# A bijection between non-crossing and non-nesting partitions of types $A$ and $B$ 

Christian Stump

March 31, 2008

## Overview

Classical non-crossing and non-nesting partitions

Motivation

Non-crossing partitions

Non-nesting partitions

A bijection between $N N(W)$ and $N C(W)$ in types $A$ and $B$

## Non-crossing and non-nesting set partitions

Let $\mathcal{B} \vdash[n]$ be a set partition of the set $[n]:=\{1, \ldots, n\}$.

## Non-crossing and non-nesting set partitions

Let $\mathcal{B} \vdash[n]$ be a set partition of the set $[n]:=\{1, \ldots, n\}$.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$



## Non-crossing and non-nesting set partitions

Let $\mathcal{B} \vdash[n]$ be a set partition of the set $[n]:=\{1, \ldots, n\}$.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$



## Non-crossing and non-nesting set partitions

Let $\mathcal{B} \vdash[n]$ be a set partition of the set $[n]:=\{1, \ldots, n\}$.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$



## Non-crossing and non-nesting set partitions

Let $\mathcal{B} \vdash[n]$ be a set partition of the set $[n]:=\{1, \ldots, n\}$.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$



## Non-crossing and non-nesting set partitions

Let $\mathcal{B} \vdash[n]$ be a set partition of the set $[n]:=\{1, \ldots, n\}$.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$



## Non-crossing and non-nesting set partitions

Let $\mathcal{B} \vdash[n]$ be a set partition of the set $[n]:=\{1, \ldots, n\}$.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$



## Non-crossing set partitions

A set partition $\mathcal{B} \vdash[n]$ is called

- non-crossing, if for $a<b<c<d$ such that $a, c$ are contained in a block $B$ of $\mathcal{B}$, while $b, d$ are contained in a block $B^{\prime}$ of $\mathcal{B}$, then $B=B^{\prime}$,



## Non-crossing set partitions

A set partition $\mathcal{B} \vdash[n]$ is called

- non-crossing, if for $a<b<c<d$ such that $a, c$ are contained in a block $B$ of $\mathcal{B}$, while $b, d$ are contained in a block $B^{\prime}$ of $\mathcal{B}$, then $B=B^{\prime}$,


Example
$\mathcal{B}=\{\{1,9\},\{2,5,6,7\},\{3,4\},\{8\}\} \vdash[9]$ is non-crossing:


## Non-nesting set partitions

A set partition $\mathcal{B} \vdash[n]$ is called

- non-nesting, if for $a<b<c<d$ such that $a, d$ are contained in a block $B$ of $\mathcal{B}$, while $b, c$ are contained in a block $B^{\prime}$ of $\mathcal{B}$, then $B=B^{\prime}$.



## Non-nesting set partitions

A set partition $\mathcal{B} \vdash[n]$ is called

- non-nesting, if for $a<b<c<d$ such that $a, d$ are contained in a block $B$ of $\mathcal{B}$, while $b, c$ are contained in a block $B^{\prime}$ of $\mathcal{B}$, then $B=B^{\prime}$.


Example
$\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]$ is non-nesting:


## Non-crossing and non-nesting partitions

We will later see that non-crossing and non-nesting set partitions can be seen as the type $A$ instances of more general constructions:

- non-crossing partitions $N C(W)$, attached to any real reflection group $W$ (Reiner), and furthermore to any well-generated complex reflection group W (Bessis),
- non-nesting partitions $N N(W)$ attached to any crystallographic real reflection group (Postnikov).


## General motivation

Both constructions seem to be related enumeratively in a very deep way, in particular

- both are counted by the Catalan numbers,
- both have a positive part which is counted by the positive Catalan numbers,
- both have a refinement which is counted by the Narayana numbers,
but so far only for type $A$, explicit bijections are known.


## General motivation

Both constructions seem to be related enumeratively in a very deep way, in particular

- both are counted by the Catalan numbers,
- both have a positive part which is counted by the positive Catalan numbers,
- both have a refinement which is counted by the Narayana numbers,
but so far only for type $A$, explicit bijections are known.
Question / Open Problem
What is nature of the relationship between $N C(W)$ and $N N(W)$ ?
Find a bijection between $N C(W)$ and $N N(W)$ that preserve "natural" statistics.


