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Dedié à la mémoire de Pierre Leroux

Abstract. We develop a new setting for the exponential principle in the context
of multisort species, where indecomposable objects are generated intrinsically instead
of being given in advance. Our approach uses the language of functors and natural
transformations (composition operators), and we show that, somewhat surprisingly,
a single axiom for the composition already suffices to guarantee validity of the ex-
ponential formula. We provide various illustrations of our theory, among which are
applications to the enumeration of (semi-)magic squares.

1. Introduction

One of the corner stones of combinatorial enumeration is a theory which runs under
several different names, for instance theory of species [6], theory of exponential structures

[28, Ch. 5], theory of exponential families [29], symbolic method [11, Part A], théorie du

composé partitionnel [12], theory of prefabs [4], all of which are more or less equivalent.
It is probably fair to say that the most elaborate of these theories is the theory of species,
as formulated by Joyal [16] (with the functorial concept of species of structures going
back to Ehresmann [10]) and further developed by many other authors. It provides
the most general framework for such a theory, at the expense of employing a rather
abstract language, namely that of category theory.
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A fundamental theorem in each of these theories is the so-called exponential formula.
Roughly speaking, given a family G of labelled combinatorial objects (“components”),
one produces a larger family F (“composite objects”) whose objects are obtained by
putting together various elements of G. The theorem then states that the (exponen-
tial) generating function for F equals the exponential of the (exponential) generating
function for G.

The aim of the present article is to develop a setting, where one starts with a family
F of labelled combinatorial objects (“composite objects”) and a composition of such
objects, and then identifies, in an intrinsic way, a subfamily G of indecomposable ob-
jects (“components”), such that each element of F can be decomposed into objects
from G, and such that the exponential formula holds for F and G. The main point
here is that, in contrast to the usual set-up for the exponential formula, indecompos-
able objects are not given in advance, but are defined inherently via the composition
operation. In particular, our theory leads to a uniform definition of the property to be
indecomposable for arbitrary labelled combinatorial objects equipped with a composi-
tion operator. Interestingly, we show that a single axiom for the composition operator
suffices to guarantee validity of the exponential formula. The natural language for
formulating a corresponding theory is that of functors and natural transformations.
Consequently, our presentation will be in the context of species theory.

For “ordinary” species (1-sort species), such a theory has been presented in [9] on the
basis of two axioms for the composition operator. In the present article, we extend this
approach to weighted multisort species. Moreover, we show that, actually, one of the
axioms in [9] can be derived from the other, and that also in our multivariate setting
a single axiom suffices. Strictly speaking, our presentation does not cover weighted
species (in the sense of [16, Sec. 6], [6, p. 104]) in full generality; rather, we restrict
ourselves to the case where the defining functor maps to a category of finite sets, thus
avoiding unnecessary technicalities. However, extension to the general case of weighted
multisort species is completely straightforward, and is left to the interested reader (see
also Footnote 4).

An exponential principle in a wider context, that encompasses multisort species as
a particular case, has been defined by Menni in [21] (see [23] for further work in this
direction). Indeed, Menni’s work and ours partially overlap. In order to explain the
relation between the two, recall that — as already pointed out by Joyal [16, Sec. 7.1]
— multisort species have the structure of a symmetric monoidal category. Now, in
the focus of [21] there are simple commutative monoids in a given symmetric monoidal
category. Menni defines an exponential principle in this set-up, and he proves this
principle to hold for a large family of symmetric monoidal categories (see [21, Prop. 1.4]).
He shows that this provides a uniform framework for the exponential principle for
numerous variations of species that had appeared earlier in the literature, including
multisort species (see [21, Ex. 3.2 and Ex. 3.5 with I = 1 + 1 + · · · + 1]).1 However,
as it turns out, in the case of multisort species, Menni’s theory does not cover the
setting of our paper. It does apply whenever the considered multisort species, together
with the product induced by our composition operator, forms a simple commutative
monoid. This does not need to be the case, as Example 3 in Section 7 shows (see

1Strictly speaking, weights are not discussed in [21]. However, it would not be difficult to include
them in the theory developed in [21].
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also Section 9 for more detailed elaboration on these matters). So, one could say
that Menni’s theory exhibits the structural essentials of the exponential principle in
a wide categorical framework, whereas our paper presents a “minimalistic” axiomatic
setting for the exponential principle that is specific for multisort species but, as a bonus,
includes a wider set of examples than Menni’s theory does (in the case of multisort
species). It is conceivable that our setting can be adapted to work for some other kinds
of species, but it is unlikely that it can be lifted to the level of generality of Menni’s
theory.

In the next section, we develop the general set-up for our theory. It is formulated
within the theory of multisort species, for which we define certain composition operators
η that are subject to a single axiom, which, in order to be consistent with [9], we call
(D1). Furthermore, in the same section, we present our main results. These are two ex-
ponential formulae, see Theorems 1 and 4. Theorem 4 refines Theorem 1 by introducing
another variable whose powers keep track of the number of “components.” The proof
of Theorem 4 requires two general facts about our composition operators η, which are
presented in Propositions 2 and 3. (It is the latter, which, in the less general context of
[9], had been assumed as a separate axiom, (D2). As our proof of Proposition 3 shows,
this was actually not necessary since, within the general framework, (D2) follows from
(D1). It is interesting to note that, in the context of [21], Menni also observed that
the axiom (D2) was not necessary; see [21, Ex. 3.5]. Our derivation of (D2) from (D1)
provides the reason why this is the case: we show that (D2) is implied by — as we
call it — “m-permutability” of a species together with a composition operator; see the
proof of Proposition 3, and Lemmas 11 and 15. This “m-permutability” comes for free
in the context of [21] since the underlying species is assumed to form a commutative
monoid in the category of species and, thus, satisfies stronger forms of “permutatility;”
see also the more detailed explanations at the beginning of Section 9, and in particu-
lar the paragraph containing (9.4) and (9.5).) The proofs of Theorems 1 and 4, and
of Propositions 2 and 3, are given in Sections 4 and 6, respectively. They require a
number of auxiliary results, which are established in Sections 3 and 5, respectively.

Sections 7 and 8 offer illustrations for the theory developed in Sections 2–6. Section 7
presents three simple examples highlighting different aspects of combinatorial situations
covered by Theorems 1 and 4. In Section 8, we show how to apply our results to obtain
generating function identities for (semi-)magic squares, thereby generalising previous
results in the literature.

The final section, Section 9, discusses the relationship between Menni’s theory in
[21] and ours. Moreover, there we make Menni’s characterisation (see [21, Sec. 2.6])
of the simple commutative monoids that are covered by his result [21, Prop. 1.4] on
the (general) exponential principle explicit for the special case of multisort species. As
we show, this provides, in the language of our paper, a characterisation of composition
operators that are pointwise associative and commutative (see (9.4) and (9.5)). Menni’s
characterisation implies that a family F of labelled combinatorial objects equipped
with such a composition operator can be re-constructed, in a sense made precise in
Theorem 22, from the standard operation of forming the disjoint union in E(G) (the
species of sets of objects from G), where G denotes again the family of indecomposable
objects in F . We conclude our paper by “twisting” this construction (see Theorem 23),
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thereby obtaining a large family of examples that fit under our theory but not under
Menni’s.

2. Set-up and main results

Denote by Ŝet the category of finite sets and injective mappings, and by Set the
subcategory consisting of finite sets and bijective maps. Moreover, for a positive integer
r, let Dr be the full subcategory of Setr × Setr whose objects are given by

Ob(Dr) =
{

(Ω1,Ω2) ∈ Ob(Setr × Setr) : Ω1 ∩ Ω2 = ∅∅∅
}
,

where ∅∅∅ = (∅, . . . , ∅) is the element of Ob(Setr) all of whose components are empty,
and intersection is componentwise.

The ingredients needed for our theory are r-sort species and certain composition

operators defined on them. Recall from [16] (or see [6, Def. 4 on p. 102] for a definition
avoiding the language of category theory) that, for a positive integer r, an r-sort species
is a covariant functor F : Setr → Set. Given r and an r-sort species F , the composition
operators we have in mind are certain natural transformations η from the functor2

F × F : Dr
(F,F )
−→ Set × Set

×
−→ Set

ι
−→ Ŝet

to the functor

F ◦ ∐ : Dr
∐

−→ Setr F
−→ Set

ι
−→ Ŝet;

that is, families η = (η(Ω1,Ω2))(Ω1,Ω2)∈Ob(Dr) of injective maps,

η(Ω1,Ω2) : F [Ω1] × F [Ω2] →֒ F [Ω1 ∐ Ω2], (2.1)

such that, for every morphism f : (Ω1,Ω2) −→ (Ω̃1, Ω̃2) of Dr, the diagram

F [Ω1] × F [Ω2]
η(Ω1,Ω2)

−−−−−→ F [Ω1 ∐ Ω2]

(F×F )[f]

y
y(F◦∐)[f]

F [Ω̃1] × F [Ω̃2] −−−−−→
η
( eΩ1, eΩ2)

F [Ω̃1 ∐ Ω̃2]

(2.2)

commutes. Here, × is the natural product (Cartesian product) in the category of sets, ∐
is the natural coproduct (componentwise disjoint union) in the category Setr and in the

category Set (relying on the context to clarify the intended meaning), and ι : Set → Ŝet

is the inclusion functor. In what follows, the set-theoretic operations ∩,∪,− as well as
the inclusion relation ⊆ and | (restriction of morphisms) in Setr are all understood to
be componentwise.3 We shall most of the time drop the indices of η-maps when they are
clear from the context, thus writing η(F [Ω1]×F [Ω2]) instead of η(Ω1,Ω2)(F [Ω1]×F [Ω2]),
for example. We shall think of the elements of a set η(F [Ω1] × F [Ω2]) as composite

objects within F [Ω1 ∐ Ω2].
Given an r-sort species F and a composition operator η as above, the next step is

to identify the subset Fη[Ω] of “indecomposable” elements of a set F [Ω]. It is most

2The introduction of the category Dr corrects a slight imprecision in the set-up of [9].
3Throughout this paper, we use the symbol − to denote the difference of sets.
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natural to define Fη : Ob(Setr) → Ob(Set) via

Fη[Ω] :=





F [Ω] −
⋃

(I,J)∈Ob(Dr)

I∐J=Ω

I 6=∅∅∅6=J

η
(
F [I] × F [J ]

)
, Ω 6= ∅∅∅

∅, Ω = ∅∅∅

, Ω ∈ Ob(Setr).

At this point, Fη is just defined as a map from Ob(Setr) to Ob(Set). In Lemma 14 in
Section 3 we shall show that Fη is in fact a functor, that is, an r-sort species.

Not every natural transformation η is suited for giving rise to an exponential prin-
ciple. We present the single axiom which is needed for this purpose next. Given F ,
we call a natural transformation η : F × F → F ◦ ∐ a composition operator of F , if
Axiom (D1) below holds.

(D1) For each Ω ∈ Ob(Setr) and any two partitions (Ω1,Ω2), (Ω̃1, Ω̃2) ∈ Ob(Dr) of

Ω into disjoint parts,

Ω1 ∐ Ω2 = Ω = Ω̃1 ∐ Ω̃2,

we have that

η
(
F [Ω1]×F [Ω2]

)
∩ η
(
F [Ω̃1]×F [Ω̃2]

)
= η
(
η
(
F [Ω11]×F [Ω12]

)
× η
(
F [Ω21]×F [Ω22]

))
,

(2.3)

where Ωij := Ωi ∩ Ω̃j for i, j ∈ {1, 2}.

An r-sort species F will be called decomposable, if F 6= ∅ (that is, F [Ω] 6= ∅ for some
Ω ∈ Ob(Setr), and if F admits some composition operator η.

Next, we define weights on (F,η). Fix a commutative ring Λ which contains the
rational numbers. A family w = (wΩ)Ω∈Ob(Set

r) of maps wΩ : F [Ω] → Λ is termed a
Λ-weight on (F,η), if the following three conditions hold:

(W0) For all x ∈ F [∅∅∅], we have w∅∅∅(x) = 1.

(W1) For each morphism f : Ω1 → Ω2 of Setr, the diagram

F [Ω1]
wΩ1−−−→ Λ

F [f]

y
yidΛ

F [Ω2] −−−→
wΩ2

Λ

commutes.

(W2) For each pair (Ω1,Ω2) ∈ Ob(Dr), the diagram

Fη[Ω1] × F [Ω2]
η(Ω1,Ω2)|Fη [Ω1]×F [Ω2]

−−−−−−−−−−−−−→ F [Ω1 ∐ Ω2]

wΩ1
|Fη [Ω1]×wΩ2

y
ywΩ1∐Ω2

Λ × Λ −−−−−−−−−−−→
multiplication in Λ

Λ

commutes.

Here, (W0) and (W1) make F a weighted r-sort species (cf. [6, p. 104]), whereas
(W2) demands (in a weak form) the Λ-weight w to be compatible with the composition
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operator η.4 In Section 9, we shall also need the concept of a weak Λ-weight, by which
we mean a collection w = (wΩ)Ω∈Ob(Set

r) of mappings as above satisfying (W0) and
(W1), but not necessarily (W2).

