilation operator.

## Topological properties of:

$$
\mathbb{C}^{\mathbb{N} \times \mathbb{N}} \supset \mathbb{C}^{\mathbb{N} \times(\mathbb{N})} \simeq \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right) \supset \operatorname{LT}(\mathbb{N}, \mathbb{C}) \supset \operatorname{LT}^{\times}(\mathbb{N}, \mathbb{C}) \supset \mathrm{UT}(\mathbb{N}, \mathbb{C})
$$

## Fréchet space

## A Fréchet space is a metrizable complete and locally convex topological vector space.

## Fréchet space

A Fréchet space is a metrizable complete and locally convex topological vector space. For instance any Banach space (a complete normed space) is a Fréchet space. (The reciprocal assertion is false.)

## The Fréchet space of $\mathbb{N} \times \mathbb{N}$ infinite matrices

Let $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ be the vector space of infinite matrices $\left(M_{n, k}\right)_{n \in \mathbb{N}, k \in \mathbb{N}}$.

## The Fréchet space of $\mathbb{N} \times \mathbb{N}$ infinite matrices

Let $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ be the vector space of infinite matrices $\left(M_{n, k}\right)_{n \in \mathbb{N}, k \in \mathbb{N}}$. Equiped with the weakest topology for which the natural projections

$$
\begin{aligned}
\mathrm{pr}_{n, k}: & \mathbb{C}^{\mathbb{N} \times \mathbb{N}} \\
M & \rightarrow \mathbb{C} \\
M & \mapsto M_{n, k}
\end{aligned}
$$

are continuous (the topology of simple convergence), $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ is a Fréchet space.

## The Fréchet space of $\mathbb{N} \times \mathbb{N}$ infinite matrices

Let $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ be the vector space of infinite matrices $\left(M_{n, k}\right)_{n \in \mathbb{N}, k \in \mathbb{N}}$. Equiped with the weakest topology for which the natural projections

$$
\begin{aligned}
\mathrm{pr}_{n, k}: & \mathbb{C}^{\mathbb{N} \times \mathbb{N}} \\
M & \rightarrow \mathbb{C} \\
& \mapsto M_{n, k}
\end{aligned}
$$

are continuous (the topology of simple convergence), $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ is a Fréchet space.
$\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ is not a Banach space (because every neighborhood of zero contains a non trivial subvector space).

## Row-finite matrices

Let $\mathbb{C}^{\mathbb{N} \times(\mathbb{N})}$ be the subvector space of $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ which consists in row-finite matrices i.e. matrices for which every row has a finite support.

## Row-finite matrices

Let $\mathbb{C}^{\mathbb{N} \times(\mathbb{N})}$ be the subvector space of $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ which consists in row-finite matrices i.e. matrices for which every row has a finite support.
For instance $S_{\omega}$ previously introduced (for a word with only one annihilation operator) is row-finite since it is a unipotent matrix.

## Row-finite matrices

Let $\mathbb{C}^{\mathbb{N} \times(\mathbb{N})}$ be the subvector space of $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ which consists in row-finite matrices i.e. matrices for which every row has a finite support.
For instance $S_{\omega}$ previously introduced (for a word with only one annihilation operator) is row-finite since it is a unipotent matrix. $\mathbb{C}^{\mathbb{N} \times(\mathbb{N})}$ is an associative unital noncommutative algebra.

## Row-finite matrices

The vector space $\mathbb{C}^{\mathbb{N}}$ of complex sequences is a Fréchet (but not a Banach) space when equiped with the weakest topology for which every natural projection $\operatorname{pr}_{k}\left(\left(u_{n}\right)_{n \in \mathbb{N}}\right)=u_{k}$ is continuous.

## Row-finite matrices

The vector space $\mathbb{C}^{\mathbb{N}}$ of complex sequences is a Fréchet (but not a Banach) space when equiped with the weakest topology for which every natural projection $\operatorname{pr}_{k}\left(\left(u_{n}\right)_{n \in \mathbb{N}}\right)=u_{k}$ is continuous.
Let denote by $\mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ the algebra of continuous endomorphisms of $\mathbb{C}^{\mathbb{N}}$.