## My motivation

In the context of rational Cherednik algebras, there naturally arises a bigraded $W$-module $M$ such that

## My motivation

In the context of rational Cherednik algebras, there naturally arises a bigraded $W$-module $M$ such that

- its dimension is equal to the number of non-nesting and the number of non-crossing partitions,

$$
\operatorname{dim} M=\# N N(W)=\# N C(W)
$$

## My motivation

In the context of rational Cherednik algebras, there naturally arises a bigraded $W$-module $M$ such that

- its dimension is equal to the number of non-nesting and the number of non-crossing partitions,

$$
\operatorname{dim} M=\# N N(W)=\# N C(W)
$$

- its bigraded Hilbert series $\mathcal{H}(M ; q, t)$ is a natural $q, t$-analogue of the Catalan numbers,


## My motivation

In the context of rational Cherednik algebras, there naturally arises a bigraded $W$-module $M$ such that

- its dimension is equal to the number of non-nesting and the number of non-crossing partitions,

$$
\operatorname{dim} M=\# N N(W)=\# N C(W)
$$

- its bigraded Hilbert series $\mathcal{H}(M ; q, t)$ is a natural $q, t$-analogue of the Catalan numbers,
- the specialization $t=1$ is conjectured to be counted by a certain statistic area on $N N(W)$,

$$
\mathcal{H}(M ; q, 1)=\sum_{I \in N N(W)} q^{\text {area }(I)}
$$

## My personal motivation

## Open Problem

Find a second statistic tstat on $N N(W)$ that describes those $q, t$-Catalan numbers combinatorially,

$$
\mathcal{H}(M ; q, t)=\sum_{l \in N N(W)} q^{\operatorname{area}(I)} t^{\operatorname{tstat}(I)}
$$

## My personal motivation

## Open Problem

Find a second statistic tstat on $N N(W)$ that describes those $q, t$-Catalan numbers combinatorially,

$$
\mathcal{H}(M ; q, t)=\sum_{l \in N N(W)} q^{\operatorname{area}(I)} t^{\operatorname{tstat}(I)}
$$

Remark

- In type $A$, such a statistic is known (Haglund \& Haiman).


## My personal motivation

## Open Problem

Find a second statistic tstat on $N N(W)$ that describes those $q, t$-Catalan numbers combinatorially,

$$
\mathcal{H}(M ; q, t)=\sum_{l \in N N(W)} q^{\operatorname{area}(I)} t^{\operatorname{tstat}(I)}
$$

## Remark

- In type $A$, such a statistic is known (Haglund \& Haiman).
- A first step would be to find a statistic qstat, such that

$$
q^{N} \mathcal{H}\left(M ; q, q^{-1}\right)=\sum_{I \in N N(W)} q^{q \operatorname{stat}(I)}
$$

## My personal motivation

## Open Problem

Find a second statistic tstat on $N N(W)$ that describes those $q, t$-Catalan numbers combinatorially,

$$
\mathcal{H}(M ; q, t)=\sum_{l \in N N(W)} q^{\operatorname{area}(I)} t^{\mathrm{tstat}(I)}
$$

## Remark

- In type $A$, such a statistic is known (Haglund \& Haiman).
- A first step would be to find a statistic qstat, such that

$$
q^{N} \mathcal{H}\left(M ; q, q^{-1}\right)=\sum_{I \in N N(W)} q^{q \operatorname{stat}(I)}
$$

## Hope

A bijection between $N C(W)$ and $N N(W)$ for which some of those statistics can be "nicely" described in terms of $N C(W)$ could shade some light on this open problem.

## Non-crossing set partitions and the symmetric group

When we order the elements in each block of a non-crossing set partition $\mathcal{B}$ increasingly, we can identify $\mathcal{B}$ with the permutation $\sigma$ having cycles equal to the blocks of $\mathcal{B}$.

Example

$$
\begin{aligned}
{[n] \dashv \mathcal{B} } & =\{\{1,9\},\{2,5,6,7\},\{3,4\},\{8\}\} \\
\downarrow & \\
\mathcal{S}_{n} \ni \sigma & =(1,9)(2,5,6,7)(3,4) \\
& =[9,5,4,3,6,7,2,8,1] .
\end{aligned}
$$

## Non-crossing set partitions and the symmetric group

When we order the elements in each block of a non-crossing set partition $\mathcal{B}$ increasingly, we can identify $\mathcal{B}$ with the permutation $\sigma$ having cycles equal to the blocks of $\mathcal{B}$.

Example

$$
\begin{aligned}
{[n] \dashv \mathcal{B} } & =\{\{1,9\},\{2,5,6,7\},\{3,4\},\{8\}\} \\
\downarrow & \\
\mathcal{S}_{n} \ni \sigma & =(1,9)(2,5,6,7)(3,4) \\
& =[9,5,4,3,6,7,2,8,1]
\end{aligned}
$$

- The image of this embedding is the set of all permutations which have
- only increasing cycles,
- no "crossing" cycles in the sense described above.