Given a Λ-weight w = (wΩ)Ω∈Ob(Set
r) on (F,η), we define the corresponding expo-

nential generating functions for F and Fη, respectively, by5

GFF (z1, . . . , zr) :=
∑

n1,...,nr≥0

∑

x∈F [([n1],...,[nr])]

w([n1],...,[nr])(x)
zn1
1 · · · znr

r

n1! · · ·nr!
,

GFFη
(z1, . . . , zr) :=

∑

n1,...,nr≥0

∑

x∈Fη [([n1],...,[nr])]

w([n1],...,[nr])(x)
zn1
1 · · · znr

r

n1! · · ·nr!
,

where we suppress the dependence on w in the notation for better readability.
We are now ready to state our first main result, an exponential principle, which

generalises Part (a) of the main result in [9].

Theorem 1. Let r be a positive integer, F : Setr → Set an r-sort species, and let

η : F × F → F ◦ ∐ be a natural transformation. If F is decomposable and η is a

composition operator for F, then the generating functions GFF and GFFη
are connected

via the relation

GFF (z1, . . . , zr) = exp
(
GFFη

(z1, . . . , zr)
)
. (2.4)

The proof of Theorem 1 is given in Section 4. It requires several preparatory results,
which are established in the next section.

In analogy to [9], there is a refinement of Theorem 1 in the spirit of [18, 24], which
we explain next. Making use of the map Fη defined above, we define a sequence of
mappings

F (k)
η : Ob(Setr) → Ob(Set), k ≥ 0,

with the property that F
(k)
η [Ω] ⊆ F [Ω] by induction on k via

F (0)
η [Ω] :=

{
F [∅∅∅], Ω = ∅∅∅

∅, Ω 6= ∅∅∅

and
F (k)

η [Ω] :=
⋃

Ω1∈Ob(Set
r)

Ω1⊆Ω

η
(
Fη[Ω1] × F (k−1)

η [Ω − Ω1]
)
, k ≥ 1. (2.5)

As the definition suggests, one should think of F
(k)
η [Ω] as the subset of objects in F [Ω]

consisting of exactly k “indecomposable” elements (components).
An immediate induction on

‖Ω‖ = ‖(Ω(1),Ω(2), . . . ,Ω(r))‖ :=
r∑

j=1

|Ω(j)| (2.6)

4As already remarked in the introduction, it would be easy to generalise our set-up to cover weighted
multisort species in full generality, by relaxing the condition that F [Ω] needs to be finite, and requiring
instead that each preimage w−1

Ω
(λ) is finite and that the ring Λ is multiplicatively finite, in the sense

that the number of different product representations of λ ∈ Λ is always finite.
5For a non-negative integer n, we write [n] for the standard set {1, 2, . . . , n} of cardinality n.



DECOMPOSABLE FUNCTORS AND THE EXPONENTIAL PRINCIPLE, II 7

shows that
F (k)

η [Ω] = ∅, k > ‖Ω‖. (2.7)

Again, by definition, F
(k)
η is just a map from Ob(Setr) to Ob(Set). In Lemma 16 in

Section 5 we shall show that F
(k)
η is in fact a functor, that is, an r-sort species.

It is not difficult to see that, for any Ω ∈ Ob(Setr), the sets F
(k)
η [Ω] with k =

0, 1, 2, . . . cover all of F [Ω].

Proposition 2. For every Ω ∈ Ob(Setr), we have

F [Ω] =
⋃

k≥0

F (k)
η [Ω]. (2.8)

The proof of Proposition 2 can be found in Section 6.
In [9], a second axiom, (D2), was imposed on the composition operators η for obtain-

ing a refined exponential principle that takes into account the filtration given by the

sets F
(k)
η [Ω] appearing on the right-hand side of (2.8) (for the case of 1-sort species):

it required pairwise disjointness of the sets F
(k)
η [Ω] for k = 0, 1, 2, . . . . The proposition

below says that, actually, this assertion is a consequence of Axiom (D1) (within the
general set-up), and this is even true for multisort species.

Proposition 3. If F : Setr → Set is an r-sort species and η is a composition operator

for F, then we have, for6 k, ℓ ∈ N0 and k 6= ℓ,

F (k)
η [Ω] ∩ F (ℓ)

η [Ω] = ∅, Ω ∈ Ob(Setr). (2.9)

Proposition 3 is also proved in Section 6. Its proof depends crucially on the fact
that “η-bracketings” of F -sets and Fη-sets do not depend on the order of the terms
F [Ω] respectively Fη[Ω] involved, nor on the type of bracketing used; see Lemmas 11
and 15 in Sections 3 and 5, respectively. From a technical point of view, this is the
decisive improvement over the results in [9], and it is the reason that the dependence
of Axiom (D2) from Axiom (D1) was not observed there.

Given a Λ-weight w on (F,η), the above propositions allow us to refine the weighting
to

w̃Ω(x) := ykwΩ(x), x ∈ F (k)
η [Ω].

We then can define the refined generating function

G̃FF (z1, . . . , zr, y) :=
∑

n1,...,nr≥0

∑

x∈F [([n1],...,[nr])]

w̃([n1],...,[nr])(x)
zn1
1 · · · znr

r

n1! · · ·nr!

=
∑

n1,...,nr≥0

∑

k≥0

∑

x∈F
(k)
η [([n1],...,[nr])]

yk w([n1],...,[nr])(x)
zn1
1 · · · znr

r

n1! · · ·nr!
.

With the above notation, we have the following refinement of Theorem 1, which is our
second main result.

Theorem 4. Under the hypotheses of Theorem 1, we have

G̃FF (z1, . . . , zr, y) = exp
(
yGFFη

(z1, . . . , zr)
)
, (2.10)

6We denote by N0 the set of non-negative integers.
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as well as

G̃FF (z1, . . . , zr, y) =
(
GFF (z1, . . . , zr)

)y
. (2.11)

The proof of Theorem 4 is given in Section 6, as a simple consequence of (the proof
of) Proposition 3.

3. Auxiliary results, I

The purpose of this section is to establish several lemmas, which will be needed in the
next section in the proof of Theorem 1. At the same time, they also form the basis for
the proofs of the auxiliary results in Section 5, which eventually will lead to proofs of
Propositions 2 and 3, and of Theorem 4, in Section 6. In all of this section, we assume
that F is a decomposable r-sort species with composition operator η.

Lemma 5. We have |F [∅∅∅]| = 1.

Proof. By the injectivity of η(∅∅∅,∅∅∅) : F [∅∅∅]×F [∅∅∅] → F [∅∅∅], the set F [∅∅∅] is either empty or a 1-

set. Suppose that F [∅∅∅] = ∅. Choose Ω1 = (Ω
(1)
1 , . . . ,Ω

(r)
1 ) ∈ Ob(Setr) with F [Ω1] 6= ∅,

and Ω2 = (Ω
(1)
2 , . . . ,Ω

(r)
2 ) ∈ Ob(Setr) such that Ω1 ∩ Ω2 = ∅∅∅ and |Ω

(i)
1 | = |Ω

(i)
2 | for

1 ≤ i ≤ r. Now consider (D1) for the partition Ω := Ω1 ∐ Ω2, Ω̃i := Ωi for i = 1, 2.
By the functoriality of F , we also have F [Ω2] 6= ∅ and, consequently, the left-hand
side of (2.3) is non-empty, whereas the right-hand side of (2.3) would be empty in case
F [∅∅∅] = ∅, a contradiction. �

Lemma 6 (Commutativity for (F,η)). For every pair (Ω1,Ω2) ∈ Ob(Dr), we have

η
(
F [Ω1] × F [Ω2]

)
= η
(
F [Ω2] × F [Ω1]

)
. (3.1)

Proof. Applying Axiom (D1) to the partitions

Ω := Ω1 ∐ Ω2 = Ω2 ∐ Ω1,

we find that

I := η
(
F [Ω1] × F [Ω2]

)
∩ η
(
F [Ω2] × F [Ω1]

)

= η
(
η
(
F [Ω1 ∩ Ω2] × F [Ω1]

)
× η
(
F [Ω2] × F [Ω1 ∩ Ω2]

))
.

By Lemma 5 and injectivity of the η-maps, the map

η(∅∅∅,Ω1) : F [∅∅∅] × F [Ω1] → F [Ω1]

is surjective; that is,
η
(
F [Ω1 ∩ Ω2] × F [Ω1]

)
= F [Ω1].

Similarly, we have
η
(
F [Ω2] × F [Ω1 ∩ Ω2]

)
= F [Ω2].

Thus,
I = η

(
F [Ω1] × F [Ω2]

)
.

By an analogous application of (D1) and Lemma 5 to the partitions

Ω = Ω2 ∐ Ω1 = Ω1 ∐ Ω2,

we find that
I = η

(
F [Ω2] × F [Ω1]

)
,

and the proof is complete. �
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Lemma 7 (3-Associativity for (F,η)). For pairwise disjoint Ω1,Ω2,Ω3 ∈
Ob(Setr), we have

η
(
η
(
F [Ω1] × F [Ω2]

)
× F [Ω3]

)
= η
(
F [Ω1] × η

(
F [Ω2] × F [Ω3]

))
. (3.2)

Proof. We shall show that both sides of (3.2) equal the intersection

I := η
(
F [Ω1 ∐ Ω2] × F [Ω3]

)
∩ η
(
F [Ω1] × F [Ω2 ∐ Ω3]

)
.

Applying (D1) to the partitions

Ω := (Ω1 ∐ Ω2) ∐ Ω3 = Ω1 ∐ (Ω2 ∐ Ω3),

we find that
I = η

(
η
(
F [Ω1] × F [Ω2]

)
× η
(
F [Ω1 ∩ Ω3] × F [Ω3]

))
;

and, arguing as in the proof of Lemma 6, this equation simplifies to

I = η
(
η
(
F [Ω1] × F [Ω2]

)
× F [Ω3]

)
.

The same argument, when applied to the partitions

Ω = Ω1 ∐ (Ω2 ∐ Ω3) = (Ω1 ∐ Ω2) ∐ Ω3,

yields
I = η

(
F [Ω1] × η

(
F [Ω2] × F [Ω3]

))
,

whence (3.2). �

For the sake of convenience, for pairwise disjoint elements Ω1, . . . ,Ωm ∈ Ob(Setr),
let us call expressions formed by applying η-maps to F [Ω1], . . . , F [Ωm] (in any order),
with each set F [Ωi] occurring exactly once, an η-bracketing of F [Ω1], . . . , F [Ωm]. More
formally, for any Ω ∈ Ob(Setr), we call the set F [Ω] an η-bracketing of F [Ω]; and,
given an η-bracketing B1 of F [Ωi1 ], . . . , F [Ωik ] and an η-bracketing B2 of F [Ωik+1

],
. . . , F [Ωim ], with 1 ≤ k ≤ n − 1 and {i1, i2, . . . , im} = {1, 2, . . . ,m}, the expression
η(B1 × B2) is, by definition, an η-bracketing of F [Ω1], . . . , F [Ωm]. For example, the
left-hand side and the right-hand side of (3.2) are two possible η-bracketings of F [Ω1],
F [Ω2], F [Ω3], as are

η
(
η
(
F [Ω3] × F [Ω2]

)
× F [Ω1]

)
and η

(
F [Ω3] × η

(
F [Ω1] × F [Ω2]

))
.

A simple consequence of Lemma 6 and (the proof of) Lemma 7 is the following fact.

Corollary 8. All η-bracketings of F [Ω1], F [Ω2], F [Ω3] are equal to

η
(
F [Ω1 ∐ Ω2] × F [Ω3]

)
∩ η
(
F [Ω1 ∐ Ω3] × F [Ω2]

)
∩ η
(
F [Ω2 ∐ Ω3] × F [Ω1]

)
. (3.3)

Proof. From the proof of Lemma 7, we know that

η
(
η
(
F [Ω1] × F [Ω2]

)
× F [Ω3]

)
= η
(
F [Ω1 ∐ Ω2] × F [Ω3]

)
∩ η
(
F [Ω1] × F [Ω2 ∐ Ω3]

)
.

If, in this equation, we interchange Ω1 and Ω2 and use Lemma 6 (commutativity), then
we obtain

η
(
η
(
F [Ω1] × F [Ω2]

)
× F [Ω3]

)
= η
(
F [Ω1 ∐ Ω2] × F [Ω3]

)
∩ η
(
F [Ω2] × F [Ω1 ∐ Ω3]

)
.

Both equations together, plus another application of Lemma 6, imply our claim. �

Lemma 9 (4-Permutability for (F,η)). If Ω1,Ω2,Ω3,Ω4 are pairwise disjoint

elements of Ob(Setr), then all η-bracketings of F [Ω1], F [Ω2], F [Ω3], F [Ω4] are equal

to each other.
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Proof. The possible η-bracketings of F [Ω1], F [Ω2], F [Ω3], F [Ω4] are

η
(
η
(
η
(
F [Ω1] × F [Ω2]

)
× F [Ω3]

)
× F [Ω4]

)
, (3.4)

η
(
η
(
F [Ω1] × η

(
F [Ω2] × F [Ω3]

))
× F [Ω4]

)
, (3.5)

η
(
η
(
F [Ω1] × F [Ω2]

)
× η
(
F [Ω3] × F [Ω4]

))
, (3.6)

η
(
F [Ω1] × η

(
η
(
F [Ω2] × F [Ω3]

)
× F [Ω4]

))
, (3.7)

η
(
F [Ω1] × η

(
F [Ω2] × η

(
F [Ω3] × F [Ω4]

)))
, (3.8)

together with all expressions arising from the above by permuting F [Ω1], F [Ω2], F [Ω3],
F [Ω4]. By Lemma 7 (3-associativity), the bracketing (3.4) equals the bracketing (3.5),
and the bracketing (3.7) equals the bracketing (3.8). It suffices therefore to prove the
equality of (3.4), (3.6), (3.8), and all expressions arising from these three by permuting
F [Ω1], F [Ω2], F [Ω3], F [Ω4].