## Row-finite matrices

The vector space $\mathbb{C}^{\mathbb{N}}$ of complex sequences is a Fréchet (but not a Banach) space when equiped with the weakest topology for which every natural projection $\operatorname{pr}_{k}\left(\left(u_{n}\right)_{n \in \mathbb{N}}\right)=u_{k}$ is continuous.
Let denote by $\mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ the algebra of continuous endomorphisms of $\mathbb{C}^{\mathbb{N}}$.

## Proposition

As complex algebras, $\mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ and $\mathbb{C}^{\mathbb{N} \times(\mathbb{N})}$ are isomorphic.

## Row-finite matrices

The vector space $\mathbb{C}^{\mathbb{N}}$ of complex sequences is a Fréchet (but not a Banach) space when equiped with the weakest topology for which every natural projection $\operatorname{pr}_{k}\left(\left(u_{n}\right)_{n \in \mathbb{N}}\right)=u_{k}$ is continuous.
Let denote by $\mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ the algebra of continuous endomorphisms of $\mathbb{C}^{\mathbb{N}}$.

## Proposition

As complex algebras, $\mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ and $\mathbb{C}^{\mathbb{N} \times(\mathbb{N})}$ are isomorphic.
In particular $S_{\omega}$ defines a continuous operator of $\mathbb{C}^{\mathbb{N}}$.

## Infinite lower triangular matrices

Let $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices

## Infinite lower triangular matrices

Let $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices i.e. $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ if, and only if,

## Infinite lower triangular matrices

Let $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices i.e. $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ if, and only if,

$$
M_{n, k}=0 \quad \forall k>n .
$$

## Infinite lower triangular matrices

Let $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices i.e. $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ if, and only if,

$$
M_{n, k}=0 \quad \forall k>n .
$$

For instance $S_{\omega} \in \operatorname{LT}(\mathbb{N}, \mathbb{C})$ as a unipotent matrix.

## Infinite lower triangular matrices

Let $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices i.e. $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ if, and only if,

$$
M_{n, k}=0 \quad \forall k>n .
$$

For instance $S_{\omega} \in \operatorname{LT}(\mathbb{N}, \mathbb{C})$ as a unipotent matrix.
(1) $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ is a closed subvector space of $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ and so is a Fréchet space;

## Infinite lower triangular matrices

Let $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices i.e. $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ if, and only if,

$$
M_{n, k}=0 \quad \forall k>n .
$$

For instance $S_{\omega} \in \operatorname{LT}(\mathbb{N}, \mathbb{C})$ as a unipotent matrix.
(1) $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ is a closed subvector space of $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ and so is a Fréchet space;
(2) $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ is a unital associative noncommutative subalgebra of $\mathbb{C}^{\mathbb{N} \times(\mathbb{N})}$;

## Infinite lower triangular matrices

Let $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices i.e. $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ if, and only if,

$$
M_{n, k}=0 \quad \forall k>n .
$$

For instance $S_{\omega} \in \operatorname{LT}(\mathbb{N}, \mathbb{C})$ as a unipotent matrix.
(1) $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ is a closed subvector space of $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ and so is a Fréchet space;
(2) $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ is a unital associative noncommutative subalgebra of $\mathbb{C}^{\mathbb{N} \times(\mathbb{N})}$;
(3) $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ is a topological algebra (i.e. its multiplication is continuous);

## Infinite lower triangular matrices

Let $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ be the set of all infinite lower triangular matrices i.e. $M \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ belongs to $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ if, and only if,

$$
M_{n, k}=0 \quad \forall k>n .
$$

For instance $S_{\omega} \in \operatorname{LT}(\mathbb{N}, \mathbb{C})$ as a unipotent matrix.
(1) $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ is a closed subvector space of $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ and so is a Fréchet space;
(2) $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ is a unital associative noncommutative subalgebra of $\mathbb{C}^{\mathbb{N} \times(\mathbb{N})}$;
(3) $\operatorname{LT}(\mathbb{N}, \mathbb{C})$ is a topological algebra (i.e. its multiplication is continuous);
(4) The multiplicative group $\operatorname{LT}(\mathbb{N}, \mathbb{C})^{\times}$of invertible elements of $\mathrm{LT}(\mathbb{N}, \mathbb{C})$, that is lower triangular matrices with nonzero elements on the diagonal, is a Hausdorff topological group.