## The absolute order on the symmetric group

## Definition

For a permutation $\sigma$, let the absolute length $\mathrm{I}_{T}(\sigma)$ be the minimal integer $k$ such that $\sigma$ can be written as the product of $k$ transpositions,

$$
\mathrm{I}_{T}(\sigma):=\min \left\{k: \sigma=t_{1} \cdots t_{k}, \text { for transpositions } t_{i}\right\} .
$$

## The absolute order on the symmetric group

## Definition

For a permutation $\sigma$, let the absolute length $\mathrm{I}_{T}(\sigma)$ be the minimal integer $k$ such that $\sigma$ can be written as the product of $k$ transpositions,

$$
\mathrm{I}_{T}(\sigma):=\min \left\{k: \sigma=t_{1} \cdots t_{k}, \text { for transpositions } t_{i}\right\} .
$$

The absolute order on $\mathcal{S}_{n}$ is then defined by

$$
\sigma \leq_{T} \tau: \Leftrightarrow \mathrm{I}_{T}(\tau)=\mathrm{I}_{T}(\sigma)+\mathrm{I}_{T}\left(\sigma^{-1} \tau\right)
$$

## The absolute order on the symmetric group

## Definition

For a permutation $\sigma$, let the absolute length $\mathrm{I}_{T}(\sigma)$ be the minimal integer $k$ such that $\sigma$ can be written as the product of $k$ transpositions,

$$
\mathrm{I}_{T}(\sigma):=\min \left\{k: \sigma=t_{1} \cdots t_{k}, \text { for transpositions } t_{i}\right\} .
$$

The absolute order on $\mathcal{S}_{n}$ is then defined by

$$
\sigma \leq_{T} \tau: \Leftrightarrow \mathrm{I}_{T}(\tau)=\mathrm{I}_{T}(\sigma)+\mathrm{I}_{T}\left(\sigma^{-1} \tau\right)
$$

Theorem (Reiner)
$\sigma \in \mathcal{S}_{n}$ is non-crossing if and only if

$$
\sigma \leq_{T}(1,2, \ldots, n)=: c \Leftrightarrow \sigma \in[1, c] .
$$

The non-crossing partition lattice of type $A_{3}$
Example
For $W=\mathcal{S}_{4}, N C(W) \subseteq \mathcal{S}_{n}$ :


## The absolute order for any real reflection group

## Definition

Let $W$ be a real reflection group (= Coxeter group) and let $\omega \in W$. Let its absolute length $I_{T}(\omega)$ be the minimal integer $k$ such that $\omega$ can be written as the product of $k$ reflections,

$$
I_{T}(\omega):=\min \left\{k: \sigma=t_{1} \cdots t_{k}, \text { for reflections } t_{i}\right\} .
$$

The absolute order on $W$ is defined by

$$
\omega \leq_{T} \omega^{\prime}: \Leftrightarrow I_{T}\left(\omega^{\prime}\right)=I_{T}(\omega)+I_{T}\left(\omega^{-1} \omega^{\prime}\right)
$$

## The absolute order for any real reflection group

In the absolute order, the intervall $[1, c]$ does not depend on the specific choice of the Coxeter element $c$,

$$
[1, c] \simeq\left[1, c^{\prime}\right],
$$

for Coxeter elements $c, c^{\prime}$.

## The absolute order for any real reflection group

In the absolute order, the intervall $[1, c]$ does not depend on the specific choice of the Coxeter element $c$,

$$
[1, c] \simeq\left[1, c^{\prime}\right],
$$

for Coxeter elements $c, c^{\prime}$.

## Definition

Fix a real reflection group $W$ and a Coxeter element $c$. The non-crossing partition lattice associated to $W$ is defined as

$$
N C(W):=[1, c] .
$$

- For any Coxeter element $c$, the intervall $[1, c]$ is a lattice with many nice properties.


## Enumeration of $N C(W)$

Theorem (Reiner, Bessis-Reiner)
Let $W$ be a real reflection group. Then non-crossing partitions are counted by the $W$-Catalan numbers,

$$
\# N C(W)=\operatorname{Cat}(W):=\prod_{i=1}^{l} \frac{d_{i}+h}{d_{i}}
$$

where

- I is the number of simple reflections in W,
- $h$ is the Coxeter number,
- $d_{1}, \ldots, d_{l}$ are the degrees of the fundamental invariants.


