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ISOMETRY CLASSES OF GENERALIZED ASSOCIAHEDRA

NANTEL BERGERON, CHRISTOPHE HOHLWEG, CARSTEN LANGE,
AND HUGH THOMAS∗

Abstract. Let W be a finite Coxeter group. Generalized associahedra are
convex polytopes constructed from a permutahedron of W and an orientation of
the Coxeter graph of W . They play a fundamental role in the theory of finite type
cluster algebras initiated by Fomin and Zelevinsky, and also appear in algebraic
topology. In this article, we show that the isometries of these polytopes are
given by certain automorphisms of oriented Coxeter graphs.

To the memory Pierre Leroux

1. Introduction

Studying homotopy theory of loop spaces, Jim Stasheff [10, 11] constructed a
cell complex whose vertices correspond to the possible compositions of n binary
operations. Furthermore this cell complex can be realized as a simple polytope, the
associahedron (also called Stasheff polytope). There is a natural relation between
the permutahedron (weak lattice on permutations) and the associahedron: the
permutahedron can naturally be written as an intersection of halfspaces indexed by
weights for the An root system. If one intersects a certain, carefully chosen subset
of these halfspaces, one can obtain the associahedron (see Example 2.2 below).
Shnider-Sternberg [9] and Loday [5] give us a beautiful explicit construction of the
associahedron from the permutahedron along these lines.

Generalized associahedra were introduced by S. Fomin and A. Zelevinsky in their
work on cluster algebras [2]. The geometry of these objects encodes nice algebraic
structures. Therefore one important question is to find good polytopal realizations
of the generalized associahedra. This was first answered in [1] by Chapoton, Fomin
and Zelevinsky. Then, N. Reading [8] constructed a family of fans, the Cambrian
fans {Fc} indexed by Coxeter elements c of a given finite Coxeter group W . More
recently, we have constructed [3] a family of generalized associahedra Assoc(W ),
one for each Cambrian fan Fc. These generalized associahedra are realized from
the corresponding permutahedron by removing some halfspaces according to a rule
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specified by c, linking questions about generalized associahedra to questions about
the better known permutahedron.

It is now natural to ask how many distinct (up to isometry) generalized associ-
ahedra we get. This is what we answer here. Our main theorem (Theorem 2.3)
describes completely the isometry classes of generalized associahedra as realized
in [3]. The isometry classes depend of the choice of the starting permutahedron.
As a byproduct we obtain a classification of the isometry classes of Cambrian fans
(Corollary 2.6): the Cambrian fans indexed by Coxeter elements c and c′ are iso-
metric if and only if µ(c′) = c or µ(c′) = c−1 for some µ an automorphism of
the Coxeter graph of W . In Section 2 we introduce the necessary definitions and
state our main theorem (Theorem 2.3). The proof is found in Section 4. Section 3
is dedicated to some auxiliary results needed for this proof. For most of the pa-
per, we make the simplifying assumption that the Coxeter system in question is
irreducible; in Section 5, we explain how to deal with the reducible case.

2. background and main theorem

We assume some basic familiarity with Coxeter groups and root systems and
follow the notation of [4]. Let (W, S) be a finite Coxeter system acting by reflections
on an R-Euclidean space (V, 〈·, ·〉) with length function ℓ : W → N. Without loss
of generality, we assume that the action of W is essential relative to V , that is,
has no nontrivial space fixed pointwise.

Let Φ be a root system corresponding to (W, S), with all roots having equal
length. (In particular, we do not assume Φ is crystallographic.) The simple roots
∆ form a basis of V , and the reflection s maps αs to −αs and fixes the hyperplane
Hs = {v ∈ V | 〈v, αs〉 = 0}. Let ∆∗ = {vs | s ∈ S} be the set of fundamental
weights of ∆, that is, 〈vt, αs〉 = 1 if s = t and 〈vt, αs〉 = 0 otherwise. As V is finite
dimensional we identify V and V ∗.

2.1. The permutahedron. We now aim for a definition of the W -permutahedron
and pick a point u ∈ V contained in the complement of the reflection hyperplanes
of W . Without loss of generality, we choose

u :=
∑

s∈S

κsvs, κs > 0.