## Unipotent matrices

## Let $U T(\mathbb{N}, \mathbb{C})$ be the set of all unipotent matrices.

## Unipotent matrices

Let $U T(\mathbb{N}, \mathbb{C})$ be the set of all unipotent matrices.
We can easily check that $\mathrm{UT}(\mathbb{N}, \mathbb{C})$ is a subgroup of $\operatorname{LT}(\mathbb{N}, \mathbb{C})^{\times}$.

## Unipotent matrices

Let $U T(\mathbb{N}, \mathbb{C})$ be the set of all unipotent matrices.
We can easily check that $U T(\mathbb{N}, \mathbb{C})$ is a subgroup of $\operatorname{LT}(\mathbb{N}, \mathbb{C})^{\times}$. $S_{\omega}$ is an invertible matrix and therefore it induces a continuous isomorphism of $\mathbb{C}^{\mathbb{N}}$.

It has been proved (G. Duchamp et al., 2003) that for every word $\omega \in\left\{a, a^{\dagger}\right\}^{\star}$ with only one annihilation operator, there are two formal power series: $P(x)$ an invertible series with [1] $P(x)=1$ and $S(x)$ without constant term and such that $[x] S(x)=1$ so that

It has been proved (G. Duchamp et al., 2003) that for every word $\omega \in\left\{a, a^{\dagger}\right\}^{\star}$ with only one annihilation operator, there are two formal power series: $P(x)$ an invertible series with [1] $P(x)=1$ and $S(x)$ without constant term and such that $[x] S(x)=1$ so that

$$
\sum_{n \geq 0} S_{\omega}(n, k) \frac{x^{n}}{n!}=P(x) \frac{S(x)^{k}}{k!}
$$

## Sheffer group: prefunctions

Let denote $\mathcal{P}:=\{P(x) \in \mathbb{C}[[x]] \mid[1] P(x)=1\}$.

## Sheffer group: prefunctions

Let denote $\mathcal{P}:=\{P(x) \in \mathbb{C}[[x]] \mid[1] P(x)=1\}$.
It is well-known that $\mathcal{P}$ is a group for the multiplication of formal power series (sometimes called Appell group). Its elements are called prefunctions.

## Sheffer group: substitutions

Let denote $\mathcal{S}:=\{S(x) \in \mathbb{C}[[x]] \mid[1] S(x)=0,[x] S(x)=1\}$.

## Sheffer group: substitutions

Let denote $\mathcal{S}:=\{S(x) \in \mathbb{C}[[x]][1]] S(x)=0,[x] S(x)=1\}$. This set is a group for the substitution of formal power series: $\left(S_{1} \circ S_{2}\right)(x)=S_{1}\left(S_{2}(x)\right)$ (sometimes called the associated group). Its elements are called substitutions.

## Sheffer group: substitutions

Let denote $\mathcal{S}:=\{S(x) \in \mathbb{C}[[x]] \mid[1] S(x)=0,[x] S(x)=1\}$.
This set is a group for the substitution of formal power series:
$\left(S_{1} \circ S_{2}\right)(x)=S_{1}\left(S_{2}(x)\right)$ (sometimes called the associated group). Its elements are called substitutions.
We denote by $S^{[-1]}(x)$ the compositional inverse of $S(x)$ : $S\left(S^{[-1]}(x)\right)=S^{[-1]}(S(x))=x$.

