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ON SOME ANALOGUES OF DESCENT NUMBERS AND MAJOR
INDEX FOR THE HYPEROCTAHEDRAL GROUP

RICCARDO BIAGIOLI AND JIANG ZENG

À la mémoire de Pierre Leroux

Abstract. We give a new description of the flag major index, introduced by Adin and
Roichman, by using a major index defined by Reiner. This allows us to establish a
connection between an identity of Reiner and some more recent results due to Chow and
Gessel. Furthermore we generalize the main identity of Chow and Gessel by computing
the four-variate generating series of descents, major index, length, and number of negative
entries over Coxeter groups of type B and D.

1. Introduction

It is well known that enumerating permutations by number of descents “des” and major
index “maj” yields a remarkable q-analogue for Eulerian polynomials, which satisfies the
equation ∑

σ∈Sn t
des(σ)qmaj(σ)∏n

i=0(1− tqi)
=
∑
k≥0

(1 + q + · · ·+ qk)n tk, (1.1)

where Sn denotes the group of permutations of {1, . . . , n}. Although this identity is
usually attributed to Carlitz [8], it is actually a special case of a result of MacMahon [12,
Volume 2, Chapter 4]. It is clear that (1.1) is equivalent to∑

n≥0

∑
σ∈Sn t

des(σ)qmaj(σ)∏n
i=0(1− tqi)

un

n!
=
∑
k≥0

tk exp (1 + q + · · ·+ qk)u. (1.2)

At the end of 1970’s, Gessel [11], and Garsia and Gessel [10] gave substantial extensions
of (1.2). In a different direction, Reiner [14, 15] generalized Garsia and Gessel’s work to
the group of signed permutations of {1, . . . , n}, denoted by Bn. By using Coxeter group
theory, he defined some Bn-analogues of descent number, major index, and inversions
number, denoted by “dR”, “majR”, “`R”, respectively, and obtained the identity∑

n≥0

∑
β∈Bn t

dR(β)qmajR(β)p`R(β)aneg(β)∏n
i=0(1− tqi)

un

[n̂]a,p!
=
∑
k≥0

tkê[u]a,pe[qu]p · · · e[qku]p, (1.3)

where neg(β) denotes the number of negative entries in the window notation of β ∈ Bn.
The precise definitions of the above statistics as well as all undefined notation will be
given in Section 2.
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Motivated by their work on invariant algebras, Adin and Roichman introduced the flag
major index “fmaj” in [1]. This statistic turned out to be the key ingredient of new
Bn-analogues of Carlitz identity (see [2, Problem 1.1] on Foata’s problem). Two such
analogues were given by Adin, Brenti and Roichman [2, Theorem 4.2, Corollary 4.5].
More recently, a third one was proposed by Chow and Gessel [9, Theorem 3.7]. In its
equivalent form, their result reads as follows [9, Theorem 3.8]:∑

n≥0

∑
β∈Bn t

desB(β)qfmaj(β)∏n
i=0(1− tq2i)

un

n!
=
∑
k≥0

tk exp(1 + q + · · ·+ q2k)u. (1.4)

Here “desB” denotes a Bn-analogue of the descent number, computed with respect to a
generating set different from the aforementioned one of Reiner.

Our starting point is the observation that the substitution q ← q2, a ← q−1, p ← 1,
and u← (1 + q−1)u in Reiner’s identity (1.3) yields∑

n≥0

∑
β∈Bn t

dR(β)q2majR(β)−neg(β)∏n
i=0(1− tq2i)

un

n!
=
∑
k≥0

tk exp(1 + q + · · ·+ q2k)u. (1.5)

This implies immediately that the two pairs (desB, fmaj) and (dR, 2 majR− neg) are
equidistributed over Bn. Actually our first result (cf. Proposition 3.1) shows that these
two pairs of statistics are equal over Bn. Therefore Equations (1.4) and (1.5) are the same.
This prompted us to look for refinements of Chow and Gessel’s identity by computing
the generating function of the four statistics (desB,maj, `B, neg) over Bn. It turns out
(cf. Theorem 5.1) that this distribution is different from that of Reiner’s four statistics in
(1.3). In contrast to the method of Chow and Gessel [9], that uses q-difference calculus
and recurrence relations, we adopt a more combinatorial approach inspired by that of
Garsia and Gessel [10], and of Reiner [14]. The basic idea is to encode signed sequences
by pairs made of a signed permutation and a partition.

