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Euler

gn
n = n!, gm

n = gm+1
n − gm

n−1 (0 ≤ m ≤ n− 1).

n\m 0 1 2 3 4 5
0 0!
1 0 1!
2 1 1 2!
3 2 3 4 3!
4 9 11 14 18 4!
5 44 53 64 78 96 5!

(gm
n )
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Combinatorial interpretation. Let [n] := {1, . . . , n} .

J. Riordan, G. Kreweras, D. Dumont and A. Randrianarivony,

gm
n = #{σ ∈ Sn|FIXσ ⊂ {n−m + 1, n−m, . . . , n− 1, n}}.

In particular,

g0
n = #Dn and gn

n = #Sn.

The first column gives the derangement numbers:

g0
n = n!

n∑
k=0

(−1)k

k!
.

A derangement is a fixed-point free permutation.
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Let σ = x1x2 . . . xn be a permutation of [n].

majσ =
∑

xi>xi+1

i.

MacMahon ∑
σ∈Sn

qmajσ = n!q,

where n!q := 1 · (1 + q) · (1 + q + · · ·+ qn−1).

In 1989 Gessel, Wachs, ...

∑
σ∈Dn

qmajσ = n!q
n∑

k=0

(−1)kq(
k
2)

k!q
.
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In 1997 Clarke-Han-Z: For σ ∈ Sn let σ̃ be the restriction of σ

to [n] \ FIX(σ). If σ ∈ Sn with FIX(σ) = {i1, i2, . . . , ik}, then the

statistic maf is defined by

maf σ =
k∑

j=1

(ij − j) + maj σ̃.

For example, let σ = 321659487. Then FIX(σ) = {2,5,8}
and σ̃ = 316947. Hence

maj σ̃ = 1 + 4 = 5,

maf σ = (2− 1) + (5− 2) + (8− 3) + 5 = 14.

Note that maf σ = majσ if σ is a derangement.

A key lemma: There is a bijection Ψ : Sn → Sn such that maf σ =

majϕ(σ).
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Theorem (Clarke-Han-Z). Define the q-Euler table gn
`,n(q) = n!q (m = n);

gm
`,n = gm+1

`,n − qn−m−1gm
`,n−1 (0 ≤ m ≤ n− 1).

(1)

Then

gm
`,n(q) =

∑
σ∈Sm

n

qmaf σ,

where Sm
n is the set of permutations in Sn such that the fixed

points are greater than n−m. In particular,

gn
`,n(q) =

∑
σ∈Sn

qmaf σ = n!q,

g0
`,n(q) =

∑
σ∈Dn

qmajσ = n!q
n∑

k=0

(−1)kq(
k
2)

k!q
.
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Euler’s difference table for C`oSn For a fixed integer ` ≥ 1, Euler’s

difference table associated to the sequence {`nn!}n≥0 is the array

(gm
`,n)n, m≥0 defined by gn

`,n = `n n! (m = n);

gm
`,n = gm+1

`,n − gm
`,n−1 (0 ≤ m ≤ n− 1).

(2)

A q-analogue Consider the array {gm
`,n(q)} defined by gn

`,n(q) = [`]q[2`]q · · · [n`]q;

gm
`,n(q) = gm+1

`,n (q)− q`(n−m−1)gm
`,n−1(q) (0 ≤ m ≤ n− 1),

where [n]q = 1 + q + · · ·+ qn−1.
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Euler’s difference table of type B

n\m 0 1 2 3 4 5
0 1
1 1 21 1!
2 5 6 22 2!
3 29 34 40 23 3!
4 233 262 296 336 24 4!
5 2329 2562 2824 3120 3456 25 5!

(gm
2,n)

The ` = 1 case corresponds to Euler’s difference table.
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Some explicit formulas

Lemma 1. Let (an,m)0≤m≤n be an array defined by{
a0,m = xm (m = n);
an,m = zman−1,m+1 + ynan−1,m (0 ≤ m ≤ n− 1).