For w ∈ W we write

M(e) := u and M(w) := w (M(e))

and obtain the permutahedron Permu(W ) as convex hull of {M(w) |w ∈ W}. The
index u will often be omitted for brevity. Equivalently, we have

Perm(W ) =
⋂

s∈S

⋂

x∈W

H(x,s)

where
H(x,s) := {v ∈ V | 〈v, x(vs)〉 ≤ 〈M(e), vs〉}.
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Figure 1. The permutahedron Perm(S3) obtained as convex
hull of the S3-orbit of M(e) ∈ L or as intersection of the half
spaces H(x,s).

We also make use of the hyperplane H(x,s) = {v ∈ V | 〈v, x(vs)〉 = 〈M(e), vs〉}.
Denote by WI the standard parabolic subgroup of W generated by I ⊆ S. Note

that H(w,s) = H(x,s) if and only if w ∈ xWS\{s}. Also, M(w) ∈ H(x,s) if and only if
H(x,s) = H(w,s). Hence we have a simple way to describe the vertices:

{M(w)} =
⋂

s∈S

H(w,s).

Example 2.1 (Realization of Perm(A2)). We consider the Coxeter group W = S3

of type A2 acting on R
2. The reflections s1 and s2 generate W . The simple roots

that correspond to s1 and s2 are α1 and α2. They are normal to the reflection
hyperplanes Hs1 and Hs2. The dual vectors to the simple roots correspond to the
vectors v1 and v2. Fix a ray L = {µ(κ1v1 + κ2v2) | µ > 0} where κ1, κ2 > 0. We
choose M(e) ∈ L and obtain the permutahedron as convex hull of the W -orbit
of M(e). Alternatively, the permutahedron can be described as intersection of the
half spaces H(x,s) with bounding hyperplanes H(x,s) for x ∈ W and s ∈ S. All the
objects are indicated in Figure 1.

2.2. Generalized associahedra. For c a Coxeter element in W , that is to say,
the product of the simple reflections of W taken in some order, and I ⊆ S, we
denote by c(I) the subword of c obtained by taking only the simple reflections in I.
So c(I) is a Coxeter element of WI . Reading defined the c-sorting word of w ∈ W
in [6, Section 2] as the unique subword of the infinite word c∞ = cccccc . . . that
is a reduced expression for w and is the lexicographically smallest sequence of
positions occupied by this subword. In particular, the c-sorting word of w is such
that w = c(K1)c(K2) . . . c(Kp) with non-empty Ki ⊆ S and ℓ(w) =

∑p

i=1 |Ki|. As
example we consider the Coxeter group W = S4 of type A3 generated by the simple
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reflections S = {s1, s2, s3}, where s1, s3 commute, and the Coxeter element c =
s2s1s3. The c-sorting word of the longest element w0 ∈ W is s2s1s3s2s1s3 = c(S)c(S).
If we choose the Coxeter element c = s1s2s3 instead of s2s1s3, then the c-sorting
word of w0 is s1s2s3s1s2s1 = c(S)c({s1,s2})c({s1}).

The sequence c(K1), . . . , c(Kp) associated to the c-sorting word for w is called the

c-factorization of w. The c-factorization of w is independent of the chosen reduced
word for c but depends on the Coxeter element c. In general the c-factorization
does not yield a nested sequence K1, . . . , Kp of subsets of S. An element w ∈ W
is called c-sortable if K1 ⊇ K2 ⊇ . . . ⊇ Kp. Reading proves in [6] that the longest
element w0 ∈ W is c-sortable for any chosen Coxeter element c.

Given a specific reduced word v, we say that u is a prefix up to commutation
of v if some reduced word for u appears as a prefix of a word which can be
obtained from v by the commutation of commuting reflections. In [3] we define
an element w ∈ W to be a c-singleton if it is a prefix up to commutation of the
c-factorization of w0. We illustrate this notion by considering again the Coxeter
group W = S4 and the Coxeter element c = s2s3s1. The c-singletons are

e, s2s3, s2s1s3s2s1,
s2, s2s1s3, s2s1s3s2s3, and
s2s1, s2s1s3s2, w0 = s2s3s1s2s3s1.