Finally we consider the group of even-signed permutations of {1, . . . , n}, denoted Dn.
For the Eulerian polynomials of type D, Brenti [7, Theorem 4.10] proved the identity∑

γ∈Dn t
desD(γ)

(1− t)n+1
=
∑
k≥0

{(2k + 1)n − n2n−1[Bn(k + 1)− Bn]}tk, (1.6)

where Bn(x) denotes the nth Bernoulli polynomial, and Bn the nth Bernoulli number.
Motivated by this identity and our results in type B, we compute the generating function
of some Dn-analogues of descents, major index, length, and number of negative entries
(cf. Theorem 6.3), by using the same encoding technique for the hyperoctahedral group.

2. Preliminaries and notation

In this section we give some definitions, notation and results that will be used in the
rest of this work. Let P be a statement: the characteristic function χ of P is defined as
χ(P ) = 1 if P is true, and χ(P ) = 0 otherwise. For n ∈ N we let [n] := {1, 2, . . . , n}
(where [0] := ∅). Given n,m ∈ Z, n ≤ m, we let [n,m] := {n, n + 1, . . . ,m}. The
cardinality of a set A will be denoted either by |A| or by #A. For n ∈ N, we let
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(a; p)n :=

{
1, if n = 0;

(1− a)(1− ap) · · · (1− apn−1), if n ≥ 1.

For our study we need notation for p-analogues of integers and factorials. These are
defined by the expressions

[n]p : = 1 + p+ p2 + · · ·+ pn−1,

[n]p! : = [n]p[n− 1]p · · · [2]p[1]p,

[n̂]a,p! : = (−ap; p)n[n]p!,

where [0]p! = 1. For n = n0 +n1 + · · ·+nk with n0, . . . , nk ≥ 0 we define the p-multinomial
coefficient by [

n
n0, n1, . . . , nk

]
p

:=
[n]p!

[n0]p! [n1]p! · · · [nk]p!
.

Finally,

e[u]p :=
∑
n≥0

un

[n]p!
, and ê[u]a,p :=

∑
n≥0

un

[n̂]a,p!

are the two classical p-analogues of the exponential function.

Recall that the group of signed permutations on [n], or the hyperoctahedral group of
rank n, is denoted by Bn. This is the group of all bijections β of the set [−n, n]\{0} onto
itself such that

β(−i) = −β(i)

for all i ∈ [−n, n]\{0}, with composition as the group operation. If β ∈ Bn then we write
β = [β(1), . . . , β(n)] and we call this the window notation of β. We denote by |β(i)| the
absolute value of β(i), and by sgn(β(i)) its sign. For β ∈ Bn we let

inv(β) := |{(i, j) ∈ [n]× [n] | i < j, β(i) > β(j)}|, and

neg(β) := |{i ∈ [n] | β(i) < 0}|.
As set of generators for Bn we take SB := {sB1 , . . . , sBn−1, s

B
0 } where for i ∈ [n− 1]

sBi := [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] and sB0 := [−1, 2, . . . , n].

It is well-known that (Bn, SB) is a Coxeter system of type B (see e.g., [6, §8.1]). The
following characterization of the length function `B(β) := min{r | β = sBi1 · · · s

B
ir , s

B
ii
∈ SB}

of Bn with respect to SB is well-known [6, Proposition 8.1.1]:

`B(β) = inv(β)−
∑
β(i)<0

β(i).

The B-descent set of β ∈ Bn is defined by

DesB(β) := {i ∈ [0, n− 1] | β(i) > β(i+ 1)},
where β(0) := 0, and its cardinality is denoted by desB(β). The inversion number inv and
the B-descent set DesB are computed by using the natural order

−n < · · · < −1 < 0 < 1 < · · · < n (2.1)
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on the set [−n, n]. As usual the major index is defined to be the sum of descents

maj(β) =
∑

i∈DesB(β)

i,

and the flag-major index [2, Theorem 4.1] by

fmaj(β) := 2 maj(β) + neg(β).

