A bijection between non-crossing and non-nesting partitions of types A and B

Christian Stump

March 31, 2008

Christian Stump – A bijection between non-crossing and non-nesting partitions of types A and B

Classical non-crossing and non-nesting partitions

Motivation

Non-crossing partitions

Non-nesting partitions

A bijection between NN(W) and NC(W) in types A and B

- E - M

Let $\mathcal{B} \vdash [n]$ be a set partition of the set $[n] \coloneqq \{1, \ldots, n\}$.

3

Let $\mathcal{B} \vdash [n]$ be a set partition of the set $[n] \coloneqq \{1, \ldots, n\}$.

Example

 $\mathcal{B} = \big\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash \big[9\big]:$

Let $\mathcal{B} \vdash [n]$ be a set partition of the set $[n] \coloneqq \{1, \ldots, n\}$.

Example $\mathcal{B} = \{\{1,4\}, \{2,5,7,9\}, \{3,6\}, \{8\}\} \vdash [9]:$

Let $\mathcal{B} \vdash [n]$ be a set partition of the set $[n] \coloneqq \{1, \ldots, n\}$.

Example $\mathcal{B} = \{\{1,4\}, \{2,5,7,9\}, \{3,6\}, \{8\}\} \vdash [9]:$

Let $\mathcal{B} \vdash [n]$ be a set partition of the set $[n] \coloneqq \{1, \ldots, n\}$.

Example $\mathcal{B} = \{\{1,4\}, \{2,5,7,9\}, \{3,6\}, \{8\}\} \vdash [9]:$

Let $\mathcal{B} \vdash [n]$ be a set partition of the set $[n] \coloneqq \{1, \ldots, n\}$.

Example $\mathcal{B} = \{\{1,4\}, \{2,5,7,9\}, \{3,6\}, \{8\}\} \vdash [9]:$

Let $\mathcal{B} \vdash [n]$ be a set partition of the set $[n] \coloneqq \{1, \ldots, n\}$.

Example

 $\mathcal{B} = \big\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash \big[9\big]:$

Non-crossing set partitions

A set partition $\mathcal{B} \vdash [n]$ is called

non-crossing, if for a < b < c < d such that a, c are contained in a block B of B, while b, d are contained in a block B' of B, then B = B',

Non-crossing set partitions

A set partition $\mathcal{B} \vdash [n]$ is called

non-crossing, if for a < b < c < d such that a, c are contained in a block B of B, while b, d are contained in a block B' of B, then B = B',

Example

 $\mathcal{B} = \{\{1,9\}, \{2,5,6,7\}, \{3,4\}, \{8\}\} \vdash [9] \text{ is non-crossing:}$

Non-nesting set partitions

A set partition $\mathcal{B} \vdash [n]$ is called

▶ non-nesting, if for a < b < c < d such that a, d are contained in a block B of B, while b, c are contained in a block B' of B, then B = B'.

Non-nesting set partitions

A set partition $\mathcal{B} \vdash [n]$ is called

non-nesting, if for a < b < c < d such that a, d are contained in a block B of B, while b, c are contained in a block B' of B, then B = B'.

Example

 $\mathcal{B} = \{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash [9] \text{ is non-nesting:}$

We will later see that non-crossing and non-nesting set partitions can be seen as the type A instances of more general constructions:

- non-crossing partitions NC(W), attached to any real reflection group W (Reiner), and furthermore to any well-generated complex reflection group W (Bessis),
- non-nesting partitions NN(W) attached to any crystallographic real reflection group (Postnikov).

General motivation

Both constructions seem to be related enumeratively in a very deep way, in particular

- both are counted by the Catalan numbers,
- both have a *positive part* which is counted by the *positive* Catalan numbers,
- both have a refinement which is counted by the Narayana numbers,

but so far only for type A, explicit bijections are known.

General motivation

Both constructions seem to be related enumeratively in a very deep way, in particular

- both are counted by the Catalan numbers,
- both have a *positive part* which is counted by the *positive* Catalan numbers,
- both have a refinement which is counted by the Narayana numbers,

but so far only for type A, explicit bijections are known.

Question / Open Problem

What is nature of the relationship between NC(W) and NN(W)? Find a bijection between NC(W) and NN(W) that preserve "natural" statistics.

