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Abstract. Let D = d/dX . We develop a theory of combinatorial differential op-
erators of the form Ω(X, D) where Ω(X, T ) is a species of structures built on two
sorts, X and T , of underlying elements. These operators act on species, F (X), in-
stead of functions. We show how to compose these operators, how to compute their
adjoints and their counterparts in the context of underlying symmetric functions and
power series. We also analyze how these operators behave when applied to products
of species (generalized Leibniz rule) and other combinatorial operations. Special in-
stances of these operators include: combinatorial finite difference operators, Φ(X, ∆),
corresponding the species Ω(X, T ) = Φ(X, E+(T )), where E+ is the species of non-
empty finite sets; pointing operators Λ(XD), which are self-adjoint and correspond
to the species Ω(X, T ) = Λ(XT ); and combinatorial Hammond differential operators,
Θ(D), corresponding to the species Ω(X, T ) = Θ(T ). We also give a table of all atomic
differential operators XmDk/K where K is a subgroup of Sm × Sk and m + k ≤ 7.

Résumé. Soit D = d/dX . Nous développons une théorie d’opérateurs différentiels
combinatoires de la forme Ω(X, D) où Ω(X, T ) est une espèce de structures constru-
ite sur deux sortes, X et T , d’éléments sous-jacents. Ces opérateurs agissent sur des
espèces, F (X), plutôt que sur des fonctions. Nous montrons comment composer ces
opérateurs, comment calculer leurs adjoints et les opérateurs qui leur correspondent
dans le contexte des fonctions symétriques et des séries génératrices. Nous analysons
aussi le comportement de ces opérateurs lorsqu’ils sont appliqués au produit d’espèces
(règle de Leibniz) ainsi qu’à d’autres opérateurs combinatoires. Ces opérateurs in-
cluent les opérateurs combinatoires de différences finies, Φ(X, ∆), correspondant aux
espèces Ω(X, T ) = Φ(X, E+(T )), où E+ est l’espèce des ensembles finis non-vides, les
opérateurs de pointage, Λ(XD), qui sont auto-adjoints et les opérateurs différentiels
combinatoires de Hammond, Θ(D), qui correspondent aux espèces Ω(X, T ) = Θ(T ).
Nous donnons également une table de tous les opérateurs différentiels atomiques
XmDk/K où K est un sous-groupe de Sm × Sk et m + k ≤ 7.

With the support of NSERC (Canada).
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1. Introduction

1.1. The goal of this paper. Let D = d/dX denote the classical analytical derivation
operator defined by

DF (X) =
d

dX
F (X) = F

′

(X).

Higher order derivations Dn = dn/dXn are obtained by iterating D. Alternatively, they
can be visualized as lists of D’s of the form

DDD · · ·D︸ ︷︷ ︸
n times

.

But, a natural question is: what meaning can be given to circular arrangements or
graphical arrangements of D’s as in Figure 1?
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D D
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Figure 1. Circular and graphical arrangements of D’s

More generally, what meaning can be given to circular or graphical arrangements
of D’s and X’s as in Figure 2 where X is interpreted as the “multiplication by X”
operator defined by F (X) 7→ XF (X)? The purpose of this paper is to give an answer
to these questions in the realm of species.
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Figure 2. Circular and graphical arrangements of D’s and X’s

To achieve this goal, we will make use of partial cartesian products and substitutions
of the form T := 1 to introduce general differential operators of the form Ω(X, D),
where Ω(X, T ) is an arbitrary two-sort species. These operators Ω(X, D) will transform
species into species. For the benefit of the reader, we first recall some basic notions
about species.

1.2. Preliminary notions about species. Informally, a combinatorial species of
structures is a class of labelled structures which is closed under relabellings along bi-
jections.1 A structure belonging to a species F is called an F -structure. The set of
F -structures on a finite underlying set U is assumed to be finite and is denoted by
F [U ]. Hence, s ∈ F [U ] means that s is an F -structure on U . Two F -structures s and t
are said isomorphic if one can be obtained from the other one by a relabelling induced
by a bijection between their underlying sets. More precisely, if β : U → V is such a
bijection, the induced relabelling is denoted by F [β] : F [U ] → F [V ]. An isomorphism
class of F -structures is called an unlabelled F -structure. Two species F and G are equal
(isomorphic), and we write F = G, if there exists a natural isomorphism (in the sense of
theory of category) between them. This means that for each U , there exists a bijection
αU : F [U ] → G[U ] such that G[β]αU = αV F [β] for each bijection β : U → V .