We should point out that in their first paper [1] Adin and Roichman defined the flag-major
index by using a different order. Here we use their second definition which appears in the
subsequent paper with Brenti [2], and that uses the natural order (2.1).

Reiner defined descents and length for Bn in the usual geometric way by using root
systems [14, §2]. Given an element β ∈ Bn, let `R(β) denote this length of β and DesR(β)
the set of descents of β. Reiner also gave a combinatorial description of these statistics in
another paper [17, §2]. Fix the following order on the set [−n, n] \ {0}, denoted by <R:

1 <R · · · <R n <R −n <R · · · <R −1. (2.2)

Write < instead of <R when they coincide. Denote by invR(β) the cardinality of the set
of inversions of β ∈ Bn computed with respect to the order (2.2), i.e.,

InvR(β) := {(i, j) ∈ [n]× [n] | i < j, β(j) <R β(i)}.
Then the following result holds [17, §2].

Proposition 2.1. For any β ∈ Bn we have

`R(β) = invR(β) +
∑
β(i)<0

(n+ 1 + β(i)), (2.3)

DesR(β) = {i ∈ [1, n] | β(i+ 1) <R β(i)}, (2.4)

where β(n+ 1) := n.

The cardinality of DesR(β) is denoted by dR(β). Note that Reiner used the notation d
and inv instead of dR and `R. To avoid confusion we denote the major index associated
to Reiner’s descent set by majR, i.e.,

majR(β) =
∑

i∈DesR(β)

i.

Remark 2.2. The main difference between the two descent sets is that 0 can be in DesB
but not in DesR, while n can be in DesR but not in DesB. More precisely, 0 ∈ DesB(β) if
and only if β(1) < 0, while n ∈ DesR(β) if and only if β(n) < 0. Clearly, this difference
reflects on the corresponding major indices. Besides, the two length statistics `B and `R
are different since they are computed with respect to different sets of generators. However
they are equidistributed over Bn, as will be explained in Remark 5.3.

Example 2.3. If β = [−3, 1, 5, 2,−4,−6] ∈ B5 then

DesB(β) = {0, 3, 4, 5}, and DesR(β) = {1, 3, 5, 6}.
Hence maj(β) = 12, while majR(β) = 15. For the length functions we have that `B(β) =
10 + 13 = 23, while `R(β) = 7 + 8 = 15.
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We denote by Dn the subgroup of Bn consisting of all the signed permutations having
an even number of negative entries in their window notation, more precisely

Dn := {γ ∈ Bn | neg(γ) ≡ 0 (mod 2)}.

It is usually called the even-signed permutation group. As a set of generators for Dn we
take SD := {sD0 , sD1 , . . . , sDn−1} where for i ∈ [n− 1]

sDi := sBi and sD0 := [−2,−1, 3, . . . , n].

The following is a well-known combinatorial way to compute the length, and the descent
set of γ ∈ Dn (see, e.g., [6, §8.2]):

`D(γ) = `B(γ)− neg(γ), and

DesD(γ) = {i ∈ [0, n− 1] | γ(i) > γ(i+ 1)},

where γ(0) := −γ(2). The cardinality of DesD(γ) will be denoted by desD(γ).

3. Connection between Reiner’s and Chow and Gessel’s identities

In the introduction, from Reiner’s and Chow and Gessel’s identities (1.5) and (1.4), we
observed the equidistribution of the two pairs of statistics (desB, fmaj) and
(dR, 2 maj− neg) over Bn. In this section we show that these two pairs are in fact identical.
Therefore, the two identities are the same.

Proposition 3.1. For any β ∈ Bn we have

dR(β) = desB(β), (3.1)

majR(β) = maj(β) + neg(β). (3.2)

Proof. We first prove that dR(β) = desB(β) for every β ∈ Bn. Clearly it suffices to restrict
our attention to the case of one descent.

a) If i ∈ DesR(β) is such that β(i) > β(i+ 1) > 0 or 0 > β(i) > β(i+ 1), then clearly
i 6= n and i ∈ DesB(β).

b) If i ∈ DesR(β) is such that β(i) < 0 and β(i + 1) > 0, then there exists a k such
that

0 ≤ k ≤ i− 1, 0 < β(1) < · · · < β(k) and β(k + 1) < · · · < β(i) < 0.