For example s2s1 is a not a prefix of the c-factorization w0 = s2s3s1s2s3s1, but it
is a prefix up to commutation because it appears as a prefix after commuting the
simple reflections s1, s3.

The halfspace H(x,s) is said to be c-admissible if the hyperplane H(x,s) con-
tains M(w) for some c-singleton w. We have shown in [3] that the intersection of
all c-admissible halfspaces H(x,s) is a generalized associahedron Assoc(W ) whose
normal fan is the c-Cambrian fan Fc (see [8] for a definition of Fc).

Example 2.2. The Coxeter group W = S3 generated by the reflections s1 and s2

has two Coxeter elements: c1 = s1s2 and c2 = s2s1. The c1-singletons are e,
s1, s1s2, and s1s2s1 while the c2-singletons are e, s2, s2s1,and s2s1s2. Starting
with the permutahedron Perm(S3), we obtain the two associahedra Assoc1(S3) and
Assoc2(S3) shown in Figure 2 as intersection of the c1- and c2-admissible halfspaces.

2.3. Main result. For most of the paper, we will assume that (W, S) is irreducible.
The case where (W, S) is reducible requires a straightforward (but not immediate)
extension of the results in the irreducible case; we describe this in the final section.

An automorphism of the Coxeter graph associated to (W, S) is a bijection µ
on S such that the order of µ(s)µ(t) equals the order of st for all s, t ∈ S. In
particular, µ induces an automorphism on W .

Let u =
∑

s∈S κsvs be a point in V . We will say that u is balanced if κs = κt

for all s, t ∈ S. An automorphism µ of the Coxeter graph is a u-automorphism if
κs = κµ(s) for all s ∈ S. In particular, if u is balanced, then any automorphism of
a Coxeter graph is a u-automorphism.
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Figure 2. The two associahedra Assoc1(S3) (left) and
Assoc2(S3) (right) obtained from the permutahedron Perm(S3)
by keeping the c-admissible halfspaces H(x,s).

Theorem 2.3. Let (W, S) be an irreducible finite Coxeter system and c1, c2 be

two Coxeter elements in W . Suppose that u =
∑

s∈S κsvs for some κs > 0. The

following statements are equivalent.

(1) Assoc1(W ) = ϕ (Assoc2(W )) for some linear isometry ϕ on V .

(2) There is a u-automorphism µ of the Coxeter graph of (W, S) such that

µ(c2) = c1 or µ(c2) = w0c
−1
1 w0.

Observe that w0c
−1w0 may or may not equal c (for instance in A3 take c =

s1s3s2). So the second condition in Theorem 2.3 may be redundant and the asso-
ciahedra may actually be identical (not just isometric). Moreover, if the coefficients
κs are chosen generically, that is distinct, then the isometry classes are of cardinal-
ity 1 or 2. As stated in the next corollary, the isometry classes reach their maximal
cardinality if u is balanced.

Corollary 2.4. Let (W, S) be an irreducible finite Coxeter system and c1, c2 be

two Coxeter elements in W . If u is balanced, then the following statements are

equivalent.

(1) Assoc1(W ) = ϕ (Assoc2(W )) for some linear isometry ϕ on V .

(2) There is an automorphism µ of the Coxeter graph of (W, S) such that

µ(c2) = c1 or µ(c2) = c−1
1 .

Proof. It follows from Theorem 2.3 and a rewriting of the second assumption in
accordance with the fact that the map s 7→ w0sw0 is an automorphism of the
Coxeter graph. �

If u is balanced, then Assoc1(W ) = ϕ (Assoc2(W )) for some linear isometry ϕ
on V if and only if there is a u-automorphism θ of the Bruhat ordering of (W, S)
such that θ(c2) = c1. This follows by inspection for |S| = 1, 2 and, for |S| ≥ 3,
from a characterization of automorphisms of Bruhat orderings due to van den
Hombergh, see Section 8.8 of [4] and the fact that a Coxeter element c defines an
orientation of the Coxeter graph Γ: orient the edge {si, sj} from si to sj if and
only if si is to the left of sj for any reduced word for c.
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Figure 3. Six Coxeter elements and their associated oriented
Coxeter graphs of the Coxeter group of type D4 that yield iso-
metric associahedra.

