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MAYER AND REE–HOOVER WEIGHTS OF INFINITE

FAMILIES OF 2-CONNECTED GRAPHS

AMEL KAOUCHE AND PIERRE LEROUX

Abstract. We study graph weights (i.e., graph invariants) which arise natu-
rally in Mayer’s theory and Ree–Hoover’s theory of virial expansions in the con-
text of a non-ideal gas. We give special attention to the Second Mayer weight
wM (c) and the Ree–Hoover weight wRH(c) of a 2-connected graph c which
arise from the hard-core continuum gas in one dimension. These weights are
computed using signed volumes of convex polytopes naturally associated with
the graph c. Among our results are explicit formulas for the values of Mayer
weights and Ree–Hoover weights for certain infinite families of 2-connected
graphs.

Résumé. Nous étudions des poids de graphes (à savoir, des invariants de
graphes) qui apparaissent naturellement dans les théories de Mayer et de Ree–
Hoover du développement du viriel dans le contexte de gas non-idéaux. Nous
nous intéressons spécialement au second poids de Mayer wM (c) et de Ree–
Hoover wRH(c) pour un graphe 2-connexe c provenant d’un gaz à noyaux durs
en dimension un. Ces poids sont calculés en utilisant des volumes signés de
polytopes convexes associés au graphe c. Parmi nos résultats, nous donnons
des formules explicites pour le poids de Mayer et de Ree–Hoover pour certaines
familles infinies de graphes 2-connexes.

1. Introduction

Graph weights can be defined as functions on (simple, finite) graphs taking
scalar or polynomial values and which are invariant under isomorphism, i.e., under
vertex relabelling. Since most graphical concepts share this invariance property,
examples of graph weights abound. For instance, the graph complexity γ(g) of
a graph g, which is defined as the number of maximal spanning forests of g,
is an example of a graph weight. In the context of a non-ideal gas in a vessel
V ⊆ R

d, the Second Mayer weight wM(c) of a connected graph c, over the set
[n] = {1, 2, . . . , n} of vertices, is defined by

wM(c) =

∫

(Rd)n−1

∏

{i,j}∈c

f(‖−→xi −
−→xj‖) d−→x1 · · · d

−−→xn−1,
−→xn = 0, (1)
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where −→x1, . . . ,
−→xn are variables in R

d representing the positions of n particles in V
(V → ∞), the value −→xn = 0 being arbitrarily fixed, and where f = f(r) is real-
valued function associated with the pairwise interaction potential of the particles,
see [16, 7].

Let C[n] be the set of connected graphs over [n]. The total sum of weights of
connected graphs over [n] is denoted by

|C[n]|wM
=

∑

c∈C[n]

wM(c). (2)

The interest of this sequence in statistical mechanics comes from the fact that
the pressure P of the system is given by its exponential generating function as
follows (see [7]):

P

kT
= CwM

(z) =
∑

n≥1

|C[n]|wM

zn

n!
, (3)

where k is a constant, T is the temperature and z is a variable called the fugacity
or the activity of the system. It is known that the weight wM is multiplicative
over 2-connected components so that in order to compute the weights wM(c) of
the connected graphs c ∈ C[n], it is sufficient to compute the weights wM(b) for
2-connected graphs b ∈ B[n] (B for blocks). Moreover, these occur in the so-called
virial expansion proposed by Kamerlingh Onnes in 1901

P

kT
= ρ + β2ρ

2 + β3ρ
3 + · · · , (4)

where ρ is the density. Indeed, it can be shown that

βn =
1 − n

n!
|B[n]|wM

, (5)

where B[n] denote the set of 2-connected graphs over [n] and |B[n]|wM
is the

total sum of weights of 2-connected graphs over [n]. In order to compute this
expansion numerically, Ree and Hoover [10] introduced a modified weight denoted
by wRH(b), for 2-connected graphs b, which greatly simplifies the computations.
It is defined by

wRH(b) =

∫

(Rd)n−1

∏

{i,j}∈b

f(‖−→xi −
−→xj‖)

∏

{i,j}/∈b

f(‖−→xi −
−→xj‖) d−→x1 · · · d

−−→xn−1,
−→xn = 0,

(6)
where f(r) = 1 + f(r). Using this new weight, Ree and Hoover [10, 11, 12] and
later Clisby and McCoy [2, 3] have computed the virial coefficients βn, for n up
to 10, in dimensions d ≤ 8, in the case of the hard-core continuum gas, that is
when the interaction is given by

f(r) = −χ(r < 1), f(r) = χ(r ≥ 1), (7)
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where χ denotes the characteristic function (χ(P ) = 1, if P is true and 0, other-
wise).

While physicists are interested in summing the weights of all connected or 2-
connected graphs of a given order, the present paper focuses on individual graph
contributions and their combinatorial significance. For a given individual graph,
the Mayer and Ree–Hoover weights can be computed using Ehrhart polynomials
in the case of the hard-core continuum gas in dimension d = 1. This has been
done systematically for graphs of size ≤ 8 in [5, 6]. The main goal of the present
paper is to give exact formulas for certain infinite families of graphs.

In Section 1, we use Möbius inversion to give explicit linear relations expressing
the Ree–Hoover weights in terms of the Mayer weights and vice versa. The total
Mayer weight |B[n]|wM

is then rewritten in terms of the weight function wRH

introduced by Ree and Hoover [10, 11]. This rewriting involves special coefficients
called star contents. The interest of using the Ree–Hoover weight is that it has
the value zero for many graphs. Some general explicit and recursive properties
of the star content are given.

Section 2 is devoted to the special case of the hard-core continuum gas in one
dimension in which the Mayer weight turns out to be a signed volume of a convex
polytope P(c) naturally associated with the graph c. Sufficient conditions for
the nullity of the Ree–Hoover weight of a graph are also given. An alternate
useful tool, a decomposition of the polytope P(c) into a certain number of (n −
1)-dimensional simplices, of volume 1/(n − 1)! is exploited. This method was
introduced in [7] and is called the method of graph homomorphisms. We adapt
this method to the context of Ree–Hoover weights. The explicit computation of
Mayer or Ree–Hoover weights of particular graphs is very difficult in general and
have been made for only certain specific families of graphs (e.g., the complete
graphs Kn, the cycle graphs Cn). In the present paper we extend this list to
graphs of the form Kn\g, where g can be a star graph, a cycle, path graph, or
connections of some of these graphs, etc. We give new explicit formulas of the
Ree–Hoover weight of these graphs in Section 3. Section 4 is devoted to the
explicit computation of their Mayer weight.