Applying (D1) to the partitions

Ω := (Ω1 ∐ Ω2) ∐ (Ω3 ∐ Ω4) = (Ω1 ∐ Ω3) ∐ (Ω2 ∐ Ω4),

we find that

η
(
F [Ω1 ∐ Ω2] × F [Ω3 ∐ Ω4]

)
∩ η
(
F [Ω1 ∐ Ω3] × F [Ω2 ∐ Ω4]

)

= η
(
η
(
F [Ω1] × F [Ω2]

)
× η
(
F [Ω3] × F [Ω4]

))
.

Using this equation, as well as the one which arises by interchanging Ω1 and Ω2 and
applying Lemma 6 (commutativity) on the resulting right-hand side, we obtain

η
(
η
(
F [Ω1] × F [Ω2]

)
× η
(
F [Ω3] × F [Ω4]

))

= η
(
F [Ω1 ∐ Ω2] × F [Ω3 ∐ Ω4]

)
∩ η
(
F [Ω1 ∐ Ω3] × F [Ω2 ∐ Ω4]

)

∩ η
(
F [Ω2 ∐ Ω3] × F [Ω1 ∐ Ω4]

)
. (3.9)

On the other hand, by Corollary 8, the expression

η
(
η
(
F [Ω1] × F [Ω2]

)
× F [Ω3]

)

equals the expression (3.3). Therefore, “bracketing” these two expressions by η( . ×
F [Ω4]), using the injectivity of η, and applying Lemma 7 (3-associativity) to the ex-
pression resulting from (3.3), we arrive at

η
(
η
(
η
(
F [Ω1] × F [Ω2]

)
× F [Ω3]

)
× F [Ω4]

)

= η
(
F [Ω1 ∐ Ω2] × η

(
F [Ω3] × F [Ω4]

))
∩ η
(
F [Ω1 ∐ Ω3] × η

(
F [Ω2] × F [Ω4]

))

∩ η
(
F [Ω2 ∐ Ω3] × η

(
F [Ω1] × F [Ω4]

))
. (3.10)

Since η
(
F [Ω3]×F [Ω4]

)
⊆ F [Ω3∐Ω4], and similar inclusions hold for other combinations

of the Ωi’s, we have

η
(
F [Ω1 ∐ Ω2] × η

(
F [Ω3] × F [Ω4]

))
⊆ η
(
F [Ω1 ∐ Ω2] × F [Ω3 ∐ Ω4]

)
,

η
(
F [Ω1 ∐ Ω3] × η

(
F [Ω2] × F [Ω4]

))
⊆ η
(
F [Ω1 ∐ Ω3] × F [Ω2 ∐ Ω4]

)
,

η
(
F [Ω2 ∐ Ω3] × η

(
F [Ω1] × F [Ω4]

))
⊆ η
(
F [Ω2 ∐ Ω3] × F [Ω1 ∐ Ω4]

)
.
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Altogether, these inclusions imply that the right-hand side of (3.10) is contained in the
right-hand side of (3.9). We infer that

η
(
η
(
η
(
F [Ω1]×F [Ω2]

)
×F [Ω3]

)
×F [Ω4]

)
⊆ η
(
η
(
F [Ω1]×F [Ω2]

)
× η
(
F [Ω3]×F [Ω4]

))
.

(3.11)
However, by injectivity of the η-maps, both sides of (3.11) have cardinality

|F [Ω1]| · |F [Ω2]| · |F [Ω3]| · |F [Ω4]|.

Hence, they must be equal, which proves the equality of (3.4) and (3.6).
An analogous argument proves equality of (3.6) and (3.8).
Since, by Lemma 6 (commutativity), the right-hand side of (3.9) is invariant under

permutation of Ω1,Ω2,Ω3,Ω4, the proof is complete. �

The (proof of the) above lemma, combined with Lemma 6 and Corollary 8, leads to
the following observation.

Corollary 10. All η-bracketings of F [Ω1], F [Ω2], F [Ω3], F [Ω4] are equal to

η
(
F [Ω1 ∐ Ω2] × F [Ω3 ∐ Ω4]

)
∩ η
(
F [Ω1 ∐ Ω3] × F [Ω2 ∐ Ω4]

)

∩ η
(
F [Ω2 ∐ Ω3] × F [Ω1 ∐ Ω4]

)

∩ η
(
F [Ω1] × F [Ω2 ∐ Ω3 ∐ Ω4]

)
∩ η
(
F [Ω2] × F [Ω1 ∐ Ω3 ∐ Ω4]

)

∩ η
(
F [Ω3] × F [Ω1 ∐ Ω2 ∐ Ω4]

)
∩ η
(
F [Ω4] × F [Ω1 ∐ Ω2 ∐ Ω3]

)
. (3.12)

Proof. By Corollary 8, we have

η
(
F [Ω1 ∐ Ω2] × η

(
F [Ω3] × F [Ω4]

))

= η
(
F [Ω1 ∐ Ω2 ∐ Ω3] × F [Ω4]

)
∩ η
(
F [Ω1 ∐ Ω2 ∐ Ω4] × F [Ω3]

)

∩ η
(
F [Ω3 ∐ Ω4] × F [Ω1 ∐ Ω2]

)
.

Analogous identities hold for the other two terms on the right-hand side of (3.10). If
we combine this with Lemma 6 (commutativity) and Lemma 9 (4-permutability), then
the claim follows immediately. �

Before we state the general permutability result, let us introduce the following short-
hand notation, which will be used in its proof. Given a subset I of [m], where I =
{i1, i2, . . . , ik} with i1 < i2 < · · · < ik, we let ΩI stand for Ωi1 ∐ · · · ∐ Ωik .

Lemma 11 (m-Permutability for (F,η)). If Ω1, . . . ,Ωm are pairwise disjoint

elements of Ob(Setr), then all η-bracketings of F [Ω1], . . . , F [Ωm] are equal to each

other.

Proof. We shall prove by induction on m that, for each m ≥ 2, all η-bracketings of
F [Ω1], . . . , F [Ωm] equal

⋂

I,J⊆[m]

I∪J=[m], I∩J=∅

I 6=∅6=J

η
(
F [ΩI ] × F [ΩJ ]

)
. (3.13)

For m = 2, the assertion follows from Lemma 6 (commutativity). For m = 3, the
assertion is equivalent to Corollary 8 (again, modulo Lemma 6), and for m = 4, the
assertion is equivalent to Corollary 10.
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Now let m ≥ 5, and let us suppose that the assertion is true up to m− 1. Consider
an η-bracketing of Ω1, . . . ,Ωm. There are three possibilities. Either this bracketing has
the form

η
(
η
(
E1

)
× η
(
E2

))
, (3.14)

where E1 and E2 are expressions involving η-maps and distinct Ωi’s, each of them
involving at least two Ωi’s, or the form

η
(
F [Ωi] × η

(
E3

))
, (3.15)

where E3 involves η-maps and Ω1, . . . ,Ωi−1,Ωi+1, . . . ,Ωm, for some i, or the form

η
(
η
(
E4

)
× F [Ωi]

)
, (3.16)

where E4 involves η-maps and Ω1, . . . ,Ωi−1,Ωi+1, . . . ,Ωm, for some i.
We start by considering (3.14). Let us assume that E1 involves all Ωr’s for r ∈ R,

and E2 involves all Ωs’s for s ∈ S, with R ∪ S = [m], R ∩ S = ∅, R 6= ∅ 6= S. By the
inductive hypothesis, we know that

η(E1) =
⋂

I1,J1⊆R

I1∪J1=R, I1∩J1=∅

I1 6=∅6=J1

η
(
F [ΩI1 ] × F [ΩJ1 ]

)
(3.17)

and
η(E2) =

⋂

I2,J2⊆S

I2∪J2=S, I2∩J2=∅

I2 6=∅6=J2

η
(
F [ΩI2 ] × F [ΩJ2 ]

)
. (3.18)

If we substitute (3.17) and (3.18) in (3.14) and use injectivity of the η-maps, then we
obtain ⋂

I1,J1⊆R

I1∪J1=R, I1∩J1=∅

I1 6=∅6=J1

⋂

I2,J2⊆S

I2∪J2=S, I2∩J2=∅

I2 6=∅6=J2

η
(
η
(
F [ΩI1 ] × F [ΩJ1 ]

)
× η
(
F [ΩI2 ] × F [ΩJ2 ]

))
.

We may now apply Corollary 10 to each of the terms on the right-hand side of this
equation. It is not difficult to see that, together with Lemma 6 (commutativity), we
obtain (3.13).

Next we consider (3.15). By the inductive hypothesis, we know that

η(E3) =
⋂

I,J⊆[m]−{i}

I∪J=[m]−{i}, I∩J=∅

I 6=∅6=J

η
(
F [ΩI ] × F [ΩJ ]

)
.

If we substitute this in (3.15) and use injectivity of the η-maps, then we obtain
⋂

I,J⊆[m]−{i}

I∪J=[m]−{i}, I∩J=∅

I 6=∅6=J

η
(
F [Ωi] × η

(
F [ΩI ] × F [ΩJ ]

))
.

We may now apply Corollary 8 to each of the terms on the right-hand side of this
equation. It is not difficult to see that, together with Lemma 6 (commutativity), we
obtain (3.13).
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The argument for (3.16) is analogous. This completes the proof of the lemma. �

For Ω = (Ω(1), . . . ,Ω(r)) ∈ Ob(Setr) and an integer ρ ∈ [r], we write (ω, ρ) ∈ Ω to
mean ω ∈ Ω(ρ). This is the concept of base point needed in the present context.

Lemma 12. For non-empty Ω ∈ Ob(Setr) and every choice of base point (ω, ρ) ∈ Ω,
we have

F [Ω] =
⋃

Ω1∈Ob(Set
r)

(ω,ρ)∈Ω1⊆Ω

η
(
Fη[Ω1] × F [Ω − Ω1]

)
. (3.19)

Proof. Let x ∈ F [Ω] be an arbitrary element, and consider the totality of all Ω1 ∈
Ob(Setr) such that (ω, ρ) ∈ Ω1 ⊆ Ω and x ∈ η

(
F [Ω1] × F [Ω − Ω1]

)
. Such Ω1’s do

exist; for instance Ω1 = Ω has these properties, since the map

η(Ω,∅∅∅) : F [Ω] × F [∅∅∅] →֒ F [Ω]

is surjective. Among these Ω1’s we choose one of minimal norm ‖Ω1‖ (recall the
definition in (2.6)), say Ω1(x). Now suppose that x 6∈ η

(
Fη[Ω1(x)] × F [Ω − Ω1(x)]

)
.

Then, by the definition of Fη, the injectivity of η, and the choice of Ω1(x), we must
have

x ∈ η
((
F [Ω1(x)] − Fη[Ω1(x)]

)
× F [Ω − Ω1(x)]

)

=
⋃

(I,J)∈Ob(Dr)

I∐J=Ω1(x)

I 6=∅∅∅6=J

η
(
η
(
F [I] × F [J ]

)
× F [Ω − Ω1(x)]

)
.

Consequently, there exists (I1,J1) ∈ Ob(Dr) such that I1 ∐J1 = Ω1(x), I1 6= ∅∅∅ 6= J1,
and

x ∈ η
(
η
(
F [I1] × F [J1]

)
× F [Ω − Ω1(x)]

)
.

Using Corollary 8 (3-permutability), we see that the latter set is contained in both
η
(
F [I1]×F [Ω− I1]

)
and η

(
F [J1]×F [Ω−J1]

)
. The base point (ω, ρ) is contained in

I1 or J1; to fix ideas, say (ω, ρ) ∈ I1. Hence, we arrive at the assertion that

x ∈ η
(
F [I1] × F [Ω − I1]

)
, (ω, ρ) ∈ I1 ⊆ Ω, ‖I1‖ < ‖Ω1(x)‖,

contradicting the choice of Ω1(x). We conclude that x is indeed contained in

η
(
Fη[Ω1(x)] × F [Ω − Ω1(x)]

)
,

and (3.19) is proven. �

Lemma 13. The right-hand side of (3.19) is a disjoint union.

Proof. In the context of Lemma 12, let Ω1,Ω2 ∈ Ob(Setr) be such that (ω, ρ) ∈ Ωi ⊆ Ω

and Ω1 6= Ω2, say Ω1 6⊆ Ω2. It is enough to show that

I := η
(
F [Ω1] × F [Ω − Ω1]

)
∩ η
(
F [Ω2] × F [Ω − Ω2]

)

has an empty intersection with η
(
Fη[Ω1] × F [Ω − Ω1]

)
. But, by (D1), we have

I ⊆ η
(
η
(
F [Ω1 ∩ Ω2] × F [Ω1 − Ω2]

)
× F [Ω − Ω1]

)
,
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and, by definition of Fη and the fact that (ω, ρ) ∈ Ω1 ∩ Ω2 6= ∅∅∅ 6= Ω1 − Ω2, we have

Fη[Ω1] ∩ η
(
F [Ω1 ∩ Ω2] × F [Ω1 − Ω2]

)
= ∅.