If k ≥ 1 then k ∈ DesB(β); if k = 0 then β(1) < 0 and so 0 ∈ DesB(β).

Now we consider the major indices. It suffices to check the situation of one descent,
since the general case follows easily by induction. In the first following three cases we let
i ∈ DesR(β) be the only descent of β in [1, n− 1].

1) Suppose that β(i) > β(i + 1) > 0. Then 0 < β(1) < · · · < β(i), and there are h
negative entries (0 ≤ h ≤ n− i− 1) such that

0 < β(i+ 1) < · · · < β(n− h) and β(n− h+ 1) < · · · < β(n) < 0.

If h = 0, then majR(β) − neg(β) = i = maj(β). If h > 0, then DesR(β) = {i, n}
while DesB(β) = {i, n− h}. Thus majR(β)− neg(β) = (i+ n)− h = maj(β).
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2) Suppose that 0 > β(i) > β(i+ 1). Then β(i+ 1) < · · · < β(n) < 0, and there are
k positive entries (0 ≤ k ≤ i− 1) such that

0 < β(1) < · · · < β(k) and β(k + 1) < · · · < β(i) < 0.

In this case majR(β)− neg(β) = (i+ n)− (n− k) = k + i = maj(β).

3) Suppose that β(i) < 0 and β(i + 1) > 0. Then there exist 0 ≤ k ≤ i − 1 and
0 ≤ h ≤ n− i− 2 such that

0 < β(1) < · · · < β(k) and β(k + 1) < · · · < β(i) < 0, and

0 < β(i+ 1) < · · · < β(n− h) and β(n− h+ 1) < · · · < β(n) < 0.

If h, k > 0, we obtain majR(β)−neg(β) = (i+n)−(h+i−k) = k+(n−h) = maj(β).
The cases h = 0 and k = 0 are similar.

4) If n ∈ DesR(β) is the only descent then there exists a k (0 ≤ k ≤ n− 1) such that

0 < β(1) < · · · < β(k) and β(k + 1) < · · · < β(n) < 0.

Hence majR(β)− neg(β) = n− (n− k) = k = maj(β). �

Remark 3.2. The first equality dR(β) = desB(β) can also be derived by using their
geometric interpretations.

The next new description of the flag major index easily follows from Proposition 3.1.

Corollary 3.3. For every β ∈ Bn we have

fmaj(β) = 2 majR(β)− neg(β).

4. Encoding signed sequences

In this section we introduce a procedure encoding signed sequences by signed permu-
tations and partitions, which will be used in the following sections. The basic idea can
be found in Garsia and Gessel [10] and Reiner [14].

Let Pn be the set of non decreasing sequences of nonnegative integers (λ1, λ2, . . . , λn),
i.e., partitions of length less than or equal to n.

Definition 4.1. Given a sequence f = (f1, . . . , fn) ∈ Zn we define a pair (β, λ) ∈ Bn×Pn,
where:

a) β is the unique signed permutation satisfying the following three conditions:
1) |f|β(1)|| ≤ |f|β(2)|| ≤ · · · ≤ |f|β(n)||,
2) sgn(β(i)) := sgn(f|β(i)|),
3) If |f|β(i)|| = |f|β(i+1)||, then β(i) < β(i+ 1);

b) λ = (λ1, . . . , λn) is the partition with

λi := |f|β(i)|| − |{j ∈ DesB(β) | j ≤ i− 1}| for 1 ≤ i ≤ n.

Let π(f) := β and λ(f) := λ.

Remark 4.2. The above sequence λ is clearly a partition since for all i ∈ [n], λi ≥ 0 and

λi+1 − λi = |f|β(i+1)|| − |f|β(i)|| − χ(i ∈ DesB(π)) ≥ 0 for i ∈ [n− 1].

Moreover, note that if i ∈ DesB(β) then |f|β(i)|| < |f|β(i+1)||, and 0 ∈ DesB(β) if and only
if f|β(1)| < 0.
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We introduce the following statistics on the set of signed sequences Zn.

