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Combinatorial interpretation. Let [n] :={1,...,n} .

J. Riordan, G. Kreweras, D. Dumont and A. Randrianarivony,

gt =#{oc € Sp|FIXec C{n—m+1,n—m,...,n—1,n}}
In particular,
90 = #D, and g = #8n.

The first column gives the derangement numbers:

A derangement is a fixed-point free permutation.



Let 0 = z125... 2 be @ permutation of [n].

majo= > i

Ti>Ti41

MacMahon

majo __
> a7 =nlg,

where nlg:=1-(14+q)-(14+qg+---+¢" ).

In 1989 Gessel, Wachs, ...

at n _1’6(]5)
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In 1997 Clarke-Han-Z: For o € S, let ¢ be the restriction of o
to [n] \ FIX(0). If 0 € Sy with FIX(o) = {i1,io,...,41}, then the
statistic maf is defined by

k
mafo = ) (i, —j)+ maja.
J=1

For example, let ¢ = 321659487. Then FIX(o) = {2,5,8}
and c =316947. Hence
majco=1+4 =25,
mafe=(2-1)4+(5-2)4+(8-3)+5 = 14.

Note that mafo = majo if o is a derangement.

A key lemma: There is a bijection ¥ : S5;, — S, such that mafo =
maj (o).



Theorem (Clarke-Han-Z). Define the ¢g-Euler table

97 () = nly (m = n); (1)
1 —m—
g@n_ggnrj_ —q " 19?},1_1 (0<m<n—-1).

Then
f‘
9@ = > q"°,
oceSm

where ST is the set of permutations in Sy, such that the fixed
points are greater than n — m. In particular,

gin() = > ¢M" 7 =nl,
ocESn

gpn() = Y ¢M7=nl Z

(— 1)k ()
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Euler’s difference table for Cp1.S, For a fixed integer £ > 1, Euler’s
difference table associated to the sequence {E"n!}nzo IS the array

(g?fn)n, m>0 defined by

g?nzﬁnnl (m = n),
= gntl_ gm 0<m<n-—1 (2)
9 =9m ~9ip-1 (0O<m<n—1)
A g-analogue Consider the array {g;" (¢)} defined by
9p (@) = [U]q[2€q - - - [nlly;
9r(a) = gy, ml(g) — gftn—m= 1)ggn 1(q) (0<m<n—1),

where [n]g =14+q+---+q¢" L.



Euler’'s difference table of type B

n 0 1 2 3 4 5
1
1 211
5 6 222l

29 34 40 233l
233 262 206 336 244l
2329 2562 2824 3120 3456 2°5!

U‘I-P(JOI\)I—‘Og

(93°,)

The ¢ =1 case corresponds to Euler’'s difference table.



Some explicit formulas
Lemma 1. Let (anm)o<m<n b€ an array defined by

agm = Tm (m = n); (3)
an,m = ZmGn—1m+1 T YnGn—1,m (0<m<n—-1).

T hen

n k—1
an,m — Z L~k ( H zm—l—]> en—k(yla Yz, ... 7yn)7 (4)

k=0 =0
where e;(y1,yo,...,yn) IS the i-th elementary symmetric polyno-
mial of y1,...,yn, I.€.,

n

A+ yt)(L+yot) - A+ ynt) = 3 ei(y1,- .-, yn)t"
1=0
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T heorem 2. We have

n n ek m—+k
ntm(@ = > (O™ F[] 'O ] lidg
k=0 q i=1

Proof. Recall the following g-binomial formula:

n

A+ +g) A+ )= [7] (@

k=0 kiq

T herefore, for 0 < k < n,

_ ny (k
ep(1,¢,4%...,¢" 1) = [k] q(2).
q

The result follows from (4) and (7) with y; = ¢**.

(5)

(6)

(7)

11



Recall that the two g-exponential functions defined by

E(uiq) =Y L=

n>0 (q; C])n’ n>0 (q;9)n

Y

satisfy E(—u; g)e(u;q) = 1, where

(o) e 1 if n=20,
PPl W —ug) (L —ugtl) i1
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Corollary 3. Forn > 1, we have

(D) 900 (0) = [€]g[2€]g - - - [n4] Enﬁ (D'

u” _ E(—u(l-q);¢")

.. 0
(i) > 96,(a) o200l — ,

n=0

(ii1) 99 ,,11(a) = [en + 8492, 1 (a) + (~1) 11",
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Combinatorial interpretation.

The wreath product of cyclic group Cp with Sy, Cp1 Sn, reduces
to the symmetric group S, when ¢ =1 and the hyperoctahedral
group B, when ¢ = 2.

We can think of the group Cy! S, as the group of “colored”
permutations where the colors are in the set of ¢-th roots of
unity {1,¢,..., ¢ 1}, where ¢ = e2i7/¢,

By definition, the multiplication in Gy, = CylSn = Cj X Sp,
consisting of pairs (¢,0) € C}' x Sy, is given by the following rule:
for all m = (¢,0) and «' = (¢/,0') in Gy,

(e,0) - (,0") = ((616,0—1(1)7 626/0—1(2)7 v GnG;—l(n))a god').
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One can identify Gg’n with a permutation group of the colored
set:

>y ={¢ili€n],0< <01}
via the morphism (¢,0) — m™ where
(i) = gpo(i)  and  w(¢?i) = ¢Im(a)
forany i€ [n] and 0<j</¢—1.