Consequently, by the injectivity of η, we must indeed have

η
(
Fη[Ω1] × F [Ω − Ω1]

)
∩ I

⊆ η
(
Fη[Ω1] × F [Ω − Ω1]

)
∩ η
(
η
(
F [Ω1 ∩ Ω2] × F [Ω1 − Ω2]

)
× F [Ω − Ω1]

)
= ∅,

as required. �

Lemma 14 (Functoriality of Fη). Let Ω, Ω̃ ∈ Ob(Setr), and let f : Ω → Ω̃ be a

morphism. Then

F [f ](Fη[Ω]) = Fη[Ω̃];

that is, setting Fη[f ] := F [f ]|Fη [Ω], we get a functor Fη : Setr → Set.

Proof. The assertion is obvious if Ω = ∅∅∅, so we may suppose that Ω 6= ∅∅∅. Then, using
the naturality of η (that is, the diagram (2.2)), we have

F [f ](Fη[Ω]) = F [f ]

(
F [Ω] −

⋃

(I1,J1)∈Ob(Dr)

I1∐J1=Ω

I1 6=∅∅∅6=J1

η
(
F [I1] × F [J1]

)
)

= F [Ω̃] −
⋃

(I1,J1)∈Ob(Dr)

I1∐J1=Ω

I1 6=∅∅∅6=J1

(
F ◦ ∐

)[
(f |I1 ,f |J1)

](
η
(
F [I1] × F [J1]

))

= F [Ω̃] −
⋃

(I1,J1)∈Ob(Dr)

I1∐J1=Ω

I1 6=∅∅∅6=J1

η
(
F [f |I1 ](F [I1]) × F [f |J1 ](F [J1])

)

= F [Ω̃] −
⋃

(I2,J2)∈Ob(Dr)

I2∐J2=eΩ

I2 6=∅∅∅6=J2

η
(
F [I2] × F [J2]

)

= F [Ω̃].

�

4. Proof of Theorem 1

For convenience, let us “extend” the Λ-weight w to subsets of F [Ω], for all Ω ∈
Ob(Setr). To be precise, for A ⊆ F [Ω], we define

wΩ

(
A
)

:=
∑

x∈A

wΩ(x).
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Given disjoint Ω1,Ω2 ∈ Ob(Setr) and subsets A1 ⊆ Fη[Ω1] and A2 ⊆ F [Ω2], Ax-
iom (W2) says that

wΩ1∐Ω2(η(A1 × A2)) = wΩ1(A1) · wΩ2(A2). (4.1)

In the sequel, we shall suppress the indices of weights w for better readability, the
indices always being clear from the context.

As a direct consequence of Lemmas 12 and 13, of the injectivity of the η-maps, and
of (4.1), we have that, for n1, n2, . . . , nr ∈ N0 and nρ > 0,

w
(
F [([n1], . . . , [nr])]

)

=
∑

Ω
(i)
1 ⊆[ni] (1≤i≤r)

1∈Ω
(ρ)
1

w
(
Fη[(Ω

(1)
1 , . . . ,Ω

(r)
1 )]

)
· w
(
F [([n1] − Ω

(1)
1 , . . . , [nr] − Ω

(r)
1 )]

)
. (4.2)

Using the functoriality of F and Fη, together with Axiom (W1), each Ω1 with

Ω1 = (Ω
(1)
1 , . . . ,Ω

(r)
1 ) ⊆ ([n1], . . . , [nr]),

(1, ρ) ∈ Ω1, and cardinalities |Ω
(i)
1 | = µi (1 ≤ i ≤ r), is seen to contribute

w
(
Fη[([µ1], . . . , [µr])]

)
· w
(
F [([n1 − µ1], . . . , [nr − µr])]

)
(4.3)

to the right-hand side of (4.2). We observe that (4.3) does not depend upon Ω1 itself,

but only on the cardinalities µ1, . . . , µr of the components Ω
(1)
1 , . . . ,Ω

(r)
1 . Therefore, the

µρ

nρ

∏

1≤i≤r

(
ni

µi

)

elements Ω1 ∈ Ob(Setr) with Ω1 ⊆ ([n1], . . . , [nr]), (1, ρ) ∈ Ω1, and such that |Ω
(i)
1 | =

µi for 1 ≤ i ≤ r, contribute

µρ

nρ

( ∏

1≤i≤r

(
ni

µi

))
w
(
Fη[([µ1], . . . , [µr])]

)
· w
(
F [([n1 − µ1], . . . , [nr − µr])]

)

to the right-hand side of (4.2), and we obtain

w
(
F [([n1], . . . , [nr])]

)
=

∑

0≤µi≤ni (1≤i≤r)

µρ

nρ

( ∏

1≤i≤r

(
ni

µi

))
w
(
Fη[([µ1], . . . , [µr])]

)

· w
(
F [([n1 − µ1], . . . , [nr − µr])]

)
,

nρ > 0,

or, equivalently,

nρ · w
(
F [([n1], . . . , [nr])]

)
=

∑

0≤µi≤ni (1≤i≤r)

µρ

( ∏

1≤i≤r

(
ni

µi

))
w
(
Fη[([µ1], . . . , [µr])]

)

· w
(
F [([n1 − µ1], . . . , [nr − µr])]

)
, (4.4)

as long as nρ > 0. However, Equation (4.4) holds as well for nρ = 0, with both sides
vanishing, so that we are allowed to drop the restriction nρ > 0.
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Fix ρ ∈ [r], multiply both sides of (4.4) by

zn1
1 · · · z

nρ−1

ρ−1 z
nρ−1
ρ z

nρ+1

ρ+1 · · · znr

r /(n1! · · ·nr!),

and sum over all tuples (n1, . . . , nr) ∈ N
r
0, to get

∑

n1,...,nr≥0

w
(
F [([n1], . . . , [nr])]

) zn1
1 · · · z

nρ−1

ρ−1 z
nρ−1
ρ z

nρ+1

ρ+1 · · · znr
r

n1! · · ·nρ−1! (nρ − 1)!nρ+1! · · ·nr!

=
∑

n1,...,nr≥0

∑

0≤µi≤ni (1≤i≤r)

w
(
Fη[([µ1], . . . , [µr])]

)

µ1! · · ·µρ−1! (µρ − 1)!µρ+1! · · ·µr!

·
w
(
F [([n1 − µ1], . . . , [nr − µr])]

)

(n1 − µ1)! · · · (nr − µr)!
zn1
1 · · · z

nρ−1

ρ−1 z
nρ−1
ρ z

nρ+1

ρ+1 · · · znr

r , (4.5)

where 1/(−1)! has to be interpreted as 0. The left-hand side equals

∂GFF

∂zρ

,

while the right-hand side is identified as

∂GFFη

∂zρ

GFF ;

whence the equations

∂GFF

∂zρ

=
∂GFFη

∂zρ

GFF , 1 ≤ ρ ≤ r. (4.6)

Set

Q(z1, . . . , zr) := GFF (z1, . . . , zr) exp
(
− GFFη

(z1, . . . , zr)
)
.

Then, in view of Equations (4.6), the series Q satisfies

∂Q

∂zρ

= 0, 1 ≤ ρ ≤ r.

These last equations force Q to be independent of z1, z2, . . . , zr. However, since
GFFη

(0, . . . , 0) = 0 by definition of Fη, and since GFF (0, . . . , 0) = 1 by Axiom (W0)
and Lemma 5, direct inspection shows that

Q(0, 0, . . . , 0) = 1,

and (2.4) follows. �

5. Auxiliary results, II

In this section, we complement the results of Section 3 by establishing several further
results which will be needed in the proofs of Proposition 3 and Theorem 4, to be
given in the next section. The first lemma provides the analogue of Lemma 11 for Fη,
namely that arbitrary permutability holds also for η-bracketings of Fη-images (see the
subsequent paragraph for the precise definition). All the remaining lemmas concern the

maps F
(k)
η . In all of this section, we assume that F is a decomposable r-sort species

with composition operator η.
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In complete analogy with the corresponding definition in Section 3, we define the
concept of an η-bracketing of Fη[Ω1], . . . , Fη[Ωm] for pairwise disjoint elements
Ω1, . . . ,Ωm ∈ Ob(Setr): simply replace F by Fη everywhere in the definition just
after the proof of Lemma 7.

Lemma 15 (m-Permutability for (Fη,η)). If Ω1, . . . ,Ωm are pairwise disjoint

elements of Ob(Setr), then all η-bracketings of Fη[Ω1], . . . , Fη[Ωm] are equal to each

other.

Proof. Since Fη[∅∅∅] = ∅ by definition of Fη, our claim holds if at least one of Ω1, . . . ,Ωm

equals ∅∅∅. Hence, we may assume that all of Ω1, . . . ,Ωm are non-empty.
Next we note that, for sets M1, . . . ,Mm, A1, . . . , Am, we have

(M1 − A1) × (M2 − A2) × · · · × (Mm − Am)

= M1 ×M2 × · · · ×Mm −

(
m⋃

k=1

M1 × · · · ×Mk−1 × Ak ×Mk+1 × · · · ×Mm

)
. (5.1)

Now assume that we are given two η-bracketings of Fη[Ω1], . . . , Fη[Ωm], say

Bη

(
Fη[Ω1], . . . , Fη[Ωm]

)
and B̄η

(
Fη[Ω1], . . . , Fη[Ωm]

)
.

Substituting the definition of Fη into Bη

(
Fη[Ω1], . . . , Fη[Ωm]

)
, and applying Ident-

ity (5.1) plus injectivity of η-maps, we find that

Bη

(
Fη[Ω1], . . . , Fη[Ωm]

)
= Bη

(
F [Ω1], . . . , F [Ωm]

)

−
m⋃

k=1

Bη

(
F [Ω1], . . . , F [Ωk−1],

⋃

(I,J)∈Ob(Dr)

I∐J=Ωk

I 6=∅∅∅6=J

η
(
F [I] × F [J ]

)
, F [Ωk+1], . . . , F [Ωm]

)

= Bη

(
F [Ω1], . . . , F [Ωm]

)

−
m⋃

k=1

⋃

(I,J)∈Ob(Dr)

I∐J=Ωk

I 6=∅∅∅6=J

Bη

(
F [Ω1], . . . , F [Ωk−1], η

(
F [I] × F [J ]

)
, F [Ωk+1], . . . , F [Ωm]

)
.

The same argument shows that B̄η

(
Fη[Ω1], . . . , Fη[Ωm]

)
equals the last expression

where every occurrence of Bη is replaced by B̄η. By Lemma 11 (m-permutability
for (F,η)), we have

Bη

(
F [Ω1], . . . , F [Ωm]

)
= B̄η

(
F [Ω1], . . . , F [Ωm]

)

and

Bη

(
F [Ω1], . . . , F [Ωk−1], η

(
F [I] × F [J ]

)
, F [Ωk+1], . . . , F [Ωm]

)

= B̄η

(
F [Ω1], . . . , F [Ωk−1], η

(
F [I] × F [J ]

)
, F [Ωk+1], . . . , F [Ωm]

)
,

hence

Bη

(
Fη[Ω1], . . . , Fη[Ωm]

)
= B̄η

(
Fη[Ω1], . . . , Fη[Ωm]

)
,

which establishes our claim. �
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Lemma 16 (Functoriality of F
(k)
η ). For each morphism f : Ω → Ω̃ in Setr and

every integer k ≥ 0, we have

F [f ](F (k)
η [Ω]) = F (k)

η [Ω̃].

Proof. We use induction on k, our claim being obvious for k = 0. Suppose that the

assertion holds for 0 ≤ k < K with some K ≥ 1. Then, using the definition of F
(k)
η ,

the functoriality of Fη already demonstrated in Lemma 14, the inductive hypothesis,
as well as the naturality of η, we find that

F [f ](F (K)
η [Ω]) = F [f ]

( ⋃

Ω′∈Ob(Set
r)

Ω′⊆Ω

η
(
Fη[Ω′] × F (K−1)

η [Ω − Ω′]
)
)

=
⋃

Ω′∈Ob(Set
r)

Ω′⊆Ω

(
F ◦ ∐

)[
(f |Ω′ ,f |Ω−Ω′)

](
η
(
Fη[Ω′] × F (K−1)

η [Ω − Ω′]
))

=
⋃

Ω′∈Ob(Set
r)

Ω′⊆Ω

η
(
F [f |Ω′ ](Fη[Ω′]) × F [f |Ω−Ω′ ](F (K−1)

η [Ω − Ω′])
)

=
⋃

eΩ′∈Ob(Set
r)

eΩ′⊆eΩ

η
(
Fη[Ω̃′] × F (K−1)

η [Ω̃ − Ω̃′]
)

= F (K)
η [Ω̃].

�

Lemma 17. The functors F
(1)
η and Fη coincide.