## Sheffer group: substitutions with prefunctions

The cartesian product $\mathcal{P} \times \mathcal{S}$ is a semi-direct product when equiped with the group law:

## Sheffer group: substitutions with prefunctions

The cartesian product $\mathcal{P} \times \mathcal{S}$ is a semi-direct product when equiped with the group law:
$\left(P_{1}(x), S_{1}(x)\right) \rtimes\left(P_{2}(x), S_{2}(x)\right)=\left(P_{1}\left(S_{2}(x)\right) P_{2}(x), S_{1}\left(S_{2}(x)\right)\right)$.

## Sheffer group: substitutions with prefunctions

The cartesian product $\mathcal{P} \times \mathcal{S}$ is a semi-direct product when equiped with the group law:

$$
\left(P_{1}(x), S_{1}(x)\right) \rtimes\left(P_{2}(x), S_{2}(x)\right)=\left(P_{1}\left(S_{2}(x)\right) P_{2}(x), S_{1}\left(S_{2}(x)\right)\right)
$$

For this law, one has

$$
(P(x), S(x))^{-1}=\left(\frac{1}{P\left(S^{[-1]}(x)\right)}, S^{[-1]}(x)\right)
$$

## Sheffer group: linear representation

There is a natural right linear representation of the semi-direct product $\mathcal{P} \rtimes \mathcal{S}$ on the complex vector space $\mathbb{C}[[x]]$ :

## Sheffer group: linear representation

There is a natural right linear representation of the semi-direct product $\mathcal{P} \rtimes \mathcal{S}$ on the complex vector space $\mathbb{C}[[x]]$ :

$$
f(x) \cdot(P(x), S(x))=P(x) f(S(x)),
$$

$\forall f(x) \in \mathbb{C}[[x]]$ and $\forall(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$.

## Sheffer group: matrix representation

For every $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ there is one and only one $M_{P, S} \in U T(\mathbb{N}, \mathbb{C})$ defined by

## Sheffer group: matrix representation

For every $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ there is one and only one $M_{P, S} \in U T(\mathbb{N}, \mathbb{C})$ defined by

$$
M_{P, S}(n, k)=\left[\frac{x^{n}}{n!}\right]\left(P(x) \frac{S(x)^{k}}{k!}\right)
$$

## Sheffer group: matrix representation

For every $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ there is one and only one $M_{P, S} \in \mathrm{UT}(\mathbb{N}, \mathbb{C})$ defined by

$$
M_{P, S}(n, k)=\left[\frac{x^{n}}{n!}\right]\left(P(x) \frac{S(x)^{k}}{k!}\right)
$$

or equivalently

$$
\sum_{n \geq 0} M_{P, S}(n, k) \frac{x^{n}}{n!}=P(x) \frac{S(x)^{k}}{k!}=\left(\frac{x^{k}}{k!}\right) \cdot((P(x), S(x)) .
$$

## Sheffer group: matrix representation

For every $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ there is one and only one $M_{P, S} \in U T(\mathbb{N}, \mathbb{C})$ defined by

$$
M_{P, S}(n, k)=\left[\frac{x^{n}}{n!}\right]\left(P(x) \frac{S(x)^{k}}{k!}\right)
$$

or equivalently

$$
\sum_{n \geq 0} M_{P, S}(n, k) \frac{x^{n}}{n!}=P(x) \frac{S(x)^{k}}{k!}=\left(\frac{x^{k}}{k!}\right) \cdot((P(x), S(x)) .
$$

We call $M_{P, S}$ the (exponential) Riordan matrix of $(P(x), S(x))$.