The following conventions are used in the present paper. Each graph g is
identified with its set of edges. So that, {i, j} ∈ g means that {i, j} is an edge in
g between vertex i and vertex j. The number of edges in g is denoted e(g). If e is
an edge of g (i.e. e ∈ g), g\e denotes the graph obtained from g by removing the
edge e. If a is a vertex of g, g\a denotes the graph obtained by removing from
g vertex a and all its incident edges. If b and d are graphs, b ⊆ d means that b
is a subgraph of d. The complete graph on the vertex set [n] = {1, 2, . . . , n} is
denoted by Kn. The complementary graph of a subgraph g ⊆ Kn is the graph
g = Kn\g.
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2. Relations between wM and wRH

2.1. Mayer weight, Ree–Hoover weight and star content. An important
rewriting of the virial coefficients was performed by Ree and Hoover [10, 11] by
introducing the function

f(r) = 1 + f(r) (8)

and defining a new weight (denoted here by wRH(b)) for 2-connected graphs b,
by (9)

wRH(b) =

∫

(Rd)n−1

∏

{i,j}∈b

f(‖−→xi −
−→xj‖)

∏

{i,j}/∈b

f(‖−→xi −
−→xj‖) d−→x1 · · · d

−−→xn−1,
−→xn = 0,

(9)
and then expanding each weight wM(b) by substituting 1 = f − f for pairs of
vertices not connected by edges. Upon performing this rewriting of the Mayer
weights series, vertices in the resultant graphs will all be mutually connected by
either f bonds (solid lines) orf bonds (dotted lines). For example, we have

wM( ) = wRH( ), (10)

wM( ) = wRH( ) − wRH( ), (11)

wM( ) = wMRH( ) − wM( )

= {wRH( ) − wRH( )} − {wRH( ) − wRH( )}

= wRH( ) − 2 · wRH( ) + wRH( ). (12)

In the general situation, using Möbius inversion, it is easy to state formulas linking
the two weights wM and wRH . These formulas are implicit in the work of [11].

Proposition 1. For a 2-connected graph b, we have

wRH(b) =
∑

b⊆d⊆Kn

wM(d), (13)

wM(b) =
∑

b⊆d⊆Kn

(−1)e(d)−e(b)wRH(d). (14)
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Proof. From (9) and the fact that f = 1 + f , we have

wRH(b) =

∫

(Rd)n−1

∏

{i,j}∈b

f(‖−→xi −
−→xj‖)

∏

{i,j}/∈b

f(‖−→xi −
−→xj‖) d−→x1 · · · d

−−→xn−1

=

∫

(Rd)n−1

∏

{i,j}∈b

f(‖−→xi −
−→xj‖)

∏

{i,j}∈b

(1 + f(‖−→xi −
−→xj‖)) d−→x1 · · · d

−−→xn−1

=

∫

(Rd)n−1

∑

E⊆b

∏

{i,j}∈E∪b

f(‖−→xi −
−→xj‖) d−→x1 · · · d

−−→xn−1

=

∫

(Rd)n−1

∑

b⊆d⊆Kn

∏

{i,j}∈d

f(‖−→xi −
−→xj‖) d−→x1 · · · d

−−→xn−1

=
∑

b⊆d⊆Kn

wM(d).

Using Möbius inversion on (13) for the lattice of subsets of Kn, with the Möbius
function µ(b, d) = (−1)e(d)−e(b), we find (14). �

Remark 1. By the definition of the Ree–Hoover weight, we have in particular

wRH(Kn) = wM(Kn), n ≥ 2. (15)

When expressing the total weight |B[n]|wM
in terms of Ree–Hoover weights,

there is a new factor which appears for each graph in the expansion of each
Mayer weight wM(b). This factor is called the star content by Ree and Hoover
[11], and may be either a positive or negative integer.

Definition 2. Let d be a 2-connected graph over the set [n] = {1, 2, · · · , n}. Then,
an(d), the star content of the graph d, is defined by

an(d) =
∑

b⊆d

b∈B[n]

(−1)e(d)−e(b). (16)

Proposition 3. |B[n]|wM
, the total sum of weights of 2-connected graphs over [n]

is given by

|B[n]|wM
=

∑

d∈B[n]

an(d)wRH(d). (17)
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Proof. Using (14) we can write |B[n]|wM
as

|B[n]|wM
=

∑

b∈B[n]

wM(b)

=
∑

b∈B[n]

∑

b⊆d⊆Kn

(−1)e(d)−e(b)wRH(d)

=
∑

d∈B[n]

∑

b⊆d

b∈B[n]

(−1)e(d)−e(b)wRH(d)

=
∑

d∈B[n]

an(d)wRH(d).

�

So, we can write βn as

βn =
1 − n

n!

∑

b∈B[n]

an(b)wRH(b). (18)

Note that since wM and wRH are graph invariants, the sum (17) can be simplified
as

|B[n]|wM
=

∑

eb∈ eB[n]

ℓ(b)wM(b)

=
∑

eb∈ eB[n]

ℓ(b)an(b)wRH(b), (19)

where B̃[n] is the set of unlabelled graphs b̃ with n vertices and ℓ(b) is the number

of labellings of b̃.
For example using the three equations (10)–(12) and (19), the total weight

|B[4]|wM
may be written as

|B[4]|wM
= 1 · wM( ) + 6 · wM( ) + 3 · wM( )

= (−2) · wRH( ) + 0 · wRH( ) + 3 · wRH( )

= 1 · (−2) · wRH( ) + 6 · 0 · wRH( ) + 3 · 1 · wRH( ), (20)

where 1, 6, 3 represent ℓ(b) and (-2), 0, 1 are the star contents a4(b) of the graphs

b = , , , respectively.

Proposition 4. We have ∑

d∈B[n]

an(d) = 1, (21)
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where B[n] is the set of all 2-connected graphs over [n].

Proof. We have
∑

d∈B[n]

an(d) =
∑

d∈B[n]

∑

b⊆d

b∈B[n]

(−1)e(d)−e(b)

=
∑

b∈B[n]

∑

b⊆d⊆Kn

(−1)e(d)−e(b).