Theorem 2.3 combined with the classification of irreducible finite Coxeter groups
yields that the cardinality of an isometry class in the case where u is balanced is
either two, four, or six. We briefly discuss the situation.

Example 2.5. We use the notation and hypothesis of Corollary 2.4.
(1) Let (W, S) be a Coxeter system of type An (n ≥ 2), E6, F4, or I2(m).

Then there is precisely one non-trivial automorphism µ of the Coxeter
graph. Hence there are either two or four elements in the isometry class
of Assoc(W ). The cardinality equals two if µ(c) ∈ {c, c−1} and equals four
if µ(c) 6∈ {c, c−1}.

(2) Let (W, S) be a Coxeter system of type Bn (n ≥ 2), E7, E8, H3, or H4.
Then the conjugation by w0 is the identity, and Id is the only automorphism
of the associated Coxeter graph. So each isometry class has cardinality two,
only the Coxeter elements c and c−1 yield isometric associahedra.

(3) Let (W, S) be a Coxeter system of type D. If |S| > 4 then there is only one
non-trivial automorphism µ of the Coxeter graph and the isometry class
of Assoc(W ) has cardinality two if µ(c) ∈ {c, c−1} and four otherwise. If
|S| = 4, the group of automorphisms of the Coxeter graph is generated
by the non-trivial automorphisms µ and ν with µ2 = Id and ν3 = Id.
The isometry class of Assoc(W ) consists either of two or six elements, see
Figure 3 for six Coxeter elements that yield isometric associahedra.

Theorem 2.3 allows a classification of the isometric Cambrian fans as well. The
proof will be given at the end of Section 4.

Corollary 2.6. The following propositions are equivalent:
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(1) The Cambrian fans Fc and Fc′ are isometric;

(2) Assoc(W ) and Assoc′(W ) are isometric if u is balanced;

(3) there is an automorphism µ of the Coxeter graph of (W, S) such that µ(c′) =
c or µ(c′) = c−1.

Remark 2.7. In fact, the condition that u be balanced in (2) above can be
weakened to require only that u satisfies κs = κw0sw0, for all s ∈ S (see Eq. (1) in
the proof).

3. Preliminary results

From now on, we fix u =
∑

s∈S κsvs for some constants κs > 0. Remember that
M(e) = u.

Let (W, S) be a Coxeter system and consider the polyhedron P defined by:

P :=
⋂

s∈S

H(e,s) ∩
⋂

s∈S

H(w0,s).

Remark 3.1. In fact, P is a full-dimensional convex polytope because W acts
essentially on V and the cones

⋂
s∈S H(e,s) and

⋂
s∈S H(w0,s) are strictly convex,

pointed with apex M(e) and M(w0), and both contain Perm(W ). In other words, P
is obtained from Perm(W ) by removing, from the definition of Perm(W ) as an
intersection of halfspaces, all halfspaces H(x,s) that satisfy M(e) 6∈ H(x,s) and
M(w0) 6∈ H(x,s).

Proposition 3.2. Let ϕ : V → V be a linear isometry that maps P to itself and

has the fixed point M(e). Then ϕ induces a u-automorphism µ of the Coxeter

graph of (W, S) such that ϕ(vs) := vµ(s) for every s ∈ S.