Several enumerative formal series can be associated to any species F . The most
important one is the cycle index series, denoted ZF (x1, x2, x3, . . .), and is defined by

ZF (x1, x2, x3, . . .) =
∑

n≥0

1

n!

∑

σ∈Sn

fixF [σ] xσ1

1 xσ2

2 xσ3

3 · · · =
∑

n1,n2,...

fn1,n2,...
xn1

1 xn2

2 · · ·

1n1n1!2n2n2! · · ·

(1)
where Sn denotes the symmetric group of order n, fixF [σ], the number of F -structures
on [n] left fixed under the action of the permutation σ ∈ Sn, σi, i ∈ N∗, is the number
of cycles of length i of the permutation σ ∈ Sn and fn1,n2,... = fixF [σ] if σ is of type
1n12n2 · · · . Other classical enumerative formal series, that is, the exponential generating

series F (x), which counts labeled F -structures, and the tilda generating series F̃ (x),
which counts the unlabeled F -structures. These series are obtained specializing the
series ZF ,

F (x) = ZF (x, 0, 0, . . .) and F̃ (x) = ZF (x, x2, x3, . . .). (2)

1Formally, a species of structures is a functor from the category of finite sets and bijections to the
category of finite sets and functions, see [8].
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Many combinatorial operations can be performed in the framework of the theory of
species. The main ones are addition, product, substitution, pointing, cartesian product
and derivation. For precise definitions of these operations, see [2]. However, in this
paper we make an extensive use of the cartesian product and the derivation and we
briefly recall their definitions. Let F and G be any species and U a finite set. The
derivative species F

′

or DF of a species F is given by F
′

[U ] = F [U + {∗U}], where ∗U

is an element chosen outside of the underlying set U . The cartesian product of F and
G, denoted F × G, is defined by (F × G)[U ] = F [U ] × G[U ].

The behaviour of the cycle index series according to the operations of derivation and
of cartesian product is well known; see [2]. In particular, we have

ZF ′ (x1, x2, x3, . . .) =
∂

∂x1
ZF (x1, x2, x3, . . .), (3)

ZF×G(x1, x2, x3, . . .) = (ZF × ZG)(x1, x2, x3, . . .), (4)

where ZF ×ZG means the Hadamard (coefficient by coefficient) product of the series ZF

and ZG.

A molecular species M is a species possessing only one isomorphism type. This means
that any two M-structures are always isomorphic. Such a species is characterized by
the fact that it is indecomposable under the combinatorial sum:

M is molecular ⇐⇒ (M = F + G =⇒ F = 0 or G = 0).

Any molecular species M can be written under the form of a quotient species M =
Xn/H , where Xn represents the species of linear orders of length n and H ≤ Sn is a
subgroup of the symmetric group of order n. In fact, H is the stabilizer of any M-
structure. Two molecular species Xn/H and Xm/K are equal (that is, isomorphic as
species) if and only if n = m and H and K are conjugate subgroups of Sn. Furthermore,
any species F can be uniquely expanded in terms of molecular species as follows:

F =
∑

M∈M

fMM,

where M denotes the set of all molecular species and fM ∈ N is the number of subspecies
of F isomorphic to M . This expansion is unique and called the molecular expansion of
the species F .

It is also possible to extend the notion of molecular species to the case of multi-sort
species. For instance, for two-sort species, where the two sorts of elements of underlying
sets are denoted X and T , each molecular species M = M(X, T ) can be written in the
form M(X, T ) = XnT k/H, where H ≤ SX

n × ST
k is the stabilizer of any M-structure

and SX
n is the symmetric group of order n acting on points of sort X. The exponents n

and k are called degree of M in X and T . The cycle index series of a two-sort molecular
species M(X, T ) = XnT k/H is given by the expression

ZM(x1, x2, . . . ; t1, t2, . . .) =
1

|H|

∑

h∈H

x
c1(h)
1 x

c2(h)
2 · · · t

d1(h)
1 t

d2(h)
2 · · · ,

where ci(h) (respectively di(h)), for i ≥ 1, denotes the number of cycles of length i of
the permutation on points of sort X (respectively T ) induced by the element h ∈ H
and |H| is the cardinality of H . Note that SX

n ×ST
k is isomorphic to the Young subgroup

Sn,k ≤ Sn+k permuting independently {1, 2, . . . , n} and {n + 1, n + 2, . . . , n + k}.
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It is important to notice that in the series ZM above, the monomials in the xi’s always
appear before the ones in the ti’s.