Now, for any two graphs b, d ∈ B[n], b ⊆ d ⊆ Kn if and only if d\b ⊆ Kn\b.
Hence, by the binomial theorem

∑

b⊆d⊆Kn

(−1)e(d)−e(b) =
∑

g⊆Kn\b

(−1)e(g)

= (1 + (−1))e(Kn\b)

is equal to 1 if b = Kn and 0 otherwise. This concludes the proof of (21). �

2.2. Star content of some special graphs. This section is devoted to the
study of the star content of some special graphs. We say that a simple graph g
over [n] is an extension of another graph h over [n − 1], if g is obtained from h
by adding a new vertex n along with some edges between n and the graph h. Let
g
∣∣
[n−1]

= g\n denote the restriction of g to the set [n − 1] (that is, the vertex n

and all its incident edges are removed).

Proposition 5. Let g a 2-connected graph over [n] such that the vertex n is joined
to every other vertex and let g′ = g\n be the graph obtained from g by removing
the vertex n and all its incident edges. Then if g′ is also 2-connected, we have

an(g) = (−1)n−1(n − 2) an−1(g
′). (22)

In order to prove this proposition, we need first the three following lemmas:

Lemma 6. Let e = {a, b} be an edge of a 2-connected graph G where the vertex
a is a cutpoint of the graph G\b. Then, G\e is 2-connected.

Proof. Since G is 2-connected, both a and b are connected to each connected
components C1, . . . , Ck of G\a\b (see Figure 1). Moreover, since the vertex a is
a cutpoint , the number k of components is at least 2. Consider now a vertex c
of G. We have to prove G\c\e is connected. Since G is 2-connected, we know
that G\c is connected. Now if c is equal to a or b, the graph G\c\e = G\c is
connected. If c 6= a, b the vertex c belongs to one of the components C1, . . . , Ck,
say C1. Moreover a et b are linked by a path of G\c going through C2. Hence
e = {a, b} is not an isthmus of G\c and G\c\e is connected. �



8 AMEL KAOUCHE AND PIERRE LEROUX

a

b

Figure 1. A 2-connected graph G with the connected components
of G\b\a

Lemma 7. Let h be a 2-connected graph over [n − 1]. Then we have
∑

g∈B[n]

g\n=h

(−1)e(g)−e(h) = n − 2· (23)

Proof. For a 2-connected graph h over the set [n − 1], consider the set

A = {g | g is a graph over [n] and g\n = h},

and define a weight function w over A by

w(g) = (−1)e(g)−e(h), ∀g ∈ A.

Consider the following involution Inv1 acting on the set A :

Inv1(g) =

{
g\{1, n}, if {1, n} ∈ g,

g ∪ {1, n}, otherwise.

The total weight of the set A, |A|w, is given by

|A|w =
∑

g∈A

(−1)e(g)−e(h) = |Fix Inv1|w,

where Fix Inv1 denotes the set of all fixed points of the involution Inv1. It is easy
to see that Inv1 has no fixed point. Hence,

|A|w =
∑

g\n=h

(−1)e(g)−e(h) = 0. (24)

Moreover, there are n − 1 different ways to obtain an extension g by adding a
unique edge between n and h for any 2-connected graph h of size n − 1. In this
case, g is not 2-connected. In the same way, there is only one extension g for h by
adding the vertex n without new edge and therefore g is also not connected. If we
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add the vertex n and two or more edges to the graph h, g is always 2-connected.
Then we can write (24) as

∑

g∈B[n]

g\n=h

(−1)e(g)−e(h) = −
∑

g /∈B[n]

g\n=h

(−1)e(g)−e(h)

= −(−(n − 1) + 1)

= n − 2,

which concludes the proof. �

Lemma 8. Let h be a graph over the set [n − 1] which is not 2-connected. Then
we have ∑

g∈B[n]

g\n=h

(−1)e(g) = 0· (25)

Proof. For a graph h over the set [n − 1] which is not 2-connected, consider the
set

B = {g | g is a 2−connected graph over [n] and g\n = h}.

If h is not connected then B = ∅ and (25) is trivially satisfied. If h is connected
let a be the cutpoint of h having the smallest label. Define the following weight
function w over B :

w(g) = (−1)e(g), ∀g ∈ B.

Consider the following involution Inv2 acting on the set B :

Inv2(g) =

{
g\{a, n}, if {a, n} ∈ g,

g ∪ {a, n}, otherwise.

Note that for all g ∈ B, Inv2(g) is 2-connected by Lemma 6. Hence, B is stable
by the involution Inv2. We deduce that

|B|w =
∑

g∈B

(−1)e(g) = |Fix Inv2|w,

where Fix Inv2 denotes the set of all fixed points of the involution Inv2. Again,
the involution Inv2 has no fixed point. Hence,

|B|w =
∑

g\n=h

(−1)e(g) = 0·

�

We are now able to prove Proposition 5.
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Proof of Proposition 5. Let g a be 2-connected graph over [n] such that the vertex
n is joined to every other vertex and let g′ = g\n. From (16) we have successively

an(g) =
∑

h⊆g

h∈B[n]

(−1)e(h)−e(g)

=
∑

h⊆g

h∈B[n];h\n∈B[n−1]

(−1)e(h)−e(g) +
∑

h⊆g

h∈B[n];h\n/∈B[n−1]

(−1)e(h)−e(g)

=
∑

h′⊆g′

h′∈B[n−1]

(−1)e(g)−e(h′)
∑

h∈B[n]

h\n=h′

(−1)e(h)−e(h′)

+
∑

h′⊆g′

h′ /∈B[n−1]

(−1)e(g)
∑

h∈B[n]

h\n=h′

(−1)e(h)

= (−1)n−1
∑

h′⊆g′

h∈B[n−1]

(−1)e(g′)−e(h′)(n − 2) + 0 (by Lemmas 7 and 8)

= (−1)n−1(n − 2)an−1(g
′)·

�

Corollary 9. Let n > m and let g be a 2-connected graph over [n] such that for
i = 0, . . . , n − m − 1, vertex n − i is joined to every vertex j < n − i, and let
g(n−m) = g\n\n − 1\ · · · \m + 1 be the graph obtained from g by removing the
vertices n, n − 1, . . . , m + 1 and all their incident edges. Then if g(n−m) is also
2-connected,

an(g) = (−1)(
n

2
)−(m

2
) (n − 2)!