Proof. For ϕ satisfying our hypothesis, we have ϕ(M(e)) = M(e) ∈ H(e,s). Hence
ϕ induces a bijection on the set {H(e,s) | s ∈ S}. Since vs is a normal vector to
H(e,s) for any s ∈ S, we have ϕ(vs) = ksvts for some ks > 0 and ts ∈ S. Hence∑

s∈S ksκsvts = ϕ(M(e)) = M(e) =
∑

s∈S κsvs and then κts = ksκs.
On the other hand, since ϕ is an isometry fixing P and M(e), it induces a

bijection on the set of edges of P which have M(e) as one of their vertices. Each
of these edges is contained in a line ls :=

⋂
r∈S\{s} H(e,r), for s ∈ S. So ϕ induces

a bijection on the set {ls | s ∈ S}. Since vr is a fundamental weight of ∆, and
is a normal vector of H(e,r), the hyperplane H(e,r) is spanned by the simple roots
{αu | u ∈ S \ {r}}, and thus ls is spanned by the simple root αs. As the simple
roots are all of the same length and ϕ preserves the norm of vectors, ϕ(αs) = ±αrs

for some rs ∈ S. Now,

1 = 〈vs, αs〉 = 〈ϕ(vs), ϕ(αs)〉 = ±ks〈vts , αrs
〉.

We conclude that rs = ts, ks = 1 and κs = κts for all s ∈ S. Therefore ϕ induces
a bijection on the set {vs | s ∈ S}. In other words ϕ(∆∗) = ∆∗, and, since φ is an
isometry, ϕ(∆) = ∆ and the angle between αs, αr is preserved. That is, ϕ induces
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a u-automorphism of the Coxeter graph of W , since the order of st in W is entirely
determined by the angle between αs and αt, and since κs = κts for all s ∈ S. �

Remark 3.3. In the proof of the previous proposition, we have made use of the
assumption (stated when we introduced the root system Φ) that all roots of Φ
are of equal length. Note that this is not an important restriction, since any root
system can be rescaled to have all its roots of equal length. For example, the
vectors (1, 0) and (−1, 1) are simple roots for the crystallographic root system B2.
Instead of these, we would take (1, 0) and (−1/

√
2, 1/

√
2) as the simple roots. The

reader should be well aware that the assumption that the simple roots are of the
same length does not imply that the fundamental weights are of the same length,
see for instance in A3.

Proposition 3.4. For every u-automorphism µ of the Coxeter graph, there is a

unique linear isometry ϕµ that fixes P and M(e) defined by ϕµ(αs) := αµ(s) for

every s ∈ S.

Proof. The map ϕµ is well-defined since ∆ is a basis of V . As µ is an automorphism
of the Coxeter graph and 〈αµ(s), αµ(t)〉 depends only on the order of st, we have
〈αµ(s), αµ(t)〉 = 〈αs, αt〉 for s, t ∈ S. In other words ϕµ is an isometry since ∆ is a
basis of V .

From duality it is clear that vs =
∑

r∈S 〈vr, vs〉αr, for all s ∈ S. Moreover, the
matrices [〈vr, vs〉]s,t and [〈αr, αs〉]s,t are inverse to each other and the permutation
µ : S → S is such that [〈αµ(r), αµ(s)〉]s,t = [〈αr, αs〉]s,t. Hence [〈vµ(r), vµ(s)〉]s,t =
[〈vr, vs〉]s,t. Thus, for s ∈ S we have

ϕµ(vs) =
∑

r∈S

〈vs, vr〉αµ(r) =
∑

r∈S

〈vµ(s), vµ(r)〉αµ(r) =
∑

r′∈S

〈vµ(s), vr′〉αr′ = vµ(s).

Now as κs = κµ(s) for all s ∈ S, ϕµ fixes M(e), and therefore P . �

Similarly, for every isometry ϕ that fixes P and M(e) there is a u-automorphism
µ such that ϕ(vs) := vµ(s) for every s ∈ S, by Proposition 3.2.

Corollary 3.5. Let µ be an automorphism of the Coxeter graph of (W, S) and ϕ
be a linear isometry that maps P to itself and has M(e) as fixed point. Suppose

that µ and ϕ are related via ϕ(vs) = vµ(s) for all s ∈ S. Then ϕ = ϕµ and µ is a

u-automorphism. Moreover,

ϕ (w(vs)) = (µ(w)) (vµ(s)) and ϕ(H(w,s)) = H(µ(w),µ(s))

for w ∈ W , s ∈ S. In particular, ϕ(Perm(W )) = Perm(W ).