## Cat $(W)$ for all irreducible real reflection groups

| $A_{n-1}$ | $B_{n}$ | $D_{n}$ |
| :---: | :---: | :---: |
| $\frac{1}{n+1}\binom{2 n}{n}$ | $\binom{2 n}{n}$ | $\binom{2 n}{n}-\binom{2 n-2}{n-1}$ |


| $I_{2}(m)$ | $H_{3}$ | $H_{4}$ | $F_{4}$ | $E_{6}$ | $E_{7}$ | $E_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m+2$ | 32 | 280 | 105 | 833 | 4160 | 25080 |

## The root poset

## Definition

Let $W$ be a crystallographic reflection group with associated root system $\Phi \subseteq \mathbb{R}^{\prime}$ and let $\Delta \subseteq \Phi^{+} \subseteq \Phi$ be a simple system and a positive system respectively.
Define a partial order on $\Phi^{+}$by the covering relation

$$
\alpha<\beta: \Leftrightarrow \beta-\alpha \in \Delta .
$$

Equipped with this partial order, $\Phi^{+}$is the root poset associated to $W$.

## The root poset

## Example

The root posets of type $A_{4}$ and of type $B_{3}$ :


## Non-nesting set partitions and the root poset

Non-nesting set partitions of [ $n$ ] are in bijection with anti-chains in the root poset of type $A_{n-1}$.

## Non-nesting set partitions and the root poset

Non-nesting set partitions of [ $n$ ] are in bijection with anti-chains in the root poset of type $A_{n-1}$.

Example

$$
\sigma=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\}
$$



## Non-nesting set partitions and the root poset

Non-nesting set partitions of [ $n$ ] are in bijection with anti-chains in the root poset of type $A_{n-1}$.

Example

$$
\sigma=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\}
$$



## Non-nesting set partitions and the root poset

Non-nesting set partitions of [ $n$ ] are in bijection with anti-chains in the root poset of type $A_{n-1}$.

Example

$$
\sigma=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\}
$$



## Non-nesting set partitions and the root poset

Non-nesting set partitions of [ $n$ ] are in bijection with anti-chains in the root poset of type $A_{n-1}$.

Example

$$
\sigma=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\}
$$



## Non-nesting set partitions and the root poset

Non-nesting set partitions of [ $n$ ] are in bijection with anti-chains in the root poset of type $A_{n-1}$.

Example

$$
\sigma=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\}
$$



## Non-nesting set partitions and the root poset

Non-nesting set partitions of [ $n$ ] are in bijection with anti-chains in the root poset of type $A_{n-1}$.

Example

$$
\sigma=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\}
$$



## Non-nesting partitions

## Definition

Fix a crystallographic reflection group $W$ with associated root poset $\Phi^{+}$. An antichain in $\Phi^{+}$is called non-nesting partition,

$$
N N(W):=\left\{\text { non-nesting partitions } A \subseteq \Phi^{+}\right\} .
$$

## Non-nesting partitions

## Definition

Fix a crystallographic reflection group $W$ with associated root poset $\Phi^{+}$. An antichain in $\Phi^{+}$is called non-nesting partition,

$$
N N(W):=\left\{\text { non-nesting partitions } A \subseteq \Phi^{+}\right\} .
$$

## Example

The 5 antichains in the root poset of type $A_{2}$ :


## Enumeration of $N N(W)$

Theorem (Athanasiadis)
Let $W$ be a crystallographic reflection group. Then

$$
\# N N(W)=\operatorname{Cat}(W)=\# N C(W)
$$

The area statistic on $N N(W)$
To an antichain $A \subseteq \Phi^{+}$, define the area statistic as $\operatorname{area}(A):=\# I_{A}$, where

$$
I_{A}:=\left\{\alpha \in \Phi^{+}: \alpha \leq \beta \text { for some } \beta \in A\right\} .
$$

Example (continued)


## Back to the module from the beginning

Conjecture

$$
\mathcal{H}(M ; q, 1)=\sum_{A \in N N(W)} q^{\operatorname{area}(A)}
$$

## Back to the module from the beginning

## Conjecture

$$
\mathcal{H}(M ; q, 1)=\sum_{A \in N N(W)} q^{\operatorname{area}(A)}
$$

In type $A$ the conjecture is known to be true and furthermore MacMahon's Major index maj on the associated Dyck path provides

$$
\begin{aligned}
q^{N} \mathcal{H}\left(M ; q, q^{-1}\right) & =\sum_{A \in N N(W)} q^{\operatorname{maj}(A)} \\
& =\frac{1}{[n+1]_{q}}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}=\prod_{i=1}^{l} \frac{\left[d_{i}+h\right]_{q}}{\left[d_{i}\right]_{q}} .
\end{aligned}
$$

where $N$ is the number of positive roots (Garsia \& Haiman).