(3)

Then

an,m =
n∑

k=0

xm+k

k−1∏
j=0

zm+j

 en−k(y1, y2, . . . , yn), (4)

where ei(y1, y2, . . . , yn) is the i-th elementary symmetric polyno-

mial of y1, . . . , yn, i.e.,

(1 + y1t)(1 + y2t) · · · (1 + ynt) =
n∑

i=0

ei(y1, . . . , yn)t
i.
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Theorem 2. We have

gm
`,n+m(q) =

n∑
k=0

(−1)n−k
[n
k

]
q`

q`(n−k
2 )

m+k∏
i=1

[i`]q. (5)

Proof. Recall the following q-binomial formula:

(1 + t)(1 + qt) · · · (1 + qn−1t) =
n∑

k=0

[n
k

]
q
q(

k
2)tk. (6)

Therefore, for 0 ≤ k ≤ n,

ek(1, q, q2, . . . , qn−1) =
[n
k

]
q
q(

k
2). (7)

The result follows from (4) and (7) with yk = qlk.
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Recall that the two q-exponential functions defined by

e(u; q) :=
∑
n>0

un

(q; q)n
, E(u; q) :=

∑
n>0

q(
n
2)un

(q; q)n
,

satisfy E(−u; q)e(u; q) = 1, where

(u; q)n :=

1 if n = 0,

(1− u)(1− uq) · · · (1− uqn−1) if n > 1.
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Corollary 3. For n > 1, we have

(i) g0
`,n(q) = [`]q[2`]q · · · [n`]q

n∑
k=0

(−1)kq`(k
2)

[`]q[2`]q · · · [k`]q
,

(ii)
∑
n>0

g0
`,n(q)

un

[`]q[2`]q · · · [n`]q
=

E(−u(1− q); q`)

1− u
,

(iii) g0
`,n+1(q) = [`n + `]qg0

`,n+1(q) + (−1)n+1q`(n+1
2 ).
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Combinatorial interpretation.

The wreath product of cyclic group C` with Sn, C` o Sn, reduces

to the symmetric group Sn when ` = 1 and the hyperoctahedral

group Bn when ` = 2.

We can think of the group C` o Sn as the group of “colored“

permutations where the colors are in the set of `-th roots of

unity {1, ζ, . . . , ζ`−1}, where ζ = e2iπ/`.

By definition, the multiplication in G`,n = C` o Sn = Cn
` o Sn,

consisting of pairs (ε, σ) ∈ Cn
` ×Sn, is given by the following rule:

for all π = (ε, σ) and π′ = (ε′, σ′) in G`,n,

(ε, σ) · (ε′, σ′) = ((ε1ε′
σ−1(1), ε2ε′

σ−1(2), . . . , εnε′
σ−1(n)), σ ◦ σ′).
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One can identify G`,n with a permutation group of the colored

set:

Σ`,n := {ζji | i ∈ [n],0 ≤ j ≤ `− 1}

via the morphism (ε, σ) 7−→ π where

π(i) = εσ(i)σ(i) and π(ζj i) = ζjπ(i)

for any i ∈ [n] and 0 ≤ j ≤ `− 1.

Clearly the cardinality of G`,n equals `nn!.
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We will write an element π ∈ G`,n in two-line notation. For exam-

ple, if π = (ε, σ) ∈ G4,11, where ε = (ζ2,1,1, ζ, ζ2, ζ, ζ, ζ,1, ζ, ζ3)

and σ = 3519627411810, we write

π =

(
1 2 3 4 5 6 7 8 9 10 11
3 ζ25 ζ21 9 ζ6 2 ζ7 ζ4 ζ311 ζ8 ζ10

)
.

For small j, we shall write j bars over i instead of ζji. Thus, the

above permutation can be written in one-line form as

π = 3 ¯̄5 ¯̄1 9 6̄ 2 7̄ 4̄ 11 8̄ 10,

or in cyclic notation as

π = (1, 3) (2, 5, 6) (4, 9, 11, 10, 8) (7).
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Note that when using cyclic notation to determine the image

of a number, one ignores the sign on that number and then

considers only the sign on the next number in the cycle. Thus,

in this example, we ignore the sign ζ2 on the 5 and note that then

5 maps to ζ6 since the sign on 6 is ζ. Furthermore, throughout

this paper we shall use the following total order on G`,n: for

i, j ∈ [`] and a, b ∈ [n],

ζia < ζjb ⇐⇒ [i > j] or [i = j and a < b].

Example For n = 4 and ` = 3 we have:

¯̄̄1 < ¯̄̄2 < ¯̄̄3 < ¯̄̄4 < ¯̄1 < ¯̄2 < ¯̄3 < ¯̄4 < 1̄ < 2̄ < 3̄ < 4̄ < 0 < 1 < 2 < 3 < 4.
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Defintion 4 (k-circular succession). Given a permutation π ∈
G`,n and a nonnegative integer k, the value π(i) is a k-circular

succession at position i ∈ [n] if π(i) ∈ [n] and π(i) = i + k. In

particular a 0-circular succession is also called fixed point.