## Sheffer group: matrix representation

In particular, every $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ defines a continuous invertible linear operator on $\mathbb{C}^{\mathbb{N}}$ :

## Sheffer group: matrix representation

In particular, every $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ defines a continuous invertible linear operator on $\mathbb{C}^{\mathbb{N}}$ :

$$
\left(u_{n}\right)_{n \in \mathbb{N}} \mapsto M_{P, s}\left(u_{n}\right)_{n \in \mathbb{N}}=\left(\sum_{k \geq 0} M_{P, S}(n, k) u_{k}\right)_{n \in \mathbb{N}} .
$$

## Sheffer group: matrix representation

In particular, every $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ defines a continuous invertible linear operator on $\mathbb{C}^{\mathbb{N}}$ :

$$
\left(u_{n}\right)_{n \in \mathbb{N}} \mapsto M_{P, S}\left(u_{n}\right)_{n \in \mathbb{N}}=\left(\sum_{k \geq 0} M_{P, S}(n, k) u_{k}\right)_{n \in \mathbb{N}}
$$

Obviously it can also be seen as a continuous invertible linear operator on $\mathbb{C}[[x]]$ :

## Sheffer group: matrix representation

In particular, every $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ defines a continuous invertible linear operator on $\mathbb{C}^{\mathbb{N}}$ :

$$
\left(u_{n}\right)_{n \in \mathbb{N}} \mapsto M_{P, S}\left(u_{n}\right)_{n \in \mathbb{N}}=\left(\sum_{k \geq 0} M_{P, S}(n, k) u_{k}\right)_{n \in \mathbb{N}}
$$

Obviously it can also be seen as a continuous invertible linear operator on $\mathbb{C}[[x]]$ :

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n} \mapsto \sum_{n \geq 0}\left(\sum_{k \geq 0} M_{P, S}(n, k) a_{k}\right) x^{k} .
$$

(The topology on $\mathbb{C}[[x]]$ is not the usual topology induced by the discrete valuation but rather the weakest topology for which the projections $\left[x^{n}\right]: f(x) \mapsto\left[x^{n}\right] f(x)$ are continuous.)

## Riordan group

The set of all unipotent matrices $M_{P, S}$ is a group isomorphic to $\mathcal{P} \rtimes \mathcal{S}$ (the group law is the usual matrix multiplication).

## Riordan group

The set of all unipotent matrices $M_{P, S}$ is a group isomorphic to $\mathcal{P} \rtimes \mathcal{S}$ (the group law is the usual matrix multiplication). This group is a closed subgroup of $\mathrm{UT}(\mathbb{N}, \mathbb{C}$ ) (actually it is a projective limit of affine algebraic groups).

## Riordan group

The set of all unipotent matrices $M_{P, S}$ is a group isomorphic to $\mathcal{P} \rtimes \mathcal{S}$ (the group law is the usual matrix multiplication). This group is a closed subgroup of $\mathrm{UT}(\mathbb{N}, \mathbb{C})$ (actually it is a projective limit of affine algebraic groups).

## proposition

Let $M$ be a Riordan matrix. For every $z \in \mathbb{C}, M^{z}$ is also a Riordan matrix.

## Unipotent matrices which are Riordan matrices

Let $M$ be a unipotent matrix. For every $k \in \mathbb{N}$, let define the exponential generating function $c_{k}(x)$ of the $k$ th column of $M$ :

$$
c_{k}(x)=\sum_{n \geq 0} M(n, k) \frac{x^{n}}{n!}
$$

## Unipotent matrices which are Riordan matrices

Let $M$ be a unipotent matrix. For every $k \in \mathbb{N}$, let define the exponential generating function $c_{k}(x)$ of the $k$ th column of $M$ :

$$
c_{k}(x)=\sum_{n \geq 0} M(n, k) \frac{x^{n}}{n!}
$$

Then $M$ is a Riordan matrix associated to some element $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ if, and only if, for each $k \in \mathbb{N}$, one has

$$
c_{k}(x)=c_{0}(x) \frac{\left(\frac{c_{1}(x)}{c_{0}(x)}\right)^{k}}{k!}
$$

## Unipotent matrices which are Riordan matrices

Let $M$ be a unipotent matrix. For every $k \in \mathbb{N}$, let define the exponential generating function $c_{k}(x)$ of the $k$ th column of $M$ :

$$
c_{k}(x)=\sum_{n \geq 0} M(n, k) \frac{x^{n}}{n!}
$$

Then $M$ is a Riordan matrix associated to some element $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ if, and only if, for each $k \in \mathbb{N}$, one has

$$
c_{k}(x)=c_{0}(x) \frac{\left(\frac{c_{1}(x)}{c_{0}(x)}\right)^{k}}{k!}
$$

(Therefore $c_{0}(x)=P(x)$ and $\frac{c_{1}(x)}{c_{0}(x)}=S(x)$.)