## The bijection in type $A$

Define $\phi$ to be the map from $N N\left(\mathcal{S}_{n}\right)$ to $N C\left(\mathcal{S}_{n}\right)=[1,(1, \ldots, n)]$ by the rule shown in the following picture:


## The bijection in type $A$

Define $\phi$ to be the map from $N N\left(\mathcal{S}_{n}\right)$ to $N C\left(\mathcal{S}_{n}\right)=[1,(1, \ldots, n)]$ by the rule shown in the following picture:


## The bijection in type $A$

Define $\phi$ to be the map from $N N\left(\mathcal{S}_{n}\right)$ to $N C\left(\mathcal{S}_{n}\right)=[1,(1, \ldots, n)]$ by the rule shown in the following picture:


## The bijection in type $A$

Define $\phi$ to be the map from $N N\left(\mathcal{S}_{n}\right)$ to $N C\left(\mathcal{S}_{n}\right)=[1,(1, \ldots, n)]$ by the rule shown in the following picture:


## Properties of the bijection

Theorem
The map $\phi$ is a bijection between $\operatorname{NN}\left(\mathcal{S}_{n}\right)$ and $\operatorname{NC}\left(\mathcal{S}_{n}\right)$ which sends

- area to the (ordinary) length function $\mathrm{I}_{\mathrm{S}}$ in the Coxeter group of type $A$,
- maj to $2 N$ - maj-imaj, where maj is the Major index of a permutation and imaj the Major index of the inverse permutation.


## Properties of the bijection

Theorem
The map $\phi$ is a bijection between $N N\left(\mathcal{S}_{n}\right)$ and $N C\left(\mathcal{S}_{n}\right)$ which sends

- area to the (ordinary) length function $\mathrm{I}_{\mathrm{S}}$ in the Coxeter group of type $A$,
- maj to $2 N$-maj-imaj, where maj is the Major index of a permutation and imaj the Major index of the inverse permutation.


## Corollary

$$
\begin{aligned}
\mathcal{H}(M ; q, 1) & =\sum_{\sigma \in N C(W)} q^{\operatorname{inv}(\sigma)} \\
q^{N} \mathcal{H}\left(M ; q, q^{-1}\right) & =\sum_{\sigma \in N C(W)} q^{\operatorname{maj}(\sigma)+\operatorname{imaj}(\sigma)}
\end{aligned}
$$

## Properties of the bijection

## Example (continued)

$$
\begin{aligned}
& (1,7,9)(2,3,4,5)=[7,3,4,5,2,6,9,8,1] \in N C\left(S_{n}\right) \\
& I_{S}=\operatorname{inv}=\#\left\{\begin{array}{c}
(7,3),(7,4),(7,5),(7,2),(7,6),(7,1), \\
(3,2),(3,1),(4,2),(4,1),(5,2),(5,1), \\
(2,1),(6,1),(9,8),(9,1),(8,1)
\end{array}\right\}=17
\end{aligned}
$$

## The bijection in type $B$

We can also define an bijection between $N N(W)$ and $N C(W)=[1, c]$ where $c$ is a certain Coxeter element with the following properties:

- it sends the statistic area almost to the (ordinary) length function $I_{S}$ in the Coxeter group of type $B$,
- it sends the statistic maj almost to $2 N$-maj-imaj, where maj is almost the $f$-Major index of a signed permutation (Adin, Roichman) and imaj is the $f$-Major index of the inverse signed permutation.


## The bijection in type $B$

## Corollary

$$
\begin{aligned}
q^{N} \mathcal{H}\left(M ; q, q^{-1}\right) & =\sum_{\sigma \in N C(W)} q^{\operatorname{maj}(\operatorname{rev}(\sigma))+\operatorname{imaj}(\operatorname{rev}(\sigma))} \\
& =\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q^{2}}=\prod_{i=1}^{1} \frac{\left[d_{i}+h\right]_{q}}{\left[d_{i}\right]_{q}}
\end{aligned}
$$

Conjecture

$$
\mathcal{H}(M ; q, 1)=\sum_{\sigma \in N C(W)} q^{\left.l^{1 s(r e v}(\sigma)\right)} .
$$

## A hope in type $B$ and a remark on type $D$

## Hope

In type $B$, this bijection equips $N N(W)$ with more structure and we hope that this could help to find a statistic tstat on $N N(W)$ to describe the whole Hilbert series of the $W$-module $M$ in this type.

## Remark

As the involution rev makes the situation much more difficult we were so far not able to find an analogous bijection in type $D$.