Definition 4.3. For f = (f1, . . . , fn) ∈ Zn we let

max(f) := max{|fi|}, |f | :=
n∑
i=1

|fi|,

`B(f) := `B(π(f)), neg(f) := |{i ∈ [n] | fi < 0}|.

Proposition 4.4. The map ψ : Zn → Bn × Pn defined by (see Definition 4.1)

f 7→ (π(f), λ(f))

is a bijection. Moreover, if we let β := π(f) and λ := λ(f) then

max(f) = max(λ) + desB(β), (4.1)

|f | = |λ|+ n desB(β)−maj(β). (4.2)

Proof. To see that ψ is a bijection we construct its inverse as follows. To each (β, λ) ∈
Bn × Pn associate the partition µ = (µ1, . . . , µn) where

µi := λi + |{j ∈ DesB(β) | j ≤ i− 1}|,
and define the sequence f = (f1, . . . , fn) ∈ Zn by letting

fi := sgn(β−1(i))µ|β−1(i)| for 1 ≤ i ≤ n.

It is easy to see that ψ(f) = (β, λ). Since λ is a partition, Equations (4.1) and (4.2) follow
from

n∑
i=1

|{j ∈ DesB(β)|j ≤ i− 1}| =
∑

j∈DesB(π)

(n− j) = n desB(β)−maj(β). �

Example 4.5. If f = (−4, 4, 1,−3, 6, 3,−4) then (|f|β(1)||, . . . , |f|β(7)||) = (1, 3, 3, 4, 4, 4, 6),
so

π(f) := β = (3,−4, 6,−7,−1, 2, 5) ∈ B7.

Moreover DesB(β) = {1, 3}, so λ = (1, 2, 2, 2, 2, 2, 4). We obtain max(f) = 6 and
desB(β) = 2. Hence the identity (4.2) reads 25 = 15 + 14 − 4. Conversely, given the
pair

([5,−3, 1, 2,−4], (0, 2, 2, 3, 3)) ∈ B5 × P5,

we find µ = (0, 3, 3, 4, 5) and f = (3, 4,−3,−5, 0).

5. Main identity

In this section we compute the generating function of (desB,maj, `B, neg) over Bn. As
special instances, we recover several known identities listed as remarks after the proof.

Theorem 5.1. We have∑
n≥0

un

(t; q)n+1[n̂]a,p!

∑
β∈Bn

tdesB(β)qmaj(β)p`B(β)aneg(β) =
∑
k≥0

tk
k−1∏
j=0

e[qju]p · ê[qku]a,p. (5.1)
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Proof. The proof consists in computing in two different ways the series∑
f∈Zn

tmax(f)qmax(f)·n−|f |p`B(f)aneg(f).

We need the following preliminary result that can be proved as in [14, Lemma 3.1]. For
n = (n0, n1, . . . , nk) ∈ Nk+1 a composition of n, i.e., n = n0 + · · ·+ nk, we let

Zn(n) := {f ∈ Zn | #{i : |fi| = j} = nj}.

Then ∑
f∈Zn(n)

p`B(f)aneg(f) =

[
n

n0, n1, . . . , nk

]
p

(−ap; p)n
(−ap; p)n0

. (5.2)

A version of (5.2) for the more general case of wreath products is given in [5, Lemma 4.2].
We can now start our computation:∑
f∈Zn|max(f)≤k

qk·n−|f |p`B(f)aneg(f) =
∑

n0+···+nk=n

qk
P
i ni−

P
i ini

∑
f∈Zn(n)

p`B(f)aneg(f)

=
∑

n0+···+nk=n

[
n

n0, n1, . . . , nk

]
p

(−ap; p)n
(−ap; p)n0

q
P
i ni(k−i)

= [n̂]a,p! · 〈un〉
(
e[u]pe[qu]p · · · e[qk−1u]pê[q

ku]a,p
)
,

where the notation 〈un〉f(u) stands for the coefficient of un in f(u).
Using the formula

(1− t)
∑
k≥0

a≤kt
k =

∑
k≥0

(a≤k − a≤k−1)t
k =

∑
k≥0

akt
k, (5.3)

where a≤k = a0 + · · ·+ ak, we derive immediately∑
f∈Zn

tmax(f)qmax(f)·n−|f |p`B(f)aneg(f) = (1− tqn)
∑
k≥0

tk
∑

f∈Zn|max(f)≤k

qkn−|f |p`B(f)aneg(f).