Denote by Ck(π) the set of k-circular successions of π and let

ck(π) = # Ck(π). In particular FIX(π) denotes the set of fixed

points of π. For example, for the permutation

π =

(
1 2 3 4 5 6 7 8 9

1̄ 5 ¯̄9 6̄ 8 7̄ ¯̄̄3 ¯̄4 2̄

)
∈ G4,9

the values 5 and 8 are the two 3-circular successions at positions

2 and 5. Thus C3(π) = {5,8}.
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Theorem 5. For any integer k such that 0 ≤ k ≤ m, the entry

gm
`,n equals the number of permutations in G`,n whose k-circular

successions are included in [m]. In particular, by taking k = 0

and k = m, respectively, either of the following holds.

(i) The entry gm
`,n is the number of permutations in G`,n whose

fixed points are included in [m].

(ii) The entry gm
`,n is the number of permutations in G`,n without

m-circular succession.

19



For example, the permutations in G2,2 whose fixed points are

included in [1] are:

21, 12̄, 2̄1, 21̄, 1̄2̄, 2̄1̄;

while those without 1-circular succession are:

12, 1̄2, 12̄, 1̄2̄, 2̄1, 2̄1̄.

Note that Dumont and Randrianarivony proved the ` = 1 case

of (i), while Rakotondrajao proved the ` = 1 case of (ii).
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For σ ∈ G`,n, let Der(σ) be the derangement part of σ, i.e., if

y1y2 · · · ym is obtained by deleting each fixed point of sigma where

yi = εi|yi| then Der(σ) = z1z2 · · · zm where zi = εired(|yi|), red

(reduction) is the increasing bijection from {|y1|, |y2|, · · · , |ym|}
to [m].

Exemple If σ = 1 8̄ 346¯̄2 7 5̄ 9 ∈ G4,9 then FIXσ = {1,3,4,7,9}
and Der(σ) = 4̄ 3 ¯̄1 2̄.
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Defintion 6. If σ ∈ G`,n then the statistic ω is defined by

ω(σ) =
k−1∑
j=0

j · sgnj(σ),

where SIGNj(σ) = {i ∈ [n] : σi
|σi|

= ζj} and sgnj(σ) = |SIGNj(σ)|.

Example: σ = 2̄ ¯̄6 17̄ ¯̄5 ¯̄̄4 3 we have

SIGN0(σ) = {3,7}, SIGN1(σ) = {1,4},
SIGN2(σ) = {2,5}, SIGN3(σ) = {6};

then ω(σ) = 0× 2 + 1× 2 + 2× 2 + 3× 1 = 9.
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Defintion 7. If σ ∈ G`,n then

• the flag-maj statistic fmaj is defined by

fmajσ = ` ·majσ + ω(σ).

• Let FIX(σ) = {i1, i2, . . . , ik}, the flag-maf statistic fmaf is

defined by

fmaf(σ) = ` ·
k∑

j=1

(ij − j) + fmajDer(σ).
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Theorem (Adin-Roichman, Haglund-Loehr-Remmel ) The statis-

tic fmaj is mahonian on Gl,n, i.e.,

∑
σ∈G`,n

qfmaj(σ) =
n∏

i=1

[`i]q. (8)

Remark

• fmaf equal to fmaj in D`,,n the set of derangements of Cl oSn.

• For any m such that 0 < m < n fmaf and fmaj are not

equidistributed on the set {σ ∈ Gl,n : FIX(σ) ⊂ {n − m +

1, . . . , n}}
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Theorem 8. There is a bijection Ψ̃ : G`,n → G`,n such that

(fix, fmaj,Der)σ = (fix, fmaf,Der)Ψ̃(σ) (9)

Our bijection Ψ̃ is a generalization of the bijection Ψ given by

Clarke-Han-Z on the symmetric group.

Therefore, the statistics fmaf and fmaj are equidistributed on

G`,n, i.e.,

∑
σ∈G`,n

qfmaf(σ) =
∑

σ∈G`,n

qfmaj(σ) =
n∏

i=1

[`i]q.

The statistique fmaf is a new mahonian statistic on G`,n.
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Let Gm
`,n be the set of permutations σ in G`,n such that FIX(σ) ⊂

{n−m + 1, . . . , n− 1, n}.
Theorem 9. For k ≥ 0 we have

gm
`,n(q) =

∑
σ∈Gm

`,n

qfmaf(σ). (10)

For ` = 1 and m = 0 we recover the result of Wachs.

For ` = 2 and m = 0 we recover the result of Chow.

Foata and Han have recently constructed “another” bijection F

which has the same property as that of Ψ on the symetric group.

Theorem 10. The two bijections Ψ and F are identical.
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