Proof. As ∆∗ is a basis of V , ϕ = ϕµ. Moreover, since ϕ fixes M(e) we have
∑

µ(s)∈S

κµ(s)vµ(s) =
∑

s∈S

κsvs = M(e) = ϕµ(M(e)) =
∑

s∈S

κsvµ(s).

By identification, we have κs = κµ(s) for all s ∈ S, which proves that µ is a
u-automorphism.



ISOMETRY CLASSES OF GENERALIZED ASSOCIAHEDRA 9

We prove the first remaining claim by induction on the length of w. If w = e the
claim is ϕ(vs) = vµ(s) and was shown in the proof of Proposition 3.2. Now assume
ℓ(w) > 0. There is t ∈ S such that w = w′t with ℓ(w′) < ℓ(w). The action of t
on V is a reflection in reflection hyperplane Ht. Hence we have

t(vs) = vs −
2〈vs, αt〉
〈αt, αt〉

αt.

Also, since ϕ is an isometry that maps αr to αµ(r) and vr to vµ(r), we have

ϕµ(w(vs)) = ϕµ (w′ (t(vs)))

= µ(w′)

(
vµ(s) −

2〈vµ(s), αµ(t)〉
〈αµ(t), αµ(t)〉

αµ(t)

)

= µ(w′)µ(t)
(
vµ(s)

)
= (µ(w′t))

(
vµ(s)

)

= µ(w)
(
vµ(s)

)
.

We now prove the second claim.

ϕµ(H(w,s)) = {ϕµ(v) ∈ V | 〈v, w(vs)〉 ≤ 〈M(e), vs〉}
= {v ∈ V | 〈v, ϕµ(w(vs))〉 ≤ 〈ϕµ(M(e)), ϕµ(vs)〉}
= {v ∈ V | 〈v, µ(w)(vµ(s)))〉 ≤ 〈M(e), vµ(s)〉}
= H(µ(w),µ(s)).

�
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Figure 4. There are four Coxeter elements in S4, each yields
a distributive lattice Gc of c-singletons.

The c-singletons form a distributive sublattice of the right weak order, see [3].
We denote the Hasse diagram of this poset by Gc, see Figure 4 for examples. They
also form a sublattice of the c-Cambrian lattice.
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There is an important linear isometry on V that fixes P and interchanges M(e)
and M(w0): the map g defined by v 7−→ w0(v).

Reading proves in [7, Proposition 1.3] that the map w 7−→ ww0 is an anti-
isomorphism from the c-Cambrian lattice to the c−1-Cambrian lattice. In particu-
lar, the map w 7−→ ww0 is an anti-isomorphism between the lattices of c-singletons
and c−1-singletons by restriction, that is, w is a c-singleton if and only if ww0 is a
c−1-singleton. Since the map w 7→ w0ww0 is an isomorphism from the c-Cambrian
lattice to the w0cw0-Cambrian lattice, the map w 7→ w0w = (w0ww0)w0 is an anti-
isomorphism from the c-Cambrian lattice to the w0c

−1w0-Cambrian lattice. In
other words, H(x,s) is c-admissible for all s ∈ S if and only if H(w0x,s) is w0c

−1w0-
admissible for all s ∈ S. Therefore we obtain the following proposition.

Proposition 3.6. Let c be a Coxeter element of the finite Coxeter system (W, S).
Then

Assoc(W ) = g (Assow0c−1w0
(W )) ,

that is, the generalized associahedra Assoc(W ) and Assow0c−1w0
(W ) are isometric.

Let T be the reflections of W and I(w) be the inversions of w ∈ W defined as

T :=
⋃

w∈W

wSw−1 and I(w) := {t ∈ T | ℓ(tw) < ℓ(w)}.

A parabolic subgroup is a subgroup that is the conjugate of a standard parabolic
subgroup of W . Given the Coxeter system (W, S) and a parabolic subgroup W ′,
there is a natural way to distinguish a set of simple generators of W ′, see [6]. We
shall only make use of the case that W ′ is standard parabolic, in which case, the
simple generators of W ′ are simply W ′ ∩ S.