(m − 2)!
am(g(n−m)). (26)

Remark 2. In particular, taking g = Kn and m = 2 in (26) we have, for n > 2,

an(Kn) = (−1)(
n

2
)+1(n − 2)! (27)

3. Hard-core continuum gas in one dimension

Consider n hard particles of diameter 1 on a line segment. The hard-core
constraint translates into the interaction potential ϕ, with ϕ(r) = ∞, if r < 1,
and ϕ(r) = 0, if r ≥ 1, and the Mayer function f and the Ree–Hoover function
f are given by (7). Hence, we can write the Mayer weight function wM(c) of a
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connected graph c as

wM(c) = (−1)e(c)

∫

Rn−1

∏

{i,j}∈c

χ(|xi − xj | < 1)dx1 . . . dxn−1, xn = 0, (28)

and the Ree–Hoover weight function wRH(c) of a 2-connected graph c as

wRH(c) = (−1)e(c)

∫

Rn−1

∏

{i,j}∈c

χ(|xi − xj | < 1)
∏

{i,j}/∈c

χ(|xi − xj | > 1)dx1 . . . dxn−1,

(29)
with xn = 0 and where e(c) is the number of edges of c. Note that wM(c) =
(−1)e(c)Vol(P(c)), where P(c) is the polytope defined by

P(c) = {X ∈ R
n | xn = 0, |xi − xj | < 1 ∀{i, j} ∈ c} ⊆ R

n−1 × {0} ⊆ R
n,

where X = (x1, . . . , xn). Similarly, wRH(c) = (−1)e(c)Vol(PRH(c)), where PRH(c)
is the union of polytopes defined by

PRH(c) = {X ∈ R
n | xn = 0, |xi − xj | < 1 ∀{i, j} ∈ c,

|xi − xj | > 1 ∀{i, j} ∈ c} ⊆ R
n−1 × {0} ⊆ R

n.

3.1. Why many graphs have Ree–Hoover weight equal to 0. When the
Ree–Hoover transformation is made, many graphs have zero star content and
hence do not contribute to the virial coefficient. In addition, some Ree–Hoover
graph weights may be zero for geometrical reasons. We found sufficient conditions
for families of graphs which guaranty the nullity of their Ree–Hoover weights. We
introduce first some variants of the notion of subgraph and an associated lemma:

Definition 10. Let g be a simple graph on the vertex set U and g′ be a subgraph
of g on the vertex set U ′ ⊆ U. The graph g′ is said to be induced by g if

g′ = g ∩ KU ′ , (30)

where KU ′ is the complete graph on U ′. If a graph h is isomorphic to an induced
subgraph of g, we write h ⊆ g.

Proposition 11. Let g and h be two 2-connected graphs. In the case of hard-core
continuum gas in one dimension, we have:

h ⊆ g and wRH(h) = 0 implies wRH(g) = 0. (31)

Proof. Without loss of generality, we can suppose that h is a subgraph of g where
the vertex set of h is [m] and the one of g is [n]. By hypothesis, wRH(h) = 0, that
is, the system Sh of inequalities

|xi − xj | < 1 for {i, j} ∈ h

and |xi − xj | > 1 for {i, j} ∈ Km\h
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is contradictory. Consider now the system Sg,

|xi − xj | < 1 for {i, j} ∈ g

and |xi − xj | > 1 for {i, j} ∈ Km\g.

The system Sg has more “<” constraints and more “>” constraints than Sh.
Thus, Sg must be also contradictory. That is wRH(g) = 0. �

3.2. Sufficient conditions for wRH = 0.

Theorem 12. The Ree–Hoover weight of a 2-connected graph g of size n is zero
if g satisfies one of the following conditions,

g is not chordal : ∃ k ≥ 4, Ck ⊆ g, (32)

or g has a claw : S3 ⊆ g, (33)

where S3 is the 3-star graph (see Figure 4).

Proof. • In order to prove (32) it is sufficient, by Proposition 11, to show
that wRH(Ck) = 0, for k ≥ 4, where Ck is the standard cycle graph
{{1, 2}, {2, 3},
. . . , {k − 1, k}, {1, k}}. Therefore, the associated system of inequalities is
contradictory. Without loss of generality, we can assume that x1 ≤ x2.
Then x2 < x3 since |x1 − x2| ≤ 1, |x2 − x3| ≤ 1 and |x1 − x3| ≥ 1. For
the same reason xi < xi+1 for all i = 1, . . . , k, with the convention that
xk+1 = x1. So we obtain x1 ≤ x2 < x3 < . . . < xk < x1 which is a
contradiction.

• In order to prove (33) it is sufficient, by Proposition 11, to show that
wRH(S3) = 0 where S3 = {{1, 4}, {2, 4}, {3, 4}}. Without loss of general-
ity, we can assume that x4 = 0, x1 ≤ x2 ≤ x3. Since |xi| = |xi − x4| < 1,
for i = 1, 3, we have |x3−x1| < 2. This is incompatible with the conditions
|x1 − x2| > 1, |x2 − x3| > 1, since |x3 − x1| = (x3 − x2) + (x2 − x1) > 2.