Proof. It suffices to show that F
(1)
η [Ω] = Fη[Ω] for every Ω ∈ Ob(Setr). By (2.7), this

holds if Ω = ∅∅∅, so assume that Ω 6= ∅∅∅. Then, using the definition of F
(k)
η , the injectivity
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of η-maps, Lemma 7 (3-associativity), and Lemma 5, we have

F (1)
η [Ω] =

⋃

Ω1∈Ob(Set
r)

Ω1⊆Ω

η
(
Fη[Ω1] × F (0)

η [Ω − Ω1]
)

= η
(
Fη[Ω] × F [∅∅∅]

)

= η

((
F [Ω] −

⋃

(I,J)∈Ob(Dr)

I∐J=Ω

I 6=∅∅∅6=J

η
(
F [I] × F [J ]

)
)

× F [∅∅∅]

)

= η
(
F [Ω] × F [∅∅∅]

)
−

⋃

(I,J)∈Ob(Dr)

I∐J=Ω

I 6=∅∅∅6=J

η
(
η
(
F [I] × F [J ]

)
× F [∅∅∅]

)

= F [Ω] −
⋃

(I,J)∈Ob(Dr)

I∐J=Ω

I 6=∅∅∅6=J

η
(
F [I] × F [J ]

)

= Fη[Ω],

proving our claim. �

In the next lemma, we require again the concept of a base point, which was introduced
just before Lemma 12.

Lemma 18. For every non-empty Ω ∈ Ob(Setr), each choice of base point (ω, ρ) ∈ Ω,

and every integer k ≥ 1, we have

F (k)
η [Ω] =

∐

Ω1∈Ob(Set
r)

(ω,ρ)∈Ω1⊆Ω

η
(
Fη[Ω1] × F (k−1)

η [Ω − Ω1]
)
. (5.2)

Proof. The fact that the terms on the right-hand side of (5.2) are pairwise disjoint

follows from Lemma 13, since a term η
(
Fη[Ω1] × F

(k−1)
η [Ω − Ω1]

)
is contained in the

larger set η
(
Fη[Ω1] × F [Ω − Ω1]

)
.

An immediate induction using the definition of F
(m)
η shows that, for all m ≥ 2, we

have

F (m)
η [Ω] =

⋃

Ω1,...,Ωm∈Ob(Set
r)

Ω1∐···∐Ωm=Ω

η
(
Fη[Ω1] × η

(
Fη[Ω2] × · · · × η

(
Fη[Ωm−1] × Fη[Ωm]

)
· · ·
)
.

(5.3)

We first consider the case where k = 1. Here, by definition of F
(0)
η [∅∅∅], the only

contribution to the union on the right-hand side of (5.2) arises for Ω1 = Ω. In that
situation, we have

η
(
Fη[Ω] × F (0)

η [∅∅∅]
)

= η
(
Fη[Ω] × F [∅∅∅]

)
.



20 P. J. CAMERON, C. KRATTENTHALER AND T. W. MÜLLER

However, this is also the only contribution on the right-hand side of the definition of

F
(1)
η given in (2.5), thus proving (5.2) for k = 1.
Now we consider the case where k ≥ 2. If k ≥ 3, then, given Ω ∈ Ob(Setr), we

substitute the right-hand side of (5.3) with m = k − 1 in (5.2). As a result, we obtain

⋃

Ω1,Ω2,...,Ωk∈Ob(Set
r)

Ω1∐Ω2∐···∐Ωk=Ω

(ω,ρ)∈Ω1

η
(
Fη[Ω1] × η

(
Fη[Ω2] × · · · × η

(
Fη[Ωk−1] × Fη[Ωk]

)
· · ·
)

(5.4)

for the right-hand side of (5.2). We note that Expression (5.4) also agrees with the
right-hand side of (5.2) for k = 2 (taking into account the fact that we already know
that the union on the right-hand side of (5.2) is a disjoint union).

Expression (5.4) is almost (5.3) withm = k, except that Ω1 is distinguished by having
to contain the given base point (ω, ρ). However, by Lemma 15 (m-permutability for
(Fη,η)), the ordering of Ω1,Ω2, . . . ,Ωk in the η-bracketing in the union on the right-
hand side of (5.4) is of no relevance. Thus, the restriction that (ω, ρ) ∈ Ω1 can be

dropped. This shows that the right-hand side of (5.2) equals F
(k)
η [Ω], as claimed. �

6. Proofs of Propositions 2 and 3, and of Theorem 4

We begin this section with the proof of Proposition 2. With Lemma 18 in hand, we
are finally in the position to also establish Proposition 3. Theorem 4 is then a simple
consequence of an identity on which the proof of Proposition 3 rests (see (6.1) below).
Although the property expressed in this proposition is of a structural nature, our proof
relies in fact on a counting argument. It would be desirable to find an alternative
approach more in keeping with the actual nature of Proposition 3.

Proof of Proposition 2. We use induction on ‖Ω‖, where ‖ . ‖ has been defined in (2.6).

By (2.7) and the definition of F
(0)
η , the statement holds if ‖Ω‖ = 0, that is, if Ω = ∅∅∅.

Let Ω be such that ‖Ω‖ = N for some integer N > 0, and suppose that (2.8) holds for
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all Ω′ ∈ Ob(Setr) of norm strictly less than N . Then we have Ω 6= ∅∅∅, and therefore
⋃

k≥0

F (k)
η [Ω] =

⋃

k≥1

F (k)
η [Ω]

=
⋃

k≥1

⋃

Ω1∈Ob(Set
r)

Ω1⊆Ω

η
(
Fη[Ω1] × F (k−1)

η [Ω − Ω1]
)

=
⋃

Ω1∈Ob(Set
r)

Ω1⊆Ω

η

(
Fη[Ω1] ×

( ⋃

k≥1

F (k−1)
η [Ω − Ω1]

))

=
⋃

Ω1∈Ob(Set
r)

∅∅∅6=Ω1⊆Ω

η

(
Fη[Ω1] ×

( ⋃

k≥0

F (k)
η [Ω − Ω1]

))

=
⋃

Ω1∈Ob(Set
r)

Ω1⊆Ω

η
(
Fη[Ω1] × F [Ω − Ω1]

)

= F [Ω].

Here, we have used Lemma 12 for the last equality, and the inductive hypothesis in
the second but last step (here it is important that Ω1 6= ∅∅∅ in order to guarantee that
‖Ω − Ω1‖ < ‖Ω‖). �

Proof of Proposition 3 and of Theorem 4. For k ≥ 0, let us define the generating func-

tion for F
(k)
η by

GF
F

(k)
η

(z1, . . . , zr) :=
∑

n1,...,nr≥0

∑

x∈F
(k)
η [([n1],...,[nr])]

w([n1],...,[nr])(x)
zn1
1 · · · znr

r

n1! · · ·nr!
.

Again, in the sequel, we shall suppress the indices to weights w for better readability,
the indices always being clear from the context.

The first step consists in showing that

GF
F

(k)
η

(z1, . . . , zr) =
1

k!

(
GFFη

(z1, . . . , zr)
)k
. (6.1)

By definition of F
(0)
η , the left-hand side of (6.1) equals 1, so that (6.1) holds for k = 0.

Therefore, we may in the sequel assume that k ≥ 1.
We now proceed in a manner similar to the proof of Theorem 1 given in Section 4.

Here, however, we use Lemma 18 instead of Lemmas 12 and 13, and we also need the

functoriality of F
(m)
η for m = 0, 1, 2, . . . established in Lemma 16. In this way, we obtain

from (5.2) the identity

nρ · w
(
F (k)

η [([n1], . . . , [nr])]
)

=
∑

0≤µi≤ni (1≤i≤r)

µρ

( ∏

1≤i≤r

(
ni

µi

))
w
(
Fη[([µ1], . . . , [µr])]

)

· w
(
F (k−1)

η [([n1 − µ1], . . . , [nr − µr])]
)
. (6.2)
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Fixing ρ ∈ [r], multiplying both sides of (6.2) by

zn1
1 · · · z

nρ−1

ρ−1 z
nρ−1
ρ z

nρ+1

ρ+1 · · · znr

r /(n1! · · ·nr!),

and summing over all tuples (n1, . . . , nr) ∈ N
r
0, gives

∑

n1,...,nr≥0

w
(
F (k)

η [([n1], . . . , [nr])]
) zn1

1 · · · z
nρ−1

ρ−1 z
nρ−1
ρ z

nρ+1

ρ+1 · · · znr
r

n1! · · ·nρ−1! (nρ − 1)!nρ+1! · · ·nr!

=
∑

n1,...,nr≥0

∑

0≤µi≤ni (1≤i≤r)

w
(
Fη[([µ1], . . . , [µr])]

)

µ1! · · ·µρ−1! (µρ − 1)!µρ+1! · · ·µr!

·
w
(
F

(k−1)
η [([n1 − µ1], . . . , [nr − µr])]

)

(n1 − µ1)! · · · (nr − µr)!
zn1
1 · · · z

nρ−1

ρ−1 z
nρ−1
ρ z

nρ+1

ρ+1 · · · znr

r , (6.3)

where, again, 1/(−1)! has to be interpreted as 0. The left-hand side equals

∂GF
F

(k)
η

∂zρ

,

while the right-hand side is identified as

∂GFFη

∂zρ

GF
F

(k−1)
η

,

whence the equations

∂GF
F

(k)
η

∂zρ

=
∂GFFη

∂zρ

GF
F

(k−1)
η

, 1 ≤ ρ ≤ r. (6.4)

Assuming inductively that

GF
F

(k−1)
η

=
1

(k − 1)!

(
GFFη

)k−1
,

we infer from (6.4) that

GF
F

(k)
η

=
1

k!

(
GFFη

)k
+ C,

where C is independent of z1, z2, . . . , zr. Making use of the facts that GF
F

(k)
η

(0, . . . , 0) =

0 (since k ≥ 1) and that GFFη
(0, . . . , 0) = 0, we see that C = 0, which proves (6.1).

On the other hand, by Theorem 1, we know that

GFF (z1, z2, . . . , zr) = exp
(
GFFη

(z1, z2, . . . , zr)
)
,

or, equivalently,

GFF (z1, z2, . . . , zr) =
∑

k≥0

1

k!

(
GFFη

(z1, z2, . . . , zr)
)k
. (6.5)

If there were a non-empty intersection between F
(k1)
η [Ω] and F

(k2)
η [Ω], for some k1, k2

with k1 < k2 and some Ω ∈ Ob(Setr), then Proposition 2 would contradict (6.5) and
(6.1). This proves the assertion of Proposition 3.
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The proof of Theorem 4 is now easily completed. By definition of G̃FF (z1, . . . , zr, y),
we have

G̃FF (z1, . . . , zr, y) =
∑

k≥0

yk GF
F

(k)
η

(z1, . . . , zr).

If we now substitute (6.1), then we immediately obtain (2.10). Identity (2.11) results
from using Theorem 1 to express GFFη

(z1, . . . , zr) in terms of GFF (z1, . . . , zr) and
substituting the result in (2.10). �

7. Illustrations, I: Three examples

We give here three illustrations for the application of our theory. In the first and
second example below, bipartite graphs are considered. Example 1 is, in some sense,
“standard,” since it addresses the case where the composition operator η consists in
“putting objects together,” so that the combinatorial objects in our (in this case, 2-sort)
species are sets of indecomposable objects, a situation which is well covered by classical
species theory. In Example 2, however, the composition operator η is different, “non-
standard,” so that classical species theory does not apply, but our (extension of species)
theory does. On the other hand, we shall see in Section 9 that this composition operator
is pointwise associative and commutative (for the precise definition see (9.4) and (9.5)),
and that this is equivalent to the fact that this case is also covered by Menni’s theory
in [21]. As a consequence, this family of composition operators is closely related to
the classical operation of “putting objects together.” (See Theorem 22 for the precise
statement.) Our last example in this section, Example 3, presents an example of a
composition operator that is neither pointwise associative nor pointwise commutative,
in other words, a composition operator that is not covered by Menni’s theory in [21]. A
particular aspect demonstrated by Examples 1 and 2 that we want to highlight is that
composition operators need not be unique.

Example 1 (Bipartite graphs I). Let the 2-sort species F : Set2 → Set be defined
by

F [Ω] = F [(Ω(1),Ω(2))] := 2Ω(1)×Ω(2)

, Ω = (Ω(1),Ω(2)) ∈ Ob(Set2).

Thus, F [(Ω(1),Ω(2))] can be considered as set of all bipartite graphs, where the set of
“white” vertices is Ω(1) and the set of “black” vertices is Ω(2). For (Ω1,Ω2) ∈ Ob(D2),
b1 ∈ F [Ω1] and b2 ∈ F [Ω2], put

η(Ω1,Ω2)

(
(b1, b2)

)
:= b1 ∐ b2.

This means that η(Ω1,Ω2) merely forms the disjoint union of the bipartite graphs b1
and b2. Then it is not difficult to see that η is a natural transformation satisfying
(D1). Moreover, Fη[Ω] consists of the connected bipartite graphs with bipartition
Ω = (Ω(1),Ω(2)).

For a weight, we choose Λ = Z[t] and

wΩ(b) := t|b|, b ∈ F [Ω].

Again, it is not difficult to see that w satisfies Axioms (W0)–(W2); that is, w is a
Λ-weight on (F,η).