・ 同 ト ・ ヨ ト ・ ヨ ト

In the context of *rational Cherednik algebras*, there naturally arises a bigraded W-module M such that

→ ∃ >

In the context of *rational Cherednik algebras*, there naturally arises a bigraded W-module M such that

 its dimension is equal to the number of non-nesting and the number of non-crossing partitions,

 $\dim M = \#NN(W) = \#NC(W),$

In the context of *rational Cherednik algebras*, there naturally arises a bigraded W-module M such that

 its dimension is equal to the number of non-nesting and the number of non-crossing partitions,

$$\dim M = \#NN(W) = \#NC(W),$$

 its bigraded Hilbert series H(M; q, t) is a natural q, t-analogue of the Catalan numbers,

In the context of *rational Cherednik algebras*, there naturally arises a bigraded W-module M such that

 its dimension is equal to the number of non-nesting and the number of non-crossing partitions,

$$\dim M = \#NN(W) = \#NC(W),$$

- its bigraded Hilbert series H(M; q, t) is a natural q, t-analogue of the Catalan numbers,
- the specialization t = 1 is conjectured to be counted by a certain statistic area on NN(W),

$$\mathcal{H}(M;q,1) = \sum_{l \in NN(W)} q^{\operatorname{area}(l)}.$$

Open Problem

Find a second statistic tstat on NN(W) that describes those q, t-Catalan numbers combinatorially,

$$\mathcal{H}(M;q,t) = \sum_{I \in NN(W)} q^{\operatorname{area}(I)} t^{\operatorname{tstat}(I)}.$$

∃ >

Open Problem

Find a second statistic tstat on NN(W) that describes those q, t-Catalan numbers combinatorially,

$$\mathcal{H}(M;q,t) = \sum_{I \in NN(W)} q^{\operatorname{area}(I)} t^{\operatorname{tstat}(I)}.$$

Remark

In type A, such a statistic is known (Haglund & Haiman).

Open Problem

Find a second statistic tstat on NN(W) that describes those q, t-Catalan numbers combinatorially,

$$\mathcal{H}(M;q,t) = \sum_{I \in NN(W)} q^{\operatorname{area}(I)} t^{\operatorname{tstat}(I)}.$$

Remark

- In type A, such a statistic is known (Haglund & Haiman).
- A first step would be to find a statistic qstat, such that

$$q^{N}\mathcal{H}(M;q,q^{-1}) = \sum_{I \in NN(W)} q^{qstat(I)}$$

Open Problem

Find a second statistic tstat on NN(W) that describes those q, t-Catalan numbers combinatorially,

$$\mathcal{H}(M;q,t) = \sum_{I \in NN(W)} q^{\operatorname{area}(I)} t^{\operatorname{tstat}(I)}.$$

Remark

- In type A, such a statistic is known (Haglund & Haiman).
- A first step would be to find a statistic qstat, such that

$$q^{N}\mathcal{H}(M;q,q^{-1}) = \sum_{I \in NN(W)} q^{qstat(I)}$$

Hope

A bijection between NC(W) and NN(W) for which some of those statistics can be "nicely" described in terms of NC(W) could shade some light on this open problem.

Non-crossing set partitions and the symmetric group

When we order the elements in each block of a non-crossing set partition \mathcal{B} increasingly, we can identify \mathcal{B} with the permutation σ having cycles equal to the blocks of \mathcal{B} .

Example

$$[n] \dashv \mathcal{B} = \{\{1,9\}, \{2,5,6,7\}, \{3,4\}, \{8\}\}$$

$$\downarrow$$

$$\mathcal{S}_n \ni \sigma = (1,9)(2,5,6,7)(3,4)$$

$$= [9,5,4,3,6,7,2,8,1].$$

Non-crossing set partitions and the symmetric group

When we order the elements in each block of a non-crossing set partition \mathcal{B} increasingly, we can identify \mathcal{B} with the permutation σ having cycles equal to the blocks of \mathcal{B} .

Example

$$[n] \dashv \mathcal{B} = \{\{1,9\}, \{2,5,6,7\}, \{3,4\}, \{8\}\}$$

$$\downarrow$$

$$\mathcal{S}_n \ni \sigma = (1,9)(2,5,6,7)(3,4)$$

$$= [9,5,4,3,6,7,2,8,1].$$

- The image of this embedding is the set of all permutations which have
 - only increasing cycles,
 - ▶ no "crossing" cycles in the sense described above.