�

3.3. The method of graph homomorphisms adapted to the Ree–Hoover

weight. The method of graph homomorphisms was introduced by Labelle, Ler-
oux and Ducharme [7] for the exact computation of the Mayer weight wM(b) of
an arbitrary 2-connected graph b in the context of hard-core continuum gases in
one dimension. Since wM(b) = (−1)e(b)Vol(P(b)), the computation of wM(b) is
reduced to the computation of the volume of the polytope P(b) associated to b.
In order to evaluate this volume, the polytope P(b) is decomposed into ν(b) sim-
plices which are all of volume 1/(n − 1)!. This yields Vol(P(b)) = ν(b)/(n − 1)!.
The simplices are encoded by a diagram associated to the integral parts and the
relative positions of the fractional parts of the coordinates x1, . . . , xn of points
X ∈ P(b).
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More precisely, to each real number x, they associate an ordered pair (ξx, hx),
called the fractional representation of x, where hx = ⌊x⌋ is the integral part of
x and ξx = x − hx is the (positive) fractional part of x, so that x = ξx + hx.
Then, for x 6= y, the condition |x−y| < 1 translates into “assuming ξx < ξy, then
hx = hy or hx = hy + 1”. Geometrically, the slope of the line segment between
the points (ξx, hx) and (ξy, hy) in the plane should be either null or negative. Now
consider a 2-connected graph b with vertex set V = [n] = {1, 2, . . . , n}, and let
X = (x1, . . . , xn) be a point in the polytope P(b). Let us write (ξi, hi) for the
fractional representation of the coordinate xi of X, i = 1, . . . , n. For xn = 0, it
will be convenient to use the special representation ξn = 1.0 and hn = −1. The
volume of P(b) is not changed by removing all hyperplanes {xi − xj = k}, for
k ∈ Z. Hence, we can assume that all the fractional parts ξi are distinct. We
form a subpolytope of P(b) by keeping the “heights” h1, h2, . . . , hn fixed as well
as the relative positions (total order) of the fractional parts ξ1, ξ2, . . . , ξn. Let
h : V → Z denote the height function i 7→ hi and β : V → [n] be the permutation
of [n] for which β(i) gives the rank of ξi in this total order. Note that β(n) = n.
The corresponding simplex will be denoted by P(h, β). Explicitly, each simplex
can be written as

P(h, β) = {(h1 + ξ1, . . . , hn−1 + ξn−1, 0) | 0 < ξβ−1(1) < · · · < ξβ−1(n−1) < 1} (34)

and it is shown in [7] (see also [5] for more details) that each such simplex is
affine-equivalent (with jacobian 1) to the standard simplex

P(0, id) = {(ξ1, ξ2, . . . , ξn−1, 0) | 0 < ξ1 < ξ2 < · · · < ξn−1 < 1}

in R
n−1 × {0}, of volume 1/(n − 1)!.

Note that the simplices (34) are disjoint and each such simplex can be charac-
terized by its centre of gravity

Xh,β = (h1 +
β(1)

n
, h2 +

β(2)

n
, . . . , hn−1 +

β(n − 1)

n
, 0) ∈ R

n−1 × {0}.

Note also that when there are no restrictions on h and β, the union of the closed
simplices P(h, β) coincides with the whole configurations space R

n−1 × {0}.
Using the fractional coordinates to represent the center of gravity Xh,β of the

simplex P(h, β), and drawing a line segment form xi = (hi, ξi) and xj = (hj , ξj)
for each edge {i, j} of the graph b, we obtain a configuration in the plane which can
be seen as an homomorphic image of b and which characterizes the subpolytope
P(h, β). For example, take n = 6 and

b = {{1, 3}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {5, 6}}.

Figure 2 illustrates the corresponding configuration, where the homomorphic im-
age of b appears clearly. The next proposition summarizes the above discussion.
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Proposition 13. ([7]). Let b be a 2-connected graph with vertex set V = [n] and
consider a function h : V → Z and a bijection β : V → [n] satisfying β(n) = n.
Then the simplex P(h, β) corresponding to the pair (h, β) is contained in the
polytope P(β) if and only if the following condition is satisfied:

for any edge {i, j} of b, β(i) < β(j) implies hi = hj or hi = hj + 1. (35)

3

2

1

0

−1
x5 x6

x4

x2

x3x1

ξ4 < ξ1 < ξ2 < ξ5 < ξ3 < ξ6

32

4

56

h1 = 0

1

h5 = −1

h2 = 1

h3 = 0

h4 = 2

h6 = −1

Figure 2. Fractional representation of a simplicial subpolytope of
a graph b

Corollary 14. ([7]). Let b be a 2-connected graph and let ν(b) be the number
of pairs (h, β) such that the condition (35) is satisfied. Then the volume of the
polytope P(b) is given by

Vol(P(b)) = ν(b)/(n − 1)!. (36)

Proposition 14 can be used to compute the weight of some families of graphs,
since wM(b) = (−1)e(b)Vol(P(b)).

In a similar way we can adapt the above configurations to the context of the
Ree–Hoover weight.

Proposition 15. Let b be a 2-connected graph with vertex set V = [n] and con-
sider a function h : V → Z and a bijection β : V → [n] satisfying β(n) = n. Then
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the simplex P(h, β) corresponding to the pair (h, β) is contained in the polytope
PRH(b) if and only if the following conditions are satisfied:

for any edge {i, j} of b, β(i) < β(j) implies hi = hj or hi = hj + 1, (37)

for any edge {i, j} of b, β(i) < β(j) implies hi ≤ hj − 1 or hi ≥ hj + 2. (38)

Proof. Condition (37) expresses exactly that |xi − xj | < 1, whenever {i, j} is an
edge of b, and condition (38) expresses exactly that |xi −xj | > 1, whenever {i, j}
is an edge of b, that is, the defining conditions for the domain of integration of
(29). �

Proposition 16. Let b be a 2-connected graph and let νRH(b) be the number of
pairs (h, β) such that conditions (37) and (38) are satisfied. Then the volume of
PRH(b) is given by

Vol(PRH(b)) = νRH(b)/(n − 1)!. (39)

Proof. It is clear that the polytope PRH(b) is the disjoint union of all its subpoly-
topes P(h, β) and the result follows immediately. �

Proposition 16 can be used to compute the weight of some families of graphs,
since wRH(b) = (−1)e(b)Vol(PRH(b)).

4. Ree–Hoover weight of some infinite families of graphs

Here are some of our results concerning explicit formulas for the Ree–Hoover
weight of certain infinite families of graphs. These were first conjectured from
numerical values using Ehrhart polynomials. Their proofs use the techniques of
graph homorphisms. The weights of 2-connected graphs b are given in absolute
value |w(b)|, the sign being always equal to (−1)e(b).

Lemma 17. Suppose that g is a graph over [n] and i, j ∈ [n− 1] are such that g
does not contain the edge {n, i} but contains the edges {i, j} and {n, j}. In this
case, any RH-configuration (h, β) (with hn = −1, β(n) = n) satisfies either one
of the following conditions:

(1) hi = 1, hj = 0 and β(i) < β(j),
(2) hi = −2, hj = −1 and β(i) > β(j).

4.1. The Ree–Hoover weight of the graph Kn\Sk. Let Sk denote the k-star
graph with vertex set [k + 1] and edge set {{1, 2}, {1, 3}, . . . , {1, k + 1}}. As a
first example, we compute |wRH(Kn\e)|, with Kn\e = Kn\S1.