Theorem 3.7. For w ∈ W and any Coxeter element c of W , the following state-

ments are equivalent:

(i) w and ww0 are both c-singletons;

(ii) w ∈ {e, w0};
(iii) wcw−1 is a Coxeter element of W and wGc = Gwcw−1;

(iv) wGc = Gc′ for some Coxeter element c′.

Proof. (i) ⇒ (ii): Suppose w and ww0 are c-singletons. A c-singleton u is c-
sortable and c-antisortable by Proposition 2.2 of [3], that is, the element u is
c-sortable and uw0 is c−1-sortable. Hence w is c-sortable and c−1-sortable. From
[6, Theorem 4.1] we know that g ∈ W is c-sortable and c−1-sortable if and only
if I(g) ∩ (W ′ \ {t1}) 6= ∅ implies t2 ∈ I(g) for any irreducible dihedral parabolic
subgroup W ′ of W (that is |W ′| > 4) with simple generators t1, t2 ∈ T .

Assume that w 6= e. There exists s ∈ I(w)∩S. Pick t ∈ S such that the standard
parabolic subgroup W ′ generated by {s, t} is dihedral and of cardinality > 4. We
first show that s, t ∈ I(w). We have to distinguish two cases:
(1) If I(w)∩(W ′\{s}) 6= ∅ then t ∈ I(w) because w is c-sortable and c−1-sortable.

Hence s, t ∈ I(w).
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(2) Assume I(w) ∩ (W ′ \ {s}) = ∅. We first observe that I(ww0) = I(w0) \ I(w).
Hence I(ww0) ∩ (W ′ \ {t}) 6= ∅ which implies s ∈ I(ww0) since ww0 is also c-
sortable and c−1-sortable. In particular, s ∈ I(w)∩I(ww0) which is impossible.

Since (W, S) is irreducible, the Coxeter graph associated to (W, S) is connected.
Now repeat this process along paths starting at s to conclude that S ⊆ I(w).
Hence w = w0.

(ii) ⇒ (iii): For w = e the result is clear. Recall that the conjugation by w0 is
an automorphism ϕ of the Coxeter system (W, S). So the w0cw0-factorization of
w0 is induced by ϕ from the c-factorization of w0. The claim for w = w0 follows.

(iii) ⇒ (iv): Set c′ := wcw−1.
(iv) ⇒ (i): Since e and w0 are c′-singletons, we conclude that w−1 and w−1w0

are both c-singletons. Apply (i) ⇒ (ii) to deduce that w−1 = e or w−1 = w0. In
particular, w and ww0 are both c-singletons. �

Remark 3.8. Two maximal cones C and C ′ in the c-Cambrian fan Fc are antipo-
dal if C = −C ′. Theorem 3.7 implies that a pair of antipodal maximal cones that
correspond to c-singletons is unique and the corresponding elements are e and w0.

4. Proof of Theorem 2.3

Assume there is an isometry ϕ on V such that Assoc1(W ) = ϕ(Assoc2(W )).
Let w be a c2-singleton. Then

(1) M(w) =
⋂

s∈S H(w,s) is a vertex of Assoc2(W ),
(2) ϕ (M(w)) =

⋂
s∈S ϕ(H(w,s)) is a vertex of Assoc1(W ),

(3) ϕ (M(w)) = M(w′) for some c1-singleton w′ since ϕ is an isometry.
(For (3), note that c-singleton cones are the only cones in the Cambrian fan which
consist of a single chamber from the Coxeter fan, and thus an isometry must take
singleton cones to singleton cones.)

Apply these results to w = e to obtain a c1-singleton w′
e with M(w′

e) = ϕ (M(e)).
Moreover, w′

ew0 is also a c1-singleton with M(w′
ew0) = ϕ (M(w0)). Hence w′

e ∈
{e, w0} by Theorem 3.7 and ϕ is a linear isometry of V that fixes P and either
fixes M(e) and M(w0) or interchanges M(e) and M(w0). If ϕ fixes M(e) and P
then there is an induced u-automorphism µ of the Coxeter graph of (W, S) by
Proposition 3.2 and µ(c2) = c1. If ϕ interchanges M(e) and M(w0), then we
consider ϕ̃ := g ◦ ϕ. We have ϕ̃(Assoc2(W )) = Assow0c−1

1 w0
(W ) by Proposition 3.6

and ϕ̃ is an isometry that fixes P , M(e), and M(w0). Hence ϕ̃ induces a u-
automorphism µ of the Coxeter system (W, S) by Proposition 3.2 and we get
µ(c2) = w0c

−1
1 w0.