The absolute order on the symmetric group

Definition

For a permutation σ , let the **absolute length** $I_T(\sigma)$ be the minimal integer k such that σ can be written as the product of k *transpositions*,

 $I_T(\sigma) \coloneqq \min\{k : \sigma = t_1 \cdots t_k, \text{ for transpositions } t_i\}.$

The absolute order on the symmetric group

Definition

For a permutation σ , let the **absolute length** $I_T(\sigma)$ be the minimal integer k such that σ can be written as the product of k *transpositions*,

 $I_T(\sigma) \coloneqq \min\{k : \sigma = t_1 \cdots t_k, \text{ for transpositions } t_i\}.$

The **absolute order** on S_n is then defined by

$$\sigma \leq_T \tau :\Leftrightarrow |_T(\tau) = |_T(\sigma) + |_T(\sigma^{-1}\tau).$$

The absolute order on the symmetric group

Definition

For a permutation σ , let the **absolute length** $I_T(\sigma)$ be the minimal integer k such that σ can be written as the product of k *transpositions*,

$$I_{\mathcal{T}}(\sigma) := \min\{k : \sigma = t_1 \cdots t_k, \text{ for transpositions } t_i\}.$$

The **absolute order** on S_n is then defined by

$$\sigma \leq_T \tau :\Leftrightarrow |_T(\tau) = |_T(\sigma) + |_T(\sigma^{-1}\tau).$$

Theorem (Reiner)

 $\sigma \in S_n$ is non-crossing if and only if

$$\sigma \leq_T (1, 2, \ldots, n) \eqqcolon c \Leftrightarrow \sigma \in [1, c].$$

The non-crossing partition lattice of type A_3

Example

For $W = S_4$, $NC(W) \subseteq S_n$:

The absolute order for any real reflection group

Definition

Let W be a real reflection group (= *Coxeter group*) and let $\omega \in W$. Let its **absolute length** $I_T(\omega)$ be the minimal integer k such that ω can be written as the product of k reflections,

 $I_{T}(\omega) \coloneqq \min\{k : \sigma = t_{1} \cdots t_{k}, \text{ for reflections } t_{i}\}.$

The **absolute order** on W is defined by

$$\omega \leq_{\mathcal{T}} \omega' :\Leftrightarrow \mathsf{I}_{\mathcal{T}}(\omega') = \mathsf{I}_{\mathcal{T}}(\omega) + \mathsf{I}_{\mathcal{T}}(\omega^{-1}\omega').$$

The absolute order for any real reflection group

In the absolute order, the intervall [1, c] does *not* depend on the specific choice of the Coxeter element c,

 $[1,c] \simeq [1,c'],$

for Coxeter elements c, c'.

The absolute order for any real reflection group

In the absolute order, the intervall [1, c] does *not* depend on the specific choice of the Coxeter element c,

 $[1,c] \simeq [1,c'],$

for Coxeter elements c, c'.

Definition

Fix a real reflection group W and a Coxeter element c. The **non-crossing partition lattice** associated to W is defined as

 $NC(W) \coloneqq [1, c].$

▶ For any Coxeter element c, the intervall [1, c] is a *lattice* with many nice properties.

Enumeration of NC(W)

Theorem (Reiner, Bessis-Reiner)

Let W be a real reflection group. Then non-crossing partitions are counted by the W-Catalan numbers,

$$\#NC(W) = \operatorname{Cat}(W) \coloneqq \prod_{i=1}^{l} \frac{d_i + h}{d_i},$$

where

- ▶ I is the number of simple reflections in W,
- h is the Coxeter number,
- d_1, \ldots, d_l are the degrees of the fundamental invariants.

Cat(W) for all irreducible real reflection groups

$I_2(m)$	<i>H</i> ₃	H_4	F_4	E ₆	<i>E</i> ₇	E ₈
<i>m</i> + 2	32	280	105	833	4160	25080

æ

< 注→ < 注→

A ₽

The root poset

Definition

Let W be a crystallographic reflection group with associated root system $\Phi \subseteq \mathbb{R}^{l}$ and let $\Delta \subseteq \Phi^{+} \subseteq \Phi$ be a *simple system* and a *positive system* respectively. Define a partial order on Φ^{+} by the *covering relation*

$$\alpha \prec \beta :\Leftrightarrow \beta - \alpha \in \Delta.$$

Equipped with this partial order, Φ^+ is the **root poset** associated to W.

The root poset

Example

The root posets of type A_4 and of type B_3 :

Christian Stump - A bijection between non-crossing and non-nesting partitions of types A and B

문 문 문

Non-nesting set partitions of [n] are in bijection with *anti-chains* in the root poset of type A_{n-1} .

Non-nesting set partitions of [n] are in bijection with *anti-chains* in the root poset of type A_{n-1} .

Non-nesting set partitions of [n] are in bijection with *anti-chains* in the root poset of type A_{n-1} .

Non-nesting set partitions of [n] are in bijection with *anti-chains* in the root poset of type A_{n-1} .

Non-nesting set partitions of [n] are in bijection with *anti-chains* in the root poset of type A_{n-1} .

Non-nesting set partitions of [n] are in bijection with *anti-chains* in the root poset of type A_{n-1} .

Non-nesting set partitions of [n] are in bijection with *anti-chains* in the root poset of type A_{n-1} .