Proposition 18. For n ≥ 3, let Kn\e denote the complete graph on n vertices
from which an arbitrary edge has been removed. Then we have

|wRH(Kn\e)| =
2

(n − 1)
· (40)
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Proof. We can assume that the missing edge is e = {1, n}. According to Lemma 17
with 1, . . . , k, j = k +1, . . . , n−1, there are two possibilities for h : a) set h1 = 1,
hn = −1 and all other hi = 0, so that β(1) must be 1, and b) set h1 = −2 and all
other hi = −1, so that β(1) must be n − 1. In both cases β can be extended in
(n − 2)! ways, giving the possible relative positions of the xi, 2 ≤ i ≤ n − 1 (see
Figure 3). So, there are 2(n − 2)! RH-configurations (h, β).

1

−1

0

0

−1

−2
x1

x1

xn

xn
xi xi1

1

Figure 3. Fractional representation of a simplicial subpolytope of PRH(Kn\e)

�

Note that, from (15) and the known fact that |wM(Kn)| = n, we have

wM(Kn\e) = (−1)(
n

2
)−1

(
n +

2

(n − 1)

)
, (41)

since

|wM(Kn\e)| = |wRH(Kn)| + |wRH(Kn\e)|.

In the general case we have:

Proposition 19. For k ≥ 1, n ≥ k + 3, we have

|wRH(Kn\Sk)| =
2k!

(n − 1)(n − 2) · · · (n − k)
· (42)

Proof. We assume that the missing edges are {1, n}, {2, n}, . . . , {k, n} (see Fig-
ure 4, for the case of S3).
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3

1

n

2

Figure 4. The graph S3

According to Lemma 17 with 1, . . . , k, j = k + 1, . . . , n − 1, there are two
possibilities for h :

• h1 = h2 = · · · = hk = 1 and hn = −1 and all other hi = 0, so that
(β(1), β(2), . . . , β(k)) must be a permutation of {1, 2, . . . , k},

• h1 = h2 = · · · = hk = −2 and all other hi = −1, so that (β(1), β(2), . . . ,
β(k)) must be a permutation of {n − 1, n − 2, . . . , n − k}.

In each case β can be extended in (n− (k +1))! ways, giving the possible relative
positions of the xi, k + 1 ≤ i ≤ n− 1 (see Figure 5, for the case of S3). So, there
are 2k!(n − k − 1)! RH-configurations (h, β).

1

−1

0

0

−1

−2

x3

xn

x2

x1 x2

xn

x1x3

xi xi1

1

Figure 5. Fractional representation of a simplicial subpolytope of PRH(Kn\S3)

�

4.2. The Ree–Hoover weight of the graph Kn\(Sj–Sk). Let Sj–Sk denote
the graph obtained by joining with a new edge the centers of a j-star and of a
k-star. See Figure 6 for an example.
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Figure 6. The graph S3–S4

Let us start with the simple case S1–S1.

Proposition 20. For n ≥ 5, we have

|wRH(Kn\S1−S1)| =
2

(n − 1)(n − 2)(n − 3)
· (43)

Proof. We can assume that the missing edges are {1, n}, {2, n} and {2, 3} (see
Figure 7). According to Lemma 17 with i = 1, . . . , k + 1 and j = k + 2, . . . , n− 1
for i 6= 2 and j = k + j + 2, . . . , n − 1 for i = 2, there are two possibilities for h :

• h1 = h2 = 1 and hn = −1 and all other hi = 0, so that (β(1), β(2), β(3))
must be (1, 3, 2),

• h1 = h2 = −2 and all other hi = −1, so that (β(1), β(2), β(3)) must be
(n − 1, n − 3, n − 2).

In each case β can be extended in (n − 4)! ways, giving the possible relative
positions of the xi, 4 ≤ i ≤ n − 1 (see Figure 8). So, there are 2(n − 4)! RH-
configurations (h, β).

1 n

23

Figure 7. The graph S1–S1
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1

−1

0

0

−1

−2

x2

xn

x1

xn

x1x2

xi xix3

x3

1

1

Figure 8. Fractional representation of a simplicial subpolytope of
PRH(Kn\S1–S1)

�

In the general case we have:

Proposition 21. For j ≥ k ≥ 1, n ≥ k + j + 3, we have

|wRH(Kn\(Sj−Sk))| =
2k!j!

(n − 1)(n − 2) · · · (n − (k + j + 1))
· (44)

Proof. We can assume that the missing edges are {1, n}, {2, n}, . . . , {k + 1, n}
and {2, k + 2}, {2, k + 3}, . . . ,{2, k + j + 1} (see Figure 9, for the case of S2–S3).
According to Lemma 17 there are two possibilities for h :

6

2

5 4

1

3

n

Figure 9. The graph S2–S3

• h1 = h2 = · · · = hk+1 = 1 and hn = −1 and all other hi = 0, so
that (β(1), β(3), . . . , β(k + 1)) must be a permutation of {1, 2, . . . , k} and
(β(k + 2), β(k + 3), . . . , β(k + j + 1)) must be a permutation of
{k + 1, . . . , k + j} and β(2) = k + j + 1.
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• h1 = h2 = · · · = hk+1 = −2 and all other hi = −1, so that (β(1), β(3), . . . ,
β(k + 1)) must be a permutation of {n − 1, n − 2, . . . , n − k} and
(β(k + 2), β(k + 3), . . . , β(k + j + 1)) must be a permutation of
{n − k − 1, . . . , n − k − j} and β(2) = n − k − j − 1.

In each case β can be extended in (n − (k + j + 2))! ways, giving the possible
relative positions of the xi, k + j + 2 ≤ i ≤ n − 1 (see Figure 10, for the case of
S2–S3). So, there are 2k!j!(n − (k + j + 2))! RH-configurations (h, β).

1

−1

0

0

−1

−2
x4

x5

x3 x1

xn

xn

x1

xixi

x2x3 x4

x6 x5

x2

x6

1

1

Figure 10. Fractional representation of a simplicial subpolytope
of PRH(Kn\S2–S3)

�

4.3. The Ree–Hoover weight of the graph Kn\(C4 · Sk). Let C4 · Sk denote
the graph obtained by identifying one vertex of the graph C4 with the center of
a k-star. See Figure 11 for an example.