Theorem 1 then says that

GFF (z1, z2) = exp
(
GFFη

(z1, z2)
)
, (7.1)
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where

GFF (z1, z2) =
∑

n1,n2≥0

∑

b∈F [([n1],[n2])]

t|b|
zn1
1 zn2

2

n1!n2!

and

GFFη
(z1, z2) =

∑

n1,n2≥0

∑

b∈Fη [([n1],[n2])]

t|b|
zn1
1 zn2

2

n1!n2!
.

However, by straightforward counting, one sees that

GFF (z1, z2) =
∑

n1,n2≥0

(1 + t)n1n2
zn1
1 zn2

2

n1!n2!
.

From (7.1), it then follows that the generating function for connected bipartite graphs
is given by

GFFη
(z1, z2) = log

( ∑

n1,n2≥0

(1 + t)n1n2
zn1
1 zn2

2

n1!n2!

)
,

while (2.11) implies that

G̃FF (z1, z2) :=
∑

n1,n2≥0

∑

b∈F [([n1],[n2])]

t|b|y#(connected components of b) z
n1
1 zn2

2

n1!n2!

=

( ∑

n1,n2≥0

(1 + t)n1n2
zn1
1 zn2

2

n1!n2!

)y

. (7.2)

This example can be considered as a 2-dimensional analogue of the example in [9,
Sec. 3] (with the first of the two composition operators considered there). The knowl-
edgeable reader will recognise (7.2) as the exponential generating function for the Tutte
polynomials of complete bipartite graphs (cf. e.g. [24, Eq. (3.10)]).

Example 2 (Bipartite graphs II). Let F : Set2 → Set be as in Example 1. Here,

for (Ω1,Ω2) ∈ Ob(D2), where Ωi = (Ω
(1)
i ,Ω

(2)
i ), i = 1, 2, for b1 ∈ F [Ω1] and b2 ∈ F [Ω2],

we put

η′(Ω1,Ω2)

(
(b1, b2)

)
:= b1 ∐ b2 ∐

(
Ω

(1)
1 × Ω

(2)
2

)
∐
(
Ω

(2)
1 × Ω

(1)
2

)
.

The graph η′(Ω1,Ω2)

(
(b1, b2)

)
can be considered as a kind of bipartite completion of the

disjoint union of b1 and b2. Again, it is not difficult to see that η′ is a natural trans-
formation satisfying (D1). Moreover, Fη′(Ω) consists of the complements of connected
bipartite graphs with bipartition Ω = (Ω(1),Ω(2)), where the complement bc of a bipar-
tite graph b ∈ F [Ω] is defined as bc :=

(
Ω(1) × Ω(2)

)
− b.

If we now were to choose the weight of Example 1, then Axiom (W2) would be
violated. Instead, with Λ = Z[t], we set

w′
Ω
(b) := t|Ω

(1)|·|Ω(2)|−|b|, b ∈ F [Ω] = F
[
(Ω(1),Ω(2))

]
.

Then it is not difficult to see that w′ does satisfy Axioms (W0)–(W2); that is, w′ is a
Λ-weight on (F,η′).

Theorem 1 then says that

GFF (z1, z2) = exp
(
GFFη′

(z1, z2)
)
, (7.3)
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where

GFF (z1, z2) =
∑

n1,n2≥0

∑

b∈F [([n1],[n2])]

tn1n2−|b| z
n1
1 zn2

2

n1!n2!

and

GFFη′
(z1, z2) =

∑

n1,n2≥0

∑

b∈Fη′ ([n1],[n2])

tn1n2−|b| z
n1
1 zn2

2

n1!n2!
.

Again, by straightforward counting, one sees that

GFF (z1, z2) =
∑

n1,n2≥0

(1 + t)n1n2
zn1
1 zn2

2

n1!n2!
,

and we obtain the formulae

GFFη′
(z1, z2) = log

( ∑

n1,n2≥0

(1 + t)n1n2
zn1
1 zn2

2

n1!n2!

)

and

G̃FF (z1, z2) :=
∑

n1,n2≥0

∑

b∈F [([n1],[n2])]

tn1n2−|b|y#(connected components of bc) z
n1
1 zn2

2

n1!n2!

=

( ∑

n1,n2≥0

(1 + t)n1n2
zn1
1 zn2

2

n1!n2!

)y

. (7.4)

This example can be viewed as a 2-dimensional analogue of the example in [9, Sec. 3]
(with the second of the two composition operators considered there).

The alert reader will have noticed that the η′-maps could have been alternatively
defined by

η′(Ω1,Ω2)

(
(b1, b2)

)
:=
(
bc1 ∐ bc2

)c
, (7.5)

where the complements have to be taken in the appropriate complete bipartite graphs.
This construction will be generalised in Section 9.

Example 3 (Binary functions). Let the (1-sort) species F : Set → Set be defined
by

F [Ω] := {0, 1}Ω, Ω ∈ Ob(Set).

For (Ω1,Ω2) ∈ Ob(D1), f1 ∈ F [Ω1], and f2 ∈ F [Ω2], put

(
η(Ω1,Ω2)

(
(f1, f2)

))
(ω) :=

{
f1(ω), if ω ∈ Ω1,

1 − f2(ω), if ω ∈ Ω2.

Then it is easy to see that η is a natural transformation satisfying (D1). Moreover,

Fη[Ω] =

{
{0Ω, 1Ω}, if |Ω| = 1,

{}, otherwise,

where 0Ω and 1Ω are the constant functions on Ω taking the value 0 and 1, respectively.
We note that, in contrast to Examples 1 and 2, the η-maps of the present example are
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pointwise non-associative and non-commutative (cf. Section 9); to be precise, in general
we have

η(Ω1∐Ω2,Ω3)

((
η(Ω1,Ω2)

(
(f1, f2)

)
, f3

))
6= η(Ω1,Ω2∐Ω3)

((
f1, η(Ω2,Ω3)

(
(f2, f3)

)))

and
η(Ω1,Ω2)

(
(f1, f2)

)
6= η(Ω2,Ω1)

(
(f2, f1)

)
.

For the sake of completeness, we remark that, choosing the trivial weighting

wΩ(f) := 1, f ∈ F [Ω],

Theorem 1 yields the trivial identity

GFF (z) =
∑

n≥0

2n z
n

n!
= exp

(
GFFη

(z)
)

= exp(2z).

The construction of this example can also be generalised to produce many more (mul-
tisort) species with pointwise non-associative and non-commutative composition oper-
ator, see Theorem 23 in Section 9.

8. Illustrations, II: Magic squares

The purpose of this section is to illustrate the increased flexibility of our present mul-
tivariate setting. We show that a number of generating function identities for combina-
torial matrices found scattered throughout the literature can be uniformly explained,
and generalised, in the context of our theory.

By a combinatorial matrix on Ω = (Ω(1),Ω(2)) ∈ Ob(Set2) we shall mean any map

m : Ω(1) × Ω(2) → N0.

The pair of sets Ω is called the support of m. Let m1,m2 be two combinatorial matrices

with supports Ω1 = (Ω
(1)
1 ,Ω

(2)
1 ) and Ω2 = (Ω

(1)
2 ,Ω

(2)
2 ), respectively, and suppose that

Ω1 ∩ Ω2 = ∅∅∅. Then we define their direct sum m = m1 ⊕m2 to be the combinatorial
matrix with support Ω := Ω1 ∐ Ω2 given by

m(ω1, ω2) :=





m1(ω1, ω2), (ω1, ω2) ∈ Ω
(1)
1 × Ω

(2)
1 ,

m2(ω1, ω2), (ω1, ω2) ∈ Ω
(1)
2 × Ω

(2)
2 ,

0, otherwise.

A combinatorial matrix m on Ω is termed s-magic,7 s a positive integer, if
∑

ω2∈Ω(2)

m(ω1, ω2) = s, ω1 ∈ Ω(1),

and ∑

ω1∈Ω(1)

m(ω1, ω2) = s, ω2 ∈ Ω(2).

Computing the sum of entries, we find that an s-magic matrix is necessarily square,
|Ω(1)| = |Ω(2)|. The enumeration of s-magic squares has a long history, going back to
MacMahon [20, §404–419]. A good account of the enumerative theory of magic squares

7Strictly speaking, the correct term here would be “s-semi-magic,” since we do not require diagonals
to sum up to s as well, see e.g. [3]. However, we prefer the term “s-magic” for the sake of brevity.
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can be found in [27, Sec. 4.6], with many pointers to further literature. For more recent
work, see for instance [3, 8].

For s ∈ N and Ω ∈ Ob(Set2), denote by Fs(Ω) the set of all s-magic matrices on
Ω, and by F̄s(Ω) the set of those s-magic matrices on Ω which do not contain s as an
entry. We thus have mappings

Fs, F̄s : Ob(Set2) → Ob(Set),

which we turn into functors Fs, F̄s : Set2 → Set by assigning to a morphism

f = (f1, f2) : Ω → Ω̃

in Set2 the map (denoted Fs[f ] respectively F̄s[f ]) sending a combinatorial matrix m
in the respective domain to m ◦ (f−1

1 × f−1
2 ). Moreover, given s and a finite set Ω, let

F ∗
s (Ω) be the set of symmetric s-magic matrices on Ω = (Ω,Ω); that is, combinatorial

matrices satisfying

m(ω1, ω2) = m(ω2, ω1), (ω1, ω2) ∈ Ω2;

and denote by F̄ ∗
s (Ω) the subset of F ∗

s (Ω) consisting of those matrices with no entry
equal to s. Just as above, the maps

F ∗
s , F̄

∗
s : Ob(Set) → Ob(Set)

become functors F ∗
s , F̄

∗
s : Set → Set by assigning to a morphism f : Ω → Ω̃ in Set the

map sending a combinatorial matrix m in the respective domain to m ◦ (f−1 × f−1).
Next, given s ∈ N, a pair (Ω1,Ω2) ∈ Ob(D2), and a pair (Ω1,Ω2) ∈ Ob(D1), the

direct sum construction provides us with injective maps

(ηs)(Ω1,Ω2) : Fs(Ω1) × Fs(Ω2) → Fs(Ω1 ∐ Ω2),

(η̄s)(Ω1,Ω2) : F̄s(Ω1) × F̄s(Ω2) → F̄s(Ω1 ∐ Ω2),

(η∗s)(Ω1,Ω2) : F ∗
s (Ω1) × F ∗

s (Ω2) → F ∗
s (Ω1 ∐ Ω2),

(η̄∗s)(Ω1,Ω2) : F̄ ∗
s (Ω1) × F̄ ∗

s (Ω2) → F̄ ∗
s (Ω1 ∐ Ω2).

A certain amount of checking is required in order to convince oneself that these defi-
nitions fit into the framework of Theorems 1 and 4. The next lemma states the corre-
sponding result. We leave its proof, which essentially amounts to a routine verification,
to the reader.

Lemma 19. (i) For each s ∈ N, the collection of maps

ηs =
(
(ηs)(Ω1,Ω2)

)
(Ω1,Ω2)∈Ob(D2)

is a natural transformation from the functor Fs × Fs to the functor Fs ◦ ∐.

Analogous statements hold for the functors F̄s, F
∗
s , F̄

∗
s , and the families of maps

η̄s =
(
(η̄s)(Ω1,Ω2)

)
(Ω1,Ω2)∈Ob(D2)

,

η∗
s =

(
(η∗s)(Ω1,Ω2)

)
(Ω1,Ω2)∈Ob(D1)

,

η̄∗
s =

(
(η̄∗s)(Ω1,Ω2)

)
(Ω1,Ω2)∈Ob(D1)

.

(ii) For each s, the pair (Fs,ηs) satisfies Axiom (D1), an analogous statement hold-

ing for each of the other pairs (F̄s, η̄s), (F ∗
s ,η

∗
s), and (F̄ ∗

s , η̄
∗
s).
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It follows from Lemma 19 and Theorem 4, that Equations (2.10) and (2.11) hold for
each of the pairs (Fs,ηs), (F̄s, η̄s), (F ∗

s ,η
∗
s), and (F̄ ∗, η̄∗

s); in particular, we find that

G̃FFs
(z1, z2, y) = exp

(
yGF(Fs)ηs

(z1, z2)
)
, (8.1)

G̃FF̄s
(z1, z2, y) = exp

(
yGF(F̄s)η̄s

(z1, z2)
)
, (8.2)

G̃FF ∗
s
(z, y) = exp

(
yGF(F ∗

s )η∗
s
(z)
)
, (8.3)

G̃FF̄ ∗
s
(z, y) = exp

(
yGF(F̄ ∗

s )η̄∗
s
(z)
)
. (8.4)

Note that in these identities the variable y keeps track of the number of indecompos-
able matrices into which the matrices which are counted by the respective generating
functions on the left-hand sides can be decomposed. Clearly, the generating functions
occurring in (8.1) and (8.2) can be viewed as formal power series in z1z2 and y; that
is, z1z2 could be replaced by a single variable. However, we prefer to keep z1 and z2

separate, since this is more in line with our general theory.