Therefore∑
n≥0

un

[n̂]a,p!(1− tqn)

∑
f∈Zn

tmax(f)qmax(f)·n−|f |p`B(f)aneg(f) =
∑
k≥0

tk
k−1∏
j=0

e[qju]p · ê[qku]a,p. (5.4)

On the other hand, from the bijection ψ, and Equations (4.1) and (4.2) in Proposi-
tion 4.4, it follows that∑

f∈Zn|π(f)=β

tmax(f)q|f | =
∑
λ

tmax(λ)+desB(β)q|λ|+ndesB(β)−maj(β)

=
tdesB(β)q

P
i∈DesB(β)(n−i)

(tq; q)n
. (5.5)
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Replacing q by q−1 and t by tqn in (5.5) we get∑
f∈Zn|π(f)=β

tmax(f)qmax(f)·n−|f | =
tdesB(β)qmaj(β)

(t; q)n
. (5.6)

Hence∑
f∈Zn

tmax(f)qmax(f)·n−|f |p`B(f)aneg(f) =
∑
β∈Bn

p`B(β)aneg(β)
∑

f∈Zn|π(f)=β

tmax(f)qmax(f)·n−|f |

=
∑
β∈Bn

tdesB(β)qmaj(β)p`B(β)aneg(β)

(t; q)n
. (5.7)

By comparing (5.4) and (5.7) the result follows. �

Remark 5.2 (Chow and Gessel’s identities). By letting p = 1, and substituting
q ← q2, a ← q, and u ← (1 + q)u in (5.1) we obtain Chow and Gessel’s formula (1.4).
Letting p = 1 and replacing u by (1 +a)u in (5.1), then extracting the coefficient of un/n!
yields another result of Chow and Gessel [9, Equation (26)]∑

β∈Bn t
desB(β)qmaj(β)aneg(β)

(t; q)n+1

=
∑
k≥0

([k + 1]q + a[k]q)
ntk. (5.8)

This result also follows from (1.3) and Proposition 3.1. Indeed, substituting a ← aq−1,
p← 1 and u← (1 + aq−1)u in (1.3) we get∑

n≥0

∑
β∈Bn t

d(β)qmajR(β)−neg(β)aneg(β)

(t; q)n+1

un

n!
=
∑
k≥0

tk exp ([k + 1]q + a[k]q)u. (5.9)

In view of Proposition 3.1, Equation (5.8) follows then by extracting the coefficient of
un/n! in (5.9).

Since the right-hand side of (5.8) is invariant under the substitution q → 1/q, a→ a/q
and t→ tqn we obtain immediately the following result:∑

β∈Bn

tdesB(β)qmaj(β)aneg(β) =
∑
β∈Bn

tdesB(β)qn desB(β)−maj(β)−neg(β)aneg(β).

Remark 5.3 (Reiner and Brenti’s identities). Comparing the right-hand sides of
(1.3) and (5.1) we conclude that the distributions of the two quadruples of statistics are
different. However, if we set q = 1 in (5.1) we obtain∑

n≥0

un

(1− t)n+1

∑
β∈Bn t

desB(β)p`B(β)aneg(β)

[n̂]a,p!
=

1

1− te[u]p
· ê[u]a,p, (5.10)

and comparing with Reiner’s equation (1.3) with q = 1 we see that (dR, `R, neg) and
(desB, `B, neg) are equidistributed over Bn. By letting p = 1 in (5.10) we recover a
formula of Brenti [7, (14)]:∑

n≥0

∑
β∈Bn

tdesB(β)aneg(β)u
n

n!
=

(1− t)eu(1−t)

1− te(1+a)(1−t)u .
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Remark 5.4 (Gessel and Roselle’s identity for Bn). To compute the generating
function of major index and length we proceed as follows. Setting a = 1 in equation (5.1)
yields ∑

n≥0

(1− p)nun

(t; q)n+1(p2; p2)n

∑
β∈Bn

tdesB(β)qmaj(β)p`B(β)

=
∑
k≥0

tke[u]pe[qu]p · · · e[qk−1u]pê[q
ku]1,p. (5.11)

By multiplying both sides of (5.11) by (1− t), and then by sending t→ 1 we obtain∑
n≥0

((1− p)u)n

(q; q)n(p2; p2)n

∑
β∈Bn

qmaj(β)p`B(β) =
∏
i≥0

e[qiu]p.