Figure 11. The graph C4 · S4
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Let us start with the special case k = 0 corresponding to the graph Kn\C4.
The proof is diffferent from the one corresponding to the case k ≥ 1.

4.3.1. The Ree–Hoover weight of the graph Kn\C4.

Proposition 22. For n ≥ 6, we have

|wRH(Kn\C4)| =
8

(n − 1)(n − 2)(n − 3)
, (45)

where C4 is the unoriented cycle with 4 vertices.

Proof. We can assume that the missing edges are {1, n}, {2, n}, {2, 3} and {3, 1}
(see Figure 12). There are four possibilities for h :

• h1 = h2 = 1 and hn = −1 and all other hi = 0, so that (β(1), β(2)) must
be a permutation of {2, 3} and β(3) = 1,

• h1 = h2 = 1 and hn = h3 = −1 and all other hi = 0, so that (β(1), β(2))
must be a permutation of {1, 2} and β(3) = n − 1,

• h1 = h2 = −2 and all other hi = −1, so that (β(1), β(2)) must be a
permutation of (n − 2, n − 3) and β(3) = n − 1,

• h1 = h2 = −2, h3 = 0 and all other hi = −1, so that (β(1), β(2)) must be
a permutation of (n − 1, n − 2) and β(3) = 1.

In each case β can be extended in (n − 4)! ways, giving the possible relative
positions of the xi, 4 ≤ i ≤ n − 1 (see Figure 13). So, there are 4 · 2!(n − 4)!
RH-configurations (h, β).

1

3 2

n

Figure 12. The graph C4
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1

−1

0

0

−1

−2

1

−1

0

0

−1

−2

xn

xn

xn

xn

x2

x3

x3

x2

x3

x1

x2

x1

xi

xi

x2

x3

xi

x1

x1

xi

1

1

1

1

Figure 13. Fractional representation of a simplicial subpolytope
of PRH(Kn\C4)

�

Proposition 23. For k ≥ 1, n ≥ k + 5, we have

|wRH(Kn\(C4 · Sk))| =
4k!

(n − 1)(n − 2) · · · (n − (k + 3))
. (46)

Proof. We can assume that the missing edges are {1, n}, {2, n}, {4, n}, . . . ,
{k + 3, n} and {1, 3}, {2, 3} (see Figure 14, for the case of C4 · S2).
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1

4

5

23

n

Figure 14. The graph C4 · S2

According to Lemma 17 there are two possibilities for h :

• h1 = h2 = h4 · · · = hk+3 = 1 and hn = −1 and all other hi = 0, so
that (β(4), β(5), . . . , β(k + 3)) must be a permutation of {1, 2, . . . , k} and
(β(1), β(2)) must be a permutation of {k + 2, k + 3} and β(3) = k + 1,

• h1 = h2 = h4 · · · = hk+3 = −2 and all other hi = −1, so that (β(4), β(5),
. . . , β(k + 3)) must be a permutation of {n − 1, n − 2, . . . , n − k} and
(β(1), β(2)) must be a permutation of {n − k − 2, n − k − 3} and β(3) =
n − k − 1.

In each case β can be extended in (n− (k +4))! ways, giving the possible relative
positions of the xi, k + 4 ≤ i ≤ n − 1 (see Figure 15, for the case of C4 · S2). So,
there are 2 · 2! k! (n − (k + 4))! RH-configurations (h, β).
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1

−1

0

0

−1

−2

xn

x5x1 x4

xn

xix3

x3

xi

x5 x4 x2x1

x2

1

1

Figure 15. Fractional representation of a simplicial subpolytope
of PRH(Kn\(C4 · S2))

�

Note that the formula (45) is not a special case of (46).

4.4. The Ree–Hoover weight of the graph Kn\Pk. Let Pk denote the path
graph with vertex set [k] and edge set {{1, 2}, {2, 3}, . . . , {k−1, k}}. For n ≥ 5, we
have Kn\P3 = Kn\S2 and Kn\P4 = Kn\S1–S1. Thus, the weights wRH(Kn\P3)
and wRH(Kn\P4) can be obtained as special cases of Propositions 19 and 20.
Moreover, wRH(Kn\Pk) = 0, for k ≥ 5, n ≥ k + 1, which is a consequence of
Theorem 12. Indeed, C4 ⊆ Kn\Pk and we conclude using (32).

5. Mayer weight of some infinite families of graphs

In this section, we give explicit formulas for the Mayer weight of the above
infinite families of graphs. In order to do so, we use the following formula

|wM(b)| =
∑

b⊆d⊆Kn

|wRH(d)| (47)

which is a consequence of (14) since |wM(b)| = (−1)e(b)wM(b) and |wRH(d)| =
(−1)e(d)wRH(d) in the case of hard-core continuum gases in one dimension. Sub-
stituting Kn\g and Kn\k for b and d in (47), we have

|wM(Kn\g)| =
∑

k⊆g

|wRH(Kn\k)|

=
∑

eh⊆eg

m(h̃, g̃)|wRH(Kn\h)|, (48)
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where g̃ denotes the unlabelled graph corresponding to g, h̃ runs through the

unlabelled subgraphs of g̃ and m(h̃, g̃) is the number of ways of obtaining h̃

by removing some edges in h̃. In the following propositions these multiplicities

m(h̃, g̃) are obtainable in each case by direct combinatorial arguments.

5.1. The Mayer weight of the graph Kn\Sk.

Proposition 24. For k ≥ 1, n ≥ k + 3, we have

|wM(Kn\Sk)| = n + 2
k∑

j=1

j!
(

k
j

)

(n − 1)(n − 2) · · · (n − j)
.

Proof. The over graphs of Kn\Sk are up to isomorphism of the form: Kn\Sj ,

1 ≤ j ≤ k and Kn. Their multiplicities m(Sj , Sk) are given by m(Sj, Sk) =
(

k
j

)

because one has to choose j edges among the k edges incident to the center of
the star. Note that S0 = ∅ is the star with no edge. Hence,

|wM(Kn\Sk)| =
k∑

j=0

(
k

j

)
|wRH(Kn\Sj)|.

We conclude using Proposition 19. �

5.2. The Mayer weight of the graph Kn\Sj–Sk.

Proposition 25. For j ≥ k ≥ 1, n ≥ k+j+3, we have, with the usual convention(
k+1

ℓ

)
= 0 if ℓ > k + 1,

|wM(Kn\(Sj−Sk))| = n +

j+1∑

l=1

2

[(
j + 1

l

)
+

(
k + 1

l

)]
l!