We note certain dependencies among the series G̃FFs
, G̃FF̄s

, G̃FF ∗
s
, G̃FF̄ ∗

s
; for in-

stance, we observe that an indecomposable s-magic matrix on ([n1], [n2]) cannot contain
an entry equal to s, unless n1 = n2 = 1. It follows that

∣∣(Fs)ηs
([n1], [n2])

∣∣ =

{
1 +

∣∣(F̄s)η̄s
([1], [1])

∣∣, n1 = n2 = 1,
∣∣(F̄s)η̄s

([n1], [n2])
∣∣, otherwise,

and hence, by Equations (8.1) and (8.2),

G̃FF̄s
(z1, z2, y) = e−z1z2y G̃FFs

(z1, z2, y). (8.5)

Similarly, we have

G̃FF̄ ∗
s
(z, y) = e−y(z+z2/2)G̃FF ∗

s
(z, y). (8.6)

Indeed, for n = 1, 2, there exist indecomposable symmetric s-magic matrices on ([n], [n])
containing an entry s:

(s) and

(
0 s
s 0

)
.

Now let m be a symmetric s-magic matrix on ([n], [n]) with n ≥ 3, and suppose that
m contains an entry equal to s in position (i, j). Then, if i = j, we have m = (s)⊕m′,
where m′ has support ([n] − {i}, [n] − {i}). If, on the other hand, i 6= j, then, by
symmetry, m also contains s in position (j, i), and we find that m splits as

m =

(
0 s
s 0

)
⊕m′,

where m′ has support ([n]−{i, j}, [n]−{i, j}), and is non-empty since n ≥ 3. Thus, in
both cases, m is in fact decomposable. Hence,

∣∣(F ∗
s )η∗

s
([n])

∣∣ =

{
1 +

∣∣(F̄ ∗
s )η̄∗

s
([n])

∣∣, n = 1, 2,
∣∣(F̄ ∗

s )η̄∗
s
([n])

∣∣, otherwise,

and (8.6) follows from Equations (8.3) and (8.4).
The enumeration can be done exactly if s = 2. For, according to Birkhoff’s Theorem

(cf. [5] or [1, Corollary 8.40]), a 2-magic matrix m is the sum of two permutation
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matrices, say p1 and p2. If m is indecomposable, then the pair {p1, p2} is uniquely
determined. Premultiplying by p−1

1 , we obtain a situation where p1 is the identity;
indecomposability forces p2 to be the permutation matrix corresponding to a cyclic
permutation. So there are n!(n− 1)! choices for (p1, p2), and half this many choices for
m (assuming, as we may, that n > 1). Note that this formula gives half the correct
number for n = 1. So we have

∣∣(F2)η2
([n1], [n2])

∣∣ =





1, n1 = n2 = n = 1,
n!(n−1)!

2
, n1 = n2 = n > 1,

0, n1 6= n2,

that is,

GF(F2)η2
(z1, z2) =

1

2
z1z2 −

1

2
log(1 − z1z2),

and therefore

G̃FF2(z1, z2, y) = (1 − z1z2)
−y/2 ez1z2y/2 (8.7)

by Equation (8.1). Also,

G̃FF̄2
(z1, z2, y) = (1 − z1z2)

−y/2 e−z1z2y/2, (8.8)

making use of Equation (8.5) and the last result. Special cases of Identities (8.7)
and (8.8) appear in [2, Sections 8.1 and 8.3] (see also [26, Eqs. (23) and (24) in Ex-
ample 6.11]). For s > 2, enumeration is more difficult; see Stanley’s paper [25] and
Comtet [7, pp. 124–125] for comments in this direction; also Goulden and Jackson [13,
Sections 3.4 and 3.5] for some variations on this counting problem.8

For symmetric matrices, it is again possible to count the indecomposables with s =
2. For n > 2, such a matrix can be represented as a graph in which every vertex
has degree 2; loops are permitted, but contribute only one to the degree of a vertex.
Indecomposability of the matrix is reflected in connectedness of the graph. So the
graphs we must consider are paths (with a loop at each end) and cycles; and, for n > 2,
their number is 1

2
(n! + (n− 1)!). Including the cases where n ≤ 2, we obtain

GF(F ∗
2 )η∗

2
(z) =

z2

4
+

z

2(1 − z)
−

1

2
log(1 − z),

and, hence

G̃FF ∗
2
(z, y) = (1 − z)−y/2 exp

(yz2

4
+

yz

2(1 − z)

)
, (8.9)

as well as

G̃FF̄ ∗
2
(z, y) = (1 − z)−y/2 exp

(
−
yz2

4
− yz +

yz

2(1 − z)

)
. (8.10)

Identity (8.9) generalises [14, Eq. (6.3)], whereas (8.10) generalises [14, Eq. (6.4)].

8Note however, that the formula given in [7] for s = 3 is erroneous.
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9. Simple commutative monoids in species

In this final section, we address the natural question: ‘Can one characterise all possi-

ble composition operators in r-sort species?’ In particular: how far can the composition
operator η of our theory differ from the standard operation for the species of sets of
combinatorial structures given by forming the disjoint union, of which Example 1 in
Section 7 is a prototypical example? We do not have an answer in general. However,
while addressing this question, we also clarify the relation of our work to the theory
developed by Menni in [21].

Already Joyal pointed out in [16, Sec. 7.1] that (r-sort) species are endowed with
the structure of a symmetric monoidal category. The main objects in Menni’s theory
[21] are simple commutative monoids in an arbitrary symmetric monoidal category. He
defines the notion of a decomposition as a simple commutative monoid that satisfies a
certain pullback condition (see [21, Def. 2.1]), and, in the case where the symmetric
monoidal category that we start with is the category of (r-sort) species, he shows that
a decomposition is equivalent with a composition operator as defined in Section 2. He
defines an exponential principle in this general setting, and he proves this principle to
hold for a large family of symmetric monoidal categories that includes r-sort species
(see [21, Prop. 1.4, Ex. 3.2, and Ex. 3.5 with I = 1 + 1 + · · · + 1, the summand 1
appearing r times in the sum]). He then moves on to characterise decompositions in
symmetric monoidal categories (see [21, Sec. 2.6]).

We shall next discuss the notions mentioned in the previous two paragraphs in some
more detail, in order to provide a better feeling of what Menni’s theory is about.
Subsequently, we shall make Menni’s characterisation of decompositions explicit for
the case of r-sort species, that is, of composition operators in the sense of Section 2
that define the structure of a simple commutative monoid in r-sort species. We shall
see that the latter is equivalent to the condition of the composition operator being
“pointwise associative” and “pointwise commutative” (see (9.4) and (9.5)). For the
sake of being self-contained, and for including the case of weighted species as well
(weights not being addressed in [21], which however could be built in without too much
effort), we provide an independent proof. We close this section by exhibiting a large
family of examples of composition operators (see Theorem 23), generalising Example 3,
that are not pointwise associative or commutative and, thus, do not define the structure
of a commutative monoid. These examples are therefore not included in Menni’s theory
[21], which shows that our axiomatic set-up is wider than Menni’s theory in the special
case of r-sort species.

Let Spr denote the category of r-sort species. Given two species F and G in Ob(Spr)
and Ω ∈ Ob(Setr), we define their product ∗ (a special case of the more general concept
of Day convolution; cf. [15] and [22, Sec. 3.1]) by

(F ∗G)[Ω] :=
∐

Ω1∐Ω2=Ω

F [Ω1] ×G[Ω2],

with the obvious morphisms. In order to discuss monoids in species, we need to intro-
duce the “unit” species 1 by

1[Ω] :=

{
{1} if Ω = ∅,

∅ if Ω 6= ∅.
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Here, 1 denotes a “canonical” element, and the morphisms are the obvious ones. Then
the triple (Spr, ∗,1) forms a symmetric monoidal category (see [16, Sec. 7.1]). We refer
the reader to [17] (see also [19]) for the precise definition of a symmetric monoidal
category. For our purposes, it suffices to say that, in the case of r-sort species, this
involves the natural transformation(s)

α = αF,G,H : F ∗ (G ∗H) → (F ∗G) ∗H

given by

α : (x, (y, z)) → ((x, y), z), for x ∈ F [Ω1], y ∈ G[Ω2], z ∈ H[Ω3],

where F,G,H ∈ Ob(Spr), and where Ω1,Ω2,Ω3 ∈ Ob(Setr) are pairwise disjoint, the
natural transformation(s)

β = βF,G : F ∗G→ G ∗ F

given by

β : (x, y) → (y, x), for x ∈ F [Ω1], y ∈ G[Ω2],

the natural transformation(s)

λ = λF : 1 ∗ F → F

given by

λ : (1, x) → x, for x ∈ F [Ω1],

and the natural transformation(s)

ρ = ρF : F ∗ 1 → F

given by

ρ = ρF : (x, 1) → x, for x ∈ F [Ω1],

so that — roughly speaking — all association and commutation laws that one may
think of are satisfied.

A monoid in the symmetric monoidal category Spr is by definition a triple (F, ∗,1),
where F ∈ Ob(Spr), such that there are natural transformations µ : F ∗ F → F and
ν : 1 → F such that the diagrams

F ∗ (F ∗ F )
α

- (F ∗ F ) ∗ F
µ ∗ id

- F ∗ F

F ∗ F

id ∗µ

? µ
- F

µ

?

(9.1)

and

1 ∗ F
ν ∗ id

- F ∗ F
id ∗ν

- F ∗ 1

F

µ

?

ρ

�

λ
-

(9.2)
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commute. A monoid (F, ∗,1) is commutative if the diagram

F ∗ F
β

- F ∗ F

F

µ

�

µ
-

(9.3)

commutes. It is called simple if the natural transformation ν : 1 → F is unique.
As Menni explains in [21, Example 3.2], a natural transformation η from F × F to

F ◦ ∐ as in Section 2 induces a natural transformation µ : F ∗ F → F by

F [Ω1] × F [Ω2]
η(Ω1,Ω2)

−→ F [Ω1 ∐ Ω2]
id

−→ F [Ω]

(where, as usual, Ω = Ω1 ∐ Ω2 is a partition of Ω) and by the universality property
of coproducts. Conversely, a natural transformation µ : F ∗ F → F induces a natural
transformation η from F × F to F ◦ ∐ by

F [Ω1] × F [Ω2] −→ (F ∗ F )[Ω1 ∐ Ω2]
µ

−→ F [Ω1 ∐ Ω2]

In this precise sense, natural transformations µ : F ∗F → F and natural transformations
η : F×F → F ◦∐ are equivalent notions. Under this equivalence, commutativity of the
diagrams (9.1) and (9.3) is equivalent to the composition operator η being pointwise

associative and pointwise commutative, respectively. Here, we say that η is pointwise
associative if, for all pairwise disjoint Ω1,Ω2,Ω3 ∈ Ob(Setr), and all elements x1 ∈
F [Ω1], x2 ∈ F [Ω2], x3 ∈ F [Ω3], we have

η(Ω1∐Ω2,Ω3)

((
η(Ω1,Ω2)

(
(x1, x2)

)
, x3

))
= η(Ω1,Ω2∐Ω3)

((
x1, η(Ω2,Ω3)

(
(x2, x3)

)))
, (9.4)

and we say that η is pointwise commutative if, for all (Ω1,Ω2) ∈ Ob(Dr), and all
elements x1 ∈ F [Ω1], x2 ∈ F [Ω2], we have

η(Ω1,Ω2)

(
(x1, x2)

)
= η(Ω2,Ω1)

(
(x2, x1)

)
. (9.5)

The η-maps in Examples 1 and 2 are instances of pointwise associative and commutative
composition operators, while the composition operator in Example 3 is neither pointwise
associative nor pointwise commutative. The notion of pointwise commutativity and
associativity should not be confused with the commutativity and the 3-associativity
proved in Lemmas 6 and 7, respectively, which are (in general) strictly weaker assertions.
In particular, if (F, ∗,1) is a monoid, then all “permutabilities” in Lemmas 6, 7, 9, 11,
15 come for free since they hold already on a functorial level, but, as Theorem 23 shows,
the converse is not true; that is, these “permutabilities” do not guarantee that (F, ∗,1)
forms a monoid.

Finally, it is easy to see that there is a unique natural transformation ν : 1 → F if
and only if |F [∅]| = 1, a condition automatically satisfied by a composition operator
(see Lemma 5), and it is also easy to see that the diagram (9.2) always commutes.

To summarise the above discussion: the notion of (F, ∗,1) being a simple commuta-
tive monoid is equivalent to the corresponding composition operator η being pointwise
associative and commutative.
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Now that we have discussed the precise relationship between the theory in [21] (spe-
cialised to r-sort species) and our setting laid down in Section 2, we want to make
Menni’s characterisation of simple commutative monoids in the case of r-sort species,
that is — in our language — of pointwise and associative composition operators, ex-
plicit. In order to do so, we need two preparatory results. Recall that a species isomor-

phism between two r-sort species F1 and F2 is a collection of maps ϕ = (ϕΩ)Ω∈Ob(Set
r),

where, for each Ω ∈ Ob(Setr),

ϕΩ : F1[Ω] → F2[Ω]

is a bijection, with the property that, for every morphism f : Ω → Ω̃ in the category
Setr, the diagram

F1[Ω]
F1[f]
−−−→ F1[Ω̃]

ϕΩ

y
yϕeΩ

F2[Ω] −−−→
F2[f]

F2[Ω̃]

(9.6)

commutes. If F1 carries a weak Λ1-weight w1 and F2 carries a weak Λ2-weight w2,
where, by “weak,” we mean that w1 and w2 satisfy Axioms (W0) and (W1), but not
necessarily (W2) (cf. Section 2), then an isomorphism ϕ : F1 → F2 is called weight-

preserving, if there exists a ring homomorphism λ : Λ1 → Λ2 such that the diagram

F1[Ω]
(w1)Ω
−−−→ Λ1

ϕΩ

y
yλ

F2[Ω] −−−→
(w2)Ω

Λ2

(9.7)

commutes.
The lemma below tells us that, if F1 and F2 are two isomorphic r-sort species, where

F1 is decomposable with composition operator η1, then η1 can be lifted to a composition
operator for F2, demonstrating that F2 is decomposable as well.