Replacing u by u/(1− p) and applying q-binomial formula e[u/(1− p)]p =
∏

j≥0
1

1−pju we

get the following Bn-analogue of an identity of Gessel and Roselle (see [11, Theorem 8.5]
and the historical note after Theorem 4.3 in [3]):∑

n≥0

∑
β∈Bn q

maj(β)p`B(β)

(q; q)n(p2; p2)n
un =

∏
i,j≥0

1

1− upiqj
. (5.12)

We refer the reader to [4, Proposition 5.4] for a different generalization of this identity.

6. The Dn-case.

The aim of this section is to obtain a generating series for the four-variate distribution
of descents, major index, length and number of negative entries over the group Dn by
using the encoding of Section 4. This time we are unable to get a nice identity as in the
Bn-case; this is not so surprising as will be explained in Section 7.

Let Zn
e be the subset of sequences in Zn with an even number of negative entries. For

f ∈ Zn
e Definition 4.3 is still valid and we let

`D(f) := `D(π(f)),

where π(f) ∈ Dn is the even signed permutation defined in Definition 4.1.
For n = (n0, n1, . . . , nk) a composition of n, we define

Zn
e (n) = {f ∈ Zn

e | #{i : |fi| = j} = nj}.
We have the following lemma.

Lemma 6.1. Let n = (n0, n1, . . . , nk) be a composition of n. Then∑
f∈Zne (n)

p`D(f)aneg(f) =
1

2

[
n

n0, n1, . . . , nk

]
p

·
{

(a; p)n
(a; p)n0

+
(−a; p)n
(−a; p)n0

}
.

Proof. It is clear that∑
f∈Zne (n)

p`D(f)aneg(f) =
1

2

 ∑
f∈Zn(n)

p`D(f)aneg(f) +
∑

f∈Zn(n)

p`D(f)(−a)neg(f)

 .
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By definition we have that `B(γ) = `D(γ) + neg(γ), so by (5.2) with a← a/p we get∑
f∈Zn(n)

p`D(f)aneg(f) =

[
n

n0, n1, . . . , nk

]
p

· (−a; p)n
(−a; p)n0

.

The result follows by replacing a by −a in the above formula. �

In order to obtain our identity, we want to compute the following generating series in
two different ways: ∑

f∈Zne

tmax(f)qmax(f)·n−|f |p`D(f)aneg(f).

First of all we have∑
f∈Zne |max(f)≤k

qk·n−|f |p`D(f)aneg(f) =
∑

n0+···+nk=n

q
P
i ni(k−i)

∑
f∈Zne

p`D(f)aneg(f)

=
1

2

∑
n0+···+nk=n

[n]p!

[n0]p! · · · [nk]!p
q

P
i ni(k−i)

{
(a; p)n
(a; p)n0

+
(−a; p)n
(−a, p)n0

}
=

1

2
[n]p!〈un〉

(
e[u]pe[uq]p · · · e[uqk−1]p

{
(a; p)nê[uq

k]−a/p,p + (−a; p)nê[uq
k]a/p,p

})
.

Using the formula (5.3) we derive immediately∑
f∈Zne

tmax(f)qmax(f)·n−|f |p`D(f)aneg(f) = (1− tqn)
∑
k≥0

tk
∑

f∈Zne |max(f)≤k

qk·n−|f |p`D(f)aneg(f).

Therefore we obtain∑
f∈Zne t

max(f)qmax(f)·n−|f |p`D(f)aneg(f)

(1− tqn)[n]p!
(6.1)

=
1

2

∑
k≥0

tk〈un〉
{
e[u]pe[uq]p · · · e[uqk−1]p

(
(a; p)nê[uq

k]−a/p,p + (−a; p)nê[uq
k]a/p,p

)}
.

On the other hand, we decompose Dn as the disjoint union of the three sets

D+
n := {γ ∈ Dn | 0 6∈ DesD(γ) and γ(1) < 0},

D−n := {γ ∈ Dn | 0 ∈ DesD(γ) and γ(1) > 0},
D0
n := Dn \ (D+

n ∪D−n ).