(n − 1) · · · (n − l)

+

j∑

m=1

k∑

l=1

2

(
j

m

)(
k

l

)
m!l!

(n − 1) · · · (n − (m + l + 1))
−

2

(n − 1)
.

Proof. The over graphs of Kn\Sj–Sk whose Ree–Hoover weight is not zero are
up to isomorphism of the form: Kn\Sl, 1 ≤ l ≤ j + 1, Kn\(Sm–Sl), 1 ≤ m ≤ j,
1 ≤ l ≤ k and Kn. Their multiplicities are given by

m(Sl, Sj−Sk) =
(

j+1
l

)
+

(
k+1

l

)
, l ≥ 2, m(S1, Sj−Sk) =

(
j+1

l

)
+

(
k+1

l

)
− 1,

m(Sm−Sl, Sj−Sk) =
(

j
m

)(
k
l

)
.
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Hence,

|wM(Kn\(Sj−Sk))| = |wRH(Kn)| +

j+1∑

l=1

[(
j + 1

l

)
+

(
k + 1

l

)]
|wRH(Kn\Sl)|

+

j∑

m=1

k∑

l=1

(
j

m

)(
k

l

)
|wRH(Kn\(Sm−Sl))| − |wRH(Kn\S1)|.

We conclude using Propositions 19 and 21. �

5.3. The Mayer weight of the graph Kn\C4.

Proposition 26. For n ≥ 6, we have

|wM(Kn\C4)| = n +
8

(n − 1)
+

16

(n − 1)(n − 2)
+

16

(n − 1)(n − 2)(n − 3)
.

Proof. Note first that the RH-weight of the over graph Kn\S1\S1 of Kn\C4 is 0.
The other over graphs of Kn\C4 are, up to isomorphism, of the form: Kn\S1,
Kn\S2, Kn\C4, Kn\(S1 − S1) and Kn. Their multiplicities are given by

m(Sl, C4) = 4, 1 ≤ l ≤ 2, m(S1−S1, C4) = 4.

Hence,

|wM(Kn\C4)| = |wRH(Kn)| +
2∑

l=1

4|wRH(Kn\Sl)|

+ 4|wRH(Kn\(S1 − S1))| + |wRH(Kn\C4)|.

We conclude using Propositions 19, 20 and 22. �

5.4. The Mayer weight of the graph Kn\(C4 · Sk).

Proposition 27. For k ≥ 1, n ≥ k + 5, we have

|wM(Kn\(C4 · Sk))| = n +

k+2∑

l=1

2

(
k + 2

l

)
l!

(n − 1) · · · (n − l)

+
k∑

l=1

4

(
k

l

)
l!

(n − 1) · · · (n − (l + 3))

+

k+1∑

l=1

4

[(
k

l − 1

)
+

(
k

l

)]
l!

(n − 1) · · · (n − (l + 2))

+
4

n − 1
+

12

(n − 1) (n − 2)
+

16

(n − 1) (n − 2) (n − 3)
.
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Proof. The over graphs of Kn\(C4 · Sk) whose Ree–Hoover weight is not zero are
up to isomorphism of the form: Kn\Sl, 1 ≤ l ≤ k + 2, Kn\(C4 · Sl), 1 ≤ l ≤ k,
Kn\(S1–Sl), 1 ≤ l ≤ k + 1, C4 and Kn. Their multiplicities are given by

m(Sl, C4 · Sk) =
(

k+2
l

)
, l ≥ 3, m(S1, C4 · Sk) =

(
k+2

l

)
+ 2,

m(S2, C4 · Sk) =
(

k+2
l

)
+ 3, m(C4 · Sl, C4 · Sk) =

(
k
l

)
,

m(S1−Sl, C4 · Sk) = 2
[(

k
l−1

)
+

(
k
l

)]
, l ≥ 2, m(S1−S1, C4 · Sk) = 2

(
k
1

)
+ 4.

Hence,

|wM(C4 · Sk)| = |wRH(Kn)| +
k+2∑

l=1

(
k + 2

l

)
|wRH(Kn\Sl)|

+
k∑

l=1

(
k

l

)
|wRH(Kn\C4 · Sl)| + 2|wRH(Kn\S1)|

+
k+1∑

l=1

2

[(
k

l − 1

)
+

(
k

l

)]
|wRH(Kn\(S1 − Sl))|

+ 3|wRH(Kn\S2)| + |wRH(Kn\C4)| + 4|wRH(Kn\S1 − S1)|.

We conclude using Propositions 19–23. �

5.5. The Mayer weight of the graph Kn\Pk.

Proposition 28. For k ≥ 5, n ≥ k + 1, we have

|wM(Kn\Pk)| = n +
2(k − 1)

(n − 1)
+

4(k − 2)

(n − 1)(n − 2)
+

2(k − 3)

(n − 1)(n − 2)(n − 3)
.

Proof. The over graphs of Kn\Pk, k ≥ 5, whose Ree–Hoover weight is not zero
are up to isomorphism of the form: Kn\S1, Kn\S2, Kn\P4 and Kn. Their multi-
plicities are given by

m(Sl, Pk) = k − l, 1 ≤ l ≤ 2, m(P4, Pk) = k − 3.

Hence,

|wM(Kn\Pk)| = |wRH(Kn)| + (k − 1)|wRH(Kn\S1)|

+ (k − 2)|wRH(Kn\S2)| + (k − 3)|wRH(Kn\P4)|.

We conclude using Propositions 19 and 20. �
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of cluster integrals.” Séminaire Lotharingien de Combinatoire 59 (2008), Arti-
cle B59e.

[2] N. Clisby and B. M. McCoy, “Negative virial coefficients and the dominance of loose
packed diagrams for D-dimensional hard spheres.” Journal of Statistical Physics

114 (2004), 1361–1392.
[3] N. Clisby and B. M. McCoy, “Ninth and tenth order virial coefficients for hard

spheres in D dimensions.” Journal of Statistical Physics 122 (2006), 15–57.
[4] N. Clisby, Negative Virial Coefficients for Hard Spheres. PhD thesis, Stony Brook

University, Stony Brook, New York, May (2004).
[5] A. Kaouche, Invariants de graphes liés aux gaz imparfaits. PhD thesis, Université
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