Lemma 20. Let F1 and F2 be two isomorphic r-sort species, where F1 is decomposable

with composition operator η1. Furthermore, let ϕ be an isomorphism between F1 and

F2. Then F2 is decomposable, and the family of maps η2 = ((η2)(Ω1,Ω2))(Ω1,Ω2)∈Ob(Dr)

defined by

(η2)(Ω1,Ω2)(x1, x2) := ϕΩ1∐Ω2

(
(η1)(Ω1,Ω2)

(
(ϕ−1

Ω1
(x1), ϕ

−1
Ω2

(x2))
))
,

x1 ∈ F2[Ω1], x2 ∈ F2[Ω2],

is a composition operator for F2.

Proof. We have to show that η2 is a natural transformation from F2 × F2 to F2 ◦ ∐,
and that the pair (F2,η2) satisfies Axiom (D1). The former follows immediately from
the corresponding property for (F1,η1) and the naturality condition (9.6). In order to
verify (D1), we start with the left-hand side of (2.3) for the pair (F2,η2), suppressing
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the indices of η1, η2, ϕ for better readability:

η2

(
F2[Ω1] × F2[Ω2]

)
∩ η2

(
F2[Ω̃1] × F2[Ω̃2]

)

= ϕ
(
η1

(
ϕ−1(F2[Ω1]) × ϕ−1(F2[Ω2])

))
∩ ϕ
(
η1

(
ϕ−1(F2[Ω̃1]) × ϕ−1(F2[Ω̃2])

))

= ϕ
(
η1

(
F1[Ω1] × F1[Ω2]

))
∩ ϕ
(
η1

(
F1[Ω̃1] × F1[Ω̃2]

))

= ϕ
(
η1

(
F1[Ω1] × F1[Ω2]

)
∩ η1

(
F1[Ω̃1] × F1[Ω̃2]

))
.

Here we have used the injectivity of ϕ to obtain the last line. Now we substitute the
right-hand side of (2.3) for the pair (F1,η1), to obtain

η2

(
F2[Ω1] × F2[Ω2]

)
∩ η2

(
F2[Ω̃1] × F2[Ω̃2]

)

= ϕ
(
η1

(
η1

(
F1[Ω11] × F1[Ω12]

)
× η1

(
F1[Ω21] × F1[Ω22]

)))
,

where Ωij := Ωi ∩ Ω̃j for i, j ∈ {1, 2}. Using F1[Ωij] = ϕ−1(F2[Ωij]) at each possible
place, and inserting id = ϕ−1 ◦ ϕ at two places, we arrive at

η2

(
F2[Ω1]×F2[Ω2]

)
∩ η2

(
F2[Ω̃1] × F2[Ω̃2]

)

= ϕ
(
η1

(
ϕ−1

(
ϕ
(
η1

(
ϕ−1(F2[Ω11]) × ϕ−1(F2[Ω12])

)))

× ϕ−1
(
ϕ
(
η1

(
ϕ−1(F2[Ω21]) × ϕ−1(F2[Ω22])

)))))

= η2

(
η2

(
F2[Ω11] × F2[Ω12]

)
× η2

(
F2[Ω21] × F2[Ω22]

))
,

which is exactly (2.3) for the pair (F2,η2). �

The second preparatory result, Proposition 21 below, states that, given a decompos-
able r-sort species F with pointwise associative and commutative composition operator
η, F is isomorphic to E(Fη), where E(Fη) denotes the species of sets of Fη-structures
(cf. [6, p. 8] for the definition of the species of sets, E, and [6, p. 41] for the definition
of composition of species). In rigorous terms, for Ω ∈ Ob(Setr), the set E(Fη)[Ω] can
be defined by

E(Fη)[Ω] :=
{{

(x1,Ω1), . . . , (xk,Ωk)
}

: xi ∈ Fη[Ωi], i = 1, . . . , k,

for some k ∈ N0 and Ω1 ∐ · · · ∐ Ωk = Ω, all Ωi’s being non-empty
}
,

with the obvious notion of induced morphisms. If F carries a weak Λ-weight w, then
w can be lifted to a weak Λ-weight of E(Fη) by setting

wΩ

({
(x1,Ω1), . . . , (xk,Ωk)

})
:= wΩ1(x1) · · ·wΩk

(xk).

Proposition 21. Let F be a decomposable weighted r-sort species with composition

operator η, where η is pointwise associative and commutative. Then there exists a

weight-preserving isomorphism between F and E(Fη).
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Proof. The starting point is the combination of Lemmas 12 and 13. It says that, for
each non-empty Ω ∈ Ob(Setr) and every choice of base point (ω, ρ) ∈ Ω, we have

F [Ω] =
∐

Ω1∈Ob(Set
r)

(ω,ρ)∈Ω1⊆Ω

η(Ω1,Ω−Ω1)

(
Fη[Ω1] × F [Ω − Ω1]

)
. (9.8)

We are now going to construct bijective maps ψΩ : F [Ω] → E(Fη)[Ω] by induction on
‖Ω‖, where ‖ . ‖ has been defined in (2.6). For Ω = ∅∅∅, we have |F [Ω]| = |E(Fη)[Ω]| = 1
by Lemma 5 respectively the definition of E(Fη), whence the construction of ψ∅∅∅ is
trivial. Henceforth, we shall suppose that ‖Ω‖ ≥ 1, and we assume that we have

constructed maps ψeΩ
for all Ω̃ ∈ Ob(Setr) with ‖Ω̃‖ < N .

Now let ‖Ω‖ = N . Choose a base point (ω, ρ) ∈ Ω, and let x ∈ F [Ω]. By (9.8), there
is a unique Ω1 such that x ∈ η(Ω1,Ω−Ω1)

(
Fη[Ω1] × F [Ω − Ω1]

)
and (ω, ρ) ∈ Ω1. Let

(y1, x1) be the uniquely determined pair with y1 ∈ Fη[Ω1] and x1 ∈ F [Ω − Ω1], such
that

(y1, x1) := η−1
(Ω1,Ω−Ω1)(x). (9.9)

By the inductive hypothesis, there exist uniquely determined elements y2, . . . , yk, for
some k ∈ N and yi ∈ Fη[Ωi], i = 2, . . . , k, with Ω2 ∐ · · · ∐ Ωk = Ω − Ω1, such that

ψΩ−Ω1(x1) =
{
(y2,Ω2), . . . , (yk,Ωk)

}
. (9.10)

Define

ψΩ(x) :=
{
(y1,Ω1), (y2,Ω2), . . . , (yk,Ωk)

}
.

We claim that this yields a well-defined bijection ψΩ : F [Ω] → E(Fη)[Ω]. What needs
to be checked here first of all is that different choices of base points would always lead
to the same result. So, let us suppose, that, by choosing a different base point, we
would have obtained

ψ̄Ω(x) :=
{
(ȳ1, Ω̄1), (ȳ2, Ω̄2), . . . , (ȳl, Ω̄l)

}
,

for some l, instead. Since we must have

Ω = Ω1 ∐ Ω2 ∐ · · ·Ωk = Ω̄1 ∐ Ω̄2 ∐ · · · Ω̄l,

there is a j such that (w, ρ) ∈ Ω̄j. By our inductive construction via (9.9) and (9.10),
we have

x ∈ η
(
Fη[Ω̄1] × η

(
Fη[Ω̄2] × · · · ×

(
Fη[Ω̄l−1] × Fη[Ω̄l]

)
· · ·
))
.

By Lemma 15 (m-permutability for (Fη,η)), this is equivalent to saying that

x ∈ η
(
Fη[Ω̄j] × η

(
Fη[Ω̄σ(2)] × · · · ×

(
Fη[Ω̄σ(l−1)] × Fη[Ω̄σ(l)]

)
· · ·
))
, (9.11)

where σ(2), . . . , σ(l − 1), σ(l) is some permutation of {1, . . . , j − 1, j + 1, . . . , l}. If
Ω̄j 6= Ω1, then (9.9) and (9.11) would contradict the disjointness in (9.8). Hence,
we must have Ω̄j = Ω1, and, by our assumption that η be pointwise associative and
commutative, we even must have ȳj = y1. The inductive hypothesis applied to Ω−Ω1

then guarantees that, moreover,

{(y2,Ω1), . . . , (yk,Ωk)} = {(ȳ1,Ω1), . . . , (ȳj−1, Ω̄j−1), (ȳj+1, Ω̄j+1), . . . , (ȳl,Ωl)}.

This proves that ψΩ is indeed well-defined.
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The facts that each map ψΩ is a bijection, and that the family ψ = (ψΩ)Ω∈Ob(Set
r)

is an isomorphism between F and E(Fη), are not hard to verify. The fact that ψ is
weight-preserving is obvious from the definition of ψ and Axiom (W2) for (F,η,w).
This completes the proof of the proposition. �

If we combine Lemma 20 and Proposition 21, then we can say exactly how a decom-
posable r-sort species F with pointwise associative and commutative composition oper-
ator η arises from the composition of the species of sets with the species of Fη-structures
(“components”). We should point out here that, clearly, a natural composition operator
for E(Fη) is given by

(y1, y2) 7→ y1 ∐ y2, y1 ∈ E(Fη)[Ω1], y2 ∈ E(Fη)[Ω2], Ω1 ∐ Ω2 = Ω. (9.12)

Theorem 22. Let F be a decomposable r-sort species with composition operator η,

where η is pointwise associative and commutative. Then, for all (Ω1,Ω2) ∈ Ob(Dr),
the composition operator η can be expressed as follows:

η(Ω1,Ω2)(x1, x2) = ψ−1
Ω1∐Ω2

(
ψΩ1(x1) ∐ ψΩ2(x2)

)
, x1 ∈ F [Ω1], x2 ∈ F [Ω2], (9.13)

where ψ is the isomorphism between F and E(Fη) constructed in the proof of Proposi-

tion 21.

Proof. One combines Lemma 20 with Proposition 21, where the role of the isomor-
phism ϕ in Lemma 20 is played by the family of maps ψ−1 constructed in the proof of
Proposition 21. �

In summary, all decomposable r-sort species with pointwise associative and commuta-
tive composition operator can be constructed from E(G), for some species G, equipped
with the natural composition operator as given in (9.12) (in the case where G = Fη),
by applying a lift in the sense of Lemma 20 via a species isomorphism. In the more
general setting of [21], the identification of the “indecomposable” objects G (denoted
by L(F, ζ) there) is explained in [21, Sec. 2.6], while the isomorphism between F and
“composite objects built from G” (denoted by EG = E L(F, ζ) there) is constructed in
[21, Lemma 2.8].

In order to see how Example 2 in Section 7 fits into the setting of Theorem 22, recall
that the isomorphism between F and E(Fη) in that example can be defined by mapping
the bipartite graph b ∈ F [Ω] to its complement bc, identifying the connected components
(in the classical sense of graph theory) of bc, and forming the set of complements of these
connected components (restricted to the set of vertices which a component involves).
If this isomorphism is inserted in (9.13), the result is (7.5).

We conclude our paper by pointing out that the construction in Theorem 22 can
be “twisted” to produce pointwise non-associative and non-commutative composition
operators as well, thereby obtaining a large family of examples that still fit under our
theory but not under Menni’s.

Theorem 23. Let G be a weighted r-sort species, and let g : G → G be a weight-

preserving isomorphism. We extend g to E(G) by setting

gΩ∐···∐Ωk

({
(y1,Ω1), . . . , (yk,Ωk)

})
=
{
(gΩ1(y1),Ω1), . . . , (gΩk

(yk),Ωk)
}
.
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Then the family η = (η(Ω1,Ω2))(Ω1,Ω2)∈Ob(Dr) of maps defined by

η(Ω1,Ω2)(x1, x2) = x1 ∐ gΩ2(x2), x1 ∈ E(G)[Ω1], x2 ∈ E(G)[Ω2],

where (Ω1,Ω2) ∈ Ob(Dr), is a composition operator for the weighted species E(G).

It is obvious from the definition that the composition operator η of Theorem 23 will,
in general, be neither pointwise associative nor pointwise commutative and, thus, not
fit into the theory in [21]. Example 3 in Section 7 provides a typical example of the
above construction, with G given by

G[Ω] =

{
{0Ω, 1Ω}, if |Ω| = 1,

{}, otherwise,

where 0Ω and 1Ω are the constant functions on Ω taking the value 0 and 1, respectively,
and where the isomorphism g is given by gΩ(0Ω) = 1Ω and gΩ(1Ω) = 0Ω for |Ω| = 1.
However, we expect that there are many composition operators η not obtainable in this
way.
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