We have the following lemma.

Lemma 6.2. For γ ∈ Dn we have∑
f∈Zne |π(f)=γ

tmax(f)qmax(f)·n−|f | =
Dγ
n(t, q)

(t; q)n
,

where

Dγ
n(t, q) :=

 tdesD(γ)+1qmaj(γ), if γ ∈ D+
n ;

tdesD(γ)−1qmaj(γ), if γ ∈ D−n ;
tdesD(γ)qmaj(γ), if γ ∈ D0

n.
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Proof. First of all, for any γ ∈ Dn we have {f ∈ Zn
e | π(f) = γ} = {f ∈ Zn | π(f) = γ}.

Suppose that γ ∈ D+
n , then 0 ∈ DesB(γ) since γ(1) < 0, but 0 6∈ DesD(γ). It follows from

Equation (5.6) that∑
f∈Zn|π(f)=γ

tmax(f)qmax(f)·n−|f | =
tdesB(γ)qmaj(γ)

(t; q)n
=
tdesD(γ)+1qmaj(γ)

(t; q)n
.

The other cases are similar. �

For γ ∈ Dn set

w(γ) := tdesD(γ)qmaj(γ)p`D(γ)aneg(γ).

It follows from Lemma 6.2 that∑
f∈Zne

tmax(f)qmax(f)·n−|f |p`D(f)aneg(f) =
∑
γ∈Dn

p`D(γ)aneg(γ)
∑

f∈Zne |π(f)=γ

tmax(f)qmax(f)·n−|f |

=
1

(t; q)n

∑
γ∈D0

n

w(γ) +
1

t

∑
γ∈D−n

w(γ) + t
∑
γ∈D+

n

w(γ)

 .

By comparing the above equation with Equation (6.1) we obtain the following identity.

Theorem 6.3.∑
γ∈D0

n

w(γ)

(t; q)n
+

1

t

∑
γ∈D−n

w(γ)

(t; q)n
+ t

∑
γ∈D+

n

w(γ)

(t; q)n

=
1

2

∑
k≥0

tk〈un〉
{
e[u]pe[uq]p · · · e[uqk−1]p

(
(a; p)nê[uq

k]−a/p,p + (−a; p)nê[uq
k]a/p,p

)}
. (6.2)

If a = 1, letting t→ 1 in the above identity yields a Dn-analogue of Gessel and Roselle’s
identity (see (5.12)):

1 +
∑
n≥1

un
∑

γ∈Dn q
maj(γ)p`D(γ)

(−p; p)n−1(q; q)n−1

=
∏
i,j≥0

1

1− (1− p)upiqj
. (6.3)

7. Final Remarks

Note that Brenti [7, Proposition 4.3] computed the generating function of (desD, neg),
and Reiner [16, Theorem 7] that of (desD, `D) over Dn. Their formulas are much more in-
volved than the corresponding Bn-cases, even in the one-variable case, see Equation (1.6).
Reiner gave also a method to compute the distribution of (desD, `D, neg) over Dn. How-
ever, it does not seem that his method allows to include the statistic major index in the
computation.

The restriction of the bijection ψ (defined in Proposition 4.4) to Zn
e is not a well defined

map from Zn
e to Dn × Pn. For example, consider f = (0,−3,−4) ∈ Z3

e. Then π(f) =
[1,−2,−3] ∈ D3, and λ(f) = (−1, 1, 1) which is not a partition. Hence the following
question naturally arises.
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Question 7.1. Is there a parametrization of the elements of Zn
e which reduces the left-

hand side of Equation (6.2) to a single sum with a simpler right-hand side ?

Hopefully, the desired equation, for p = a = 1, should provide a nice q-analogue of
Brenti’s identity (1.6). This problem was also raised in [9, §5]. Recently Mendes and
Remmel [13] computed some generating series over Bn and Dn, closely related to ours.
Unfortunately, their computations do not answer the above question.

In [5] we study the distribution of several statistics over the wreath product of a sym-
metric group with a cyclic group. In particular, we give an extension of Theorem 5.1.
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