Clearly the cardinality of Gy, equals {"n!.
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We will write an element w € Gy, in two-line notation. For exam-

ple, if 7 = (¢,0) € G411, Where e = (¢%,1,1,(,¢2%,¢,¢,¢,1,¢,¢3)
and c =3519627411810, we write

__(1 2 3 4567 8 9 10 11
— 3 ¢25 (21 9 ¢6 2 (7 ¢4 ¢311 ¢8 (10 /-

For small j, we shall write j bars over i instead of ¢7i. Thus, the
above permutation can be written in one-line form as

r=35196274 11 8 10,

or in cyclic notation as

r=1(1, 3)(2,5,6) (4, 9, 11, 10, 8) (7).
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Note that when using cyclic notation to determine the image
of a number, one ignores the sign on that number and then
considers only the sign on the next number in the cycle. Thus,
in this example, we ignore the sign §2 on the 5 and note that then
5 maps to (6 since the sign on 6 is (. Furthermore, throughout
this paper we shall use the following total order on Gg,n: for
i,7 € [4] and a,b € [n],

Cla<Ib<=T[i>4] or [i=jand a<b]

Example For n = 4 and ¢ = 3 we have:

<1<2<3<4<0<1<2<3<A4.

=y
A\

NIl
YA\

OV
]
=l
NI
(OV]]
Nl

<AL 2oL

17



Defintion 4 (k-circular succession). Given a permutation =« €
Gy and a nonnegative integer k, the value (i) is a k-circular
succession at position 1 € [n] if () € [n] and (i) = ¢+ k. In
particular a O-circular succession is also called fixed point.

Denote by Ck(x) the set of k-circular successions of 7 and let
ck(r) = # CF(x). In particular FIX(x) denotes the set of fixed

points of w. For example, for the permutation

(1 234567289

”‘(Is@és?izz

the values 5 and 8 are the two 3-circular successions at positions
2 and 5. Thus C3(x) = {5, 8}.

) € Ga9

18



Theorem 5. For any integer k such that 0 < k < m, the entry
g?j’n equals the number of permutations in Ge,n whose k-circular
successions are included in [m]. In particular, by taking k = 0O
and k = m, respectively, either of the following holds.

(i) The entry g;’ is the number of permutations in G, whose
fixed points are included in [m].

(ii) The entry gZ‘n is the number of permutations in Gy, without
m-Circular succession.

19



For example, the permutations in G > whose fixed points are
included in [1] are:

21, 12, 21, 21, 12, 21;

while those without 1-circular succession are:

12, 12, 12, 12, 21, 21.

Note that Dumont and Randrianarivony proved the ¢ = 1 case
of (i), while Rakotondrajao proved the ¢ = 1 case of (ii).

20



For o € Gy, let Der(o) be the derangement part of o, i.e., if
Y1Yy2 - - - ym IS Obtained by deleting each fixed point of sigma where
y; = ¢g;|ly;| then Der(o) = z1zp---2zm Where z; = g;red(|y;|), red

(reduction) is the increasing bijection from {|y1il, |y2|, -, |ym|}
to [m].

Exemple If 0 = 183462759 € G4 then FIXo = {1,3,4,7,9}
and Der(c) =4312.
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Defintion 6. If o € Gy ,, then the statistic w is defined by
k—1
w(o) = > j-sgnj(o),
=0
where SIGN (o) = {i € [n] : "Z = ¢’} and sgn;(c) = |SIGN,(0)|.

Example: 0 = 2617543 we have

SIGNg(c) = {3,7}, SIGNi(c) = {1,4},
SIGN,(o) = {2,5}, SIGN3(c) = {6};

then w(oc) =0x24+1x24+2x24+3x1=09.
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Defintion 7. If 0 € Gy, then

e the flag-maj statistic fmaj is defined by

fmajo =/¢-majo + w(o).

o Let FIX(o) = {iy, ip, ...,i%}, the flag-maf statistic fmaf is
defined by

k
fmaf(c) =¢- ) _ (i; — j) + fmaj Der(o).
j=1
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Theorem (Adin-Roichman, Haglund-Loehr-Remmel ) The statis-
tic fmaj is mahonian on Gl’n, i.e.,

n

S ¢™Mal) = 1T [y (8)

O'EGg’n =1

Remark
e fmaf equal to fmaj in Dy ,, the set of derangements of (5.

e For any m such that 0O < m < n fmaf and fmaj are not
equidistributed on the set {0 € G}, : FIX(¢s) C {n —m +

1,...,n}}
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Theorem 8. There is a bijection W : Gy, — Gy, such that

(fix, fmaj, Der)o = (fix, fmaf, Der)W (o) (9)

o~

Our bijection W is a generalization of the bijection W given by
Clarke-Han-Z on the symmetric group.

Therefore, the statistics fmaf and fmaj are equidistributed on
ng, i.e.,

Z quaf(a) _ Z quaj(a) _ H [E'L]q

OEng UEng

The statistique fmaf is a new mahonian statistic on Gg,n.
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Let G} be the set of permutations o in Gy, such that FIX(o) C
{n—m-4+1,...,n—1,n}.
Theorem 9. For kK > 0 we have

g ()= Y. ¢Mmarlo), (10)
O'EGZZn

For Y =1 and m = 0 we recover the result of Wachs.
For Y =2 and m = 0 we recover the result of Chow.

Foata and Han have recently constructed *“another’” bijection F
which has the same property as that of W on the symetric group.
Theorem 10. T he two bijections V and F' are identical.
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