## Back to the normal form of $\omega^{n}$

## Back to the normal form of $\omega^{n}$

In particular for every word $\omega \in\left\{a, a^{\dagger}\right\}$ with only one annihilation operator is associated one and only one $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ such that for every $n \in \mathbb{N}, n>0$,

## Back to the normal form of $\omega^{n}$

In particular for every word $\omega \in\left\{a, a^{\dagger}\right\}$ with only one annihilation operator is associated one and only one $(P(x), S(x)) \in \mathcal{P} \rtimes \mathcal{S}$ such that for every $n \in \mathbb{N}, n>0$,

$$
\mathcal{N}\left(\omega^{n}\right)=\left(a^{\dagger}\right)^{n\left(|\omega|_{a \dagger}-1\right)}\left(\sum_{k \geq 0}\left[\frac{x^{n}}{n!}\right]\left(P(x) \frac{S(x)^{k}}{k!}\right)\left(a^{\dagger}\right)^{k} a^{k}\right)
$$

where $|\omega|_{a^{\dagger}}$ is the number of $a^{\dagger}$ in $\omega$.

## Conclusion:

## Conclusion:

(1) Studying the Lie algebra of $\mathrm{UT}(\mathbb{N}, \mathbb{C})$ because every such matrix belongs to one and only one one-parameter subgroup which gives a characterization of the sequence $\left(\mathcal{N}\left(\omega^{n}\right)\right)_{n}$;

## Conclusion:

(1) Studying the Lie algebra of $\mathrm{UT}(\mathbb{N}, \mathbb{C})$ because every such matrix belongs to one and only one one-parameter subgroup which gives a characterization of the sequence $\left(\mathcal{N}\left(\omega^{n}\right)\right)_{n} ;$
(2) Given a Riordan matrix $M$ and $z \in \mathbb{C}$, which function in a and $a^{\dagger}$ is associated to $M^{z}$ (and the converse) ?

## Conclusion:

(1) Studying the Lie algebra of $\mathrm{UT}(\mathbb{N}, \mathbb{C})$ because every such matrix belongs to one and only one one-parameter subgroup which gives a characterization of the sequence $\left(\mathcal{N}\left(\omega^{n}\right)\right)_{n} ;$
(2) Given a Riordan matrix $M$ and $z \in \mathbb{C}$, which function in a and $a^{\dagger}$ is associated to $M^{z}$ (and the converse)?
(3) The "monic" Sheffer group is the "heart" of the machinery of general substitution with prefunction because

## Conclusion:

(1) Studying the Lie algebra of $\mathrm{UT}(\mathbb{N}, \mathbb{C})$ because every such matrix belongs to one and only one one-parameter subgroup which gives a characterization of the sequence $\left(\mathcal{N}\left(\omega^{n}\right)\right)_{n}$;
(2) Given a Riordan matrix $M$ and $z \in \mathbb{C}$, which function in a and $a^{\dagger}$ is associated to $M^{z}$ (and the converse) ?
(3) The "monic" Sheffer group is the "heart" of the machinery of general substitution with prefunction because if
$P(x)=\lambda_{0}+\lambda_{1} x+\ldots$ with $\lambda_{0} \neq 0$ and $S(x)=\mu_{1} x+\mu_{2} x^{2}+\ldots$ with $\mu_{1} \neq 0$, then $M_{P, S}=\operatorname{diag}\left(\lambda_{0}, \lambda_{0}, \ldots\right) M_{\frac{P}{\lambda_{0}}, \frac{s}{\mu_{1}}} \operatorname{diag}\left(1, \mu_{1}, \mu_{1}^{2}, \mu_{1}^{3}, \ldots\right)$.