Assume there is a u-automorphism µ of the Coxeter graph (W, S). Without loss
of generality, we may assume that µ(c2) = c1 because Assoc(W ) and Assow0c−1w0

(W )
are isometric via g by Proposition 3.6.
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We have to specify an isometry ϕµ on V such that ϕµ(Assoc2(W )) = Assoc1(W ).
This is done according to Proposition 3.4: Define ϕµ : V → V by ϕµ(αs) := αµ(s)

for all s ∈ S or equivalently by ϕµ(vs) := vµ(s).
It remains to show that ϕµ maps c2-admissible halfspaces to c1-admissible half-

spaces. From Corollary 3.5 we know how the facet defining halfspaces H(w,s)

are permuted by the isometry ϕµ, that is, ϕµ(H(w,s)) = H(µ(w),µ(s)) for w ∈ W
and s ∈ S. The automorphism µ on W preserves the length function ℓ, so we
have µ(w0) = w0 and any prefix of the c-factorization of w0 up to commutation
is a prefix of the µ(c)-factorization of w0 up to commutation. In other words, µ
induces a lattice isomorphism between the c2-singletons and the µ(c2)-singletons.
Hence H(x,s) is c2-admissible if and only if H(µ(x),µ(s)) is µ(c2)-admissible. This
shows that ϕµ(Assoc(W )) = Assoµ(c)(W ) and ends the proof of Theorem 2.3. �

Proof of Corollary 2.6. The assertion that (2) is equivalent to (3) is Theorem 2.3.
That (2) implies (1) follows from the definition of normal fans.

Now we show that (1) implies (3). As the c-Cambrian fan Fc and the c′-
Cambrian fan Fc′ are isometric, there is an isometry ϕ such that the image under
ϕ of each cone in Fc is a cone of Fc′. By Remark 3.8, the pair of antipodal single-
ton cones C(e), C(w0) corresponding to e, w0 are the unique singleton antipodal
cones in both Cambrian fans, and either ϕ fixes them or exchanges them. If u is
balanced, then apply Corollary 3.5 with µ to be the conjugation by w0 to obtain

(1) M(w0) =
∑

s∈S

κw0(vs) =
∑

s∈S

κ(−vw0sw0) = −M(e).

As C(e) is R>0-spanned by ∆∗ and C(w0) is R>0-spanned by −∆∗, either ϕ fixes
M(e) and M(w0) or interchanges them. In both cases, ϕ(P ) = P . So either ϕ or
g ◦ ϕ fixes M(e) and P . Conclude by Proposition 3.2 as in the first part of the
proof of Theorem 2.3. �

5. The reducible case

The reducible case does not follow immediately from an application of the ir-
reducible case. Rather, one goes through the same steps as in the proof of the
irreducible case, but with some slight added complication. We sketch the process
below.

Let D denote the set of irreducible components of the Coxeter graph of (W, S).
For any A ⊂ D, let wA be the longest word for the subgroup generated by the
components in A. Let L = {wA | A ⊂ D}. All the elements of L are c-singletons
(for any c).

Up to just before Proposition 3.6, the argument goes through in exactly the
same way. Then, instead of constructing a single isometry g, we construct an
isometry gA for each A ⊂ D, defining gA(v) = wA(v). Write cA for the Cox-
eter element obtained from c by reversing the order of the reflections in c coming
from components in A. The generalization of Proposition 3.6 then asserts that
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Assoc(W ) = gA(AssowAcAwA
(W )) and, in particular, these associahedra are iso-

metric. Theorem 3.7 goes through with condition (ii) replaced by the condition
that w ∈ L.
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