Non-nesting partitions

Definition

Fix a crystallographic reflection group W with associated root poset Φ^+ . An antichain in Φ^+ is called **non-nesting partition**,

```
NN(W) \coloneqq \{\text{non-nesting partitions } A \subseteq \Phi^+\}.
```

Non-nesting partitions

Definition

Fix a crystallographic reflection group W with associated root poset Φ^+ . An antichain in Φ^+ is called **non-nesting partition**,

```
NN(W) \coloneqq \{\text{non-nesting partitions } A \subseteq \Phi^+\}.
```

Example

The 5 antichains in the root poset of type A_2 :

Enumeration of NN(W)

Theorem (Athanasiadis) Let W be a crystallographic reflection group. Then

$$\#NN(W) = Cat(W) = \#NC(W).$$

臣

→ ∃ >

A ₽

The area statistic on NN(W)

To an antichain $A \subseteq \Phi^+$, define the **area statistic** as area $(A) := \#I_A$, where

$$I_{\mathcal{A}} \coloneqq \{ \alpha \in \Phi^+ : \alpha \leq \beta \text{ for some } \beta \in \mathcal{A} \}.$$

Example (continued)

Back to the module from the beginning

Conjecture

$$\mathcal{H}(M; q, 1) = \sum_{A \in NN(W)} q^{\operatorname{area}(A)}.$$

æ

- 470

< 注→ < 注→

Back to the module from the beginning

Conjecture

$$\mathcal{H}(M;q,1) = \sum_{A \in NN(W)} q^{\operatorname{area}(A)}.$$

In type A the conjecture is known to be true and furthermore *MacMahon's Major index* maj on the associated Dyck path provides

$$q^{N}\mathcal{H}(M;q,q^{-1}) = \sum_{A \in NN(W)} q^{\operatorname{maj}(A)}$$
$$= \frac{1}{[n+1]_{q}} \begin{bmatrix} 2n \\ n \end{bmatrix}_{q} = \prod_{i=1}^{l} \frac{[d_{i}+h]_{q}}{[d_{i}]_{q}}$$

where N is the number of *positive roots* (Garsia & Haiman).

Properties of the bijection

Theorem

The map ϕ is a bijection between $NN(\mathcal{S}_n)$ and $NC(\mathcal{S}_n)$ which sends

- area to the (ordinary) length function I_S in the Coxeter group of type A,
- maj to 2N maj imaj, where maj is the Major index of a permutation and imaj the Major index of the inverse permutation.

A ₽

- - E + - E +

Properties of the bijection

Theorem

The map ϕ is a bijection between $NN(\mathcal{S}_n)$ and $NC(\mathcal{S}_n)$ which sends

- area to the (ordinary) length function I_S in the Coxeter group of type A,
- maj to 2N maj imaj, where maj is the Major index of a permutation and imaj the Major index of the inverse permutation.

Corollary

$$\mathcal{H}(M; q, 1) = \sum_{\sigma \in NC(W)} q^{\operatorname{inv}(\sigma)},$$
$$q^{N} \mathcal{H}(M; q, q^{-1}) = \sum_{\sigma \in NC(W)} q^{\operatorname{maj}(\sigma) + \operatorname{imaj}(\sigma)}.$$

Properties of the bijection

Example (continued)

We can also define an bijection between NN(W) and NC(W) = [1, c] where c is a certain Coxeter element with the following properties:

- it sends the statistic area *almost* to the (ordinary) length function I_S in the Coxeter group of type B,
- it sends the statistic maj *almost* to 2N maj imaj, where maj is *almost* the *f*-Major index of a signed permutation (Adin, Roichman) and imaj is the *f*-Major index of the inverse signed permutation.

向下 イヨト イヨト

Corollary

$$q^{N}\mathcal{H}(M;q,q^{-1}) = \sum_{\sigma \in NC(W)} q^{\operatorname{maj}(\operatorname{rev}(\sigma)) + \operatorname{imaj}(\operatorname{rev}(\sigma))}$$
$$= \begin{bmatrix} 2n \\ n \end{bmatrix}_{q^{2}} = \prod_{i=1}^{l} \frac{[d_{i}+h]_{q}}{[d_{i}]_{q}}.$$

Conjecture

$$\mathcal{H}(M;q,1) = \sum_{\sigma \in NC(W)} q^{l_{\mathcal{S}}(\mathsf{rev}(\sigma))}.$$

æ

(1日) (1日) (日)

A hope in type B and a remark on type D

Hope

In type B, this bijection equips NN(W) with more structure and we hope that this could help to find a statistic tstat on NN(W) to describe the whole Hilbert series of the W-module M in this type.

Remark

As the involution rev makes the situation much more difficult we were so far not able to find an analogous bijection in type D.