In this paper, we use the following graphical conventions:

1) for any species F = F (X), we find appropriate to represent a F -structure by
a drawing of the form of Figure 3 a) where black dots stand for the distinct
elements (of sort X) of the underlying set;

2) for two-sort species Ω = Ω(X, T ), Figure 3 b) shows a convention used to repre-
sent an Ω-structure, where black dots (respectively black squares) are elements
of sort X (respectively of sort T );

3) setting T := 1 in a species Ω(X, T ), we obtain the species Ω(X, 1) where points
of sort T are unlabelled. Notice that white squares represent indistinguishable
unlabelled elements of sort T ; see Figure 3 c) and the substitution is possible
if Ω(X, T ) is “finitary in T”. This means that for every finite set U of points
of sort X there is no Ω-structure on the pair of sets (U, V ) for every sufficiently
large finite set V of points of sort T . The cycle index series ZΩ(X,1) of Ω(X, 1)
is computed as follows:

ZΩ(X,1)(x1, x2, . . .) = ZΩ(X,T )(x1, x2, . . . ; t1, t2, . . .)
∣∣
ti:=1

= ZΩ(X,T )(x1, x2, . . . ; 1, 1, . . .).

(5)

unlabelled

a) b) c)

:

Ω
X:X:

T:

Ω

T

F

Figure 3. a) F (X)-structure; b) Ω(X, T )-structure; c) Ω(X, 1)-structure

Using these kinds of graphical conventions, the structures belonging, for example,
to the cartesian product Ω1(X, T ) × Ω2(X, T ) of two-sort species can be represented
by Figure 4 a) and a structure belonging ot the species F

′

(X) can be represented by
Figure 4 b).

b)

2

a)

1
ΩΩ F

Figure 4. a) Ω1(X, T ) × Ω2(X, T )-structure; b) F
′

(X)-structure

Finally, we will make an extensive use in this paper of the so-called partial cartesian
product according to a sort. Considering two-sort species Ω1(X, T ) and Ω2(X, T ), the
partial cartesian product with respect to the sort T of Ω1 and Ω2 is denoted by

Ω1(X, T ) ×T Ω2(X, T ) (6)
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and is illustrated by Figure 5. Formally, a Ω1(X, T ) ×T Ω2(X, T )-structure s on a pair
(U, V ) of sets of sort X and T , respectively, is a pair s = (s1, s2) where s1 ∈ Ω1[U1, V ]
and s2 ∈ Ω2[U2, V ] where U1 ∪ U2 = U and U1 ∩ U2 = ∅. This operation had been first
introduced by Gessel and Labelle in [7] in the context of Lagrange inversion.

The cycle index series ZΩ1×T Ω2
is computed in the following way

ZΩ1×T Ω2
(x1, x2, . . . ; t1, t2, . . .)

=
∑

n1,n2,...

ω1,n1,n2,...(x1, x2, . . .)ω2,n1,n2,...(x1, x2, . . .)
tn1

1 tn2

2 · · ·

1n1n1!2n2n2! · · ·
, (7)

where ω1,n1,n2,...(x1, x2, . . .) and ω2,n1,n2,...(x1, x2, . . .) are defined by

ZΩi
(x1, x2, . . . ; t1, t2) =

∑

n1,n2,...

ωi,n1,n2,...(x1, x2, . . .)
tn1

1 tn2

2 · · ·

1n1n1!2n2n2! · · ·
, for i = 1, 2.

(8)
The right-hand side of (7) is denoted by ZΩ1

×t ZΩ2
and is called the Hadamard product

of ZΩ1
and ZΩ2

relative to t = (t1, t2, . . .)
It can be checked that ×T can be written in terms of the ordinary cartesian product

as Ω1(X, T )E(Y ) × Ω2(Y, T )E(X)
∣∣
Y :=X

, where E denotes the species of finite sets.

1 2Ω
:

T:

Ω
X

Figure 5. Representation of an Ω1(X, T ) ×T Ω2(X, T )-structure

2. General combinatorial differential operators

2.1. Basic definitions. We are now ready to state our main definition.

Definition 1 (General combinatorial differential operators). Let Ω(X, T )
be a two-sort species and F (X) be a species. If Ω(X, T ) is finitary in T or F (X) is of
finite degree in X, then Ω(X, D)F (X) is the species defined by

Ω(X, D)F (X) := Ω(X, T ) ×T F (X + T )|T :=1. (9)

2

Figure 6 a) describes a typical Ω(X, D)F (X)-structure on a set of 9 elements of sort
X. For example, let Ω(X, T ) = A(X, T ) be the species of rooted trees with internal
nodes of sort X and leaves of sort T and F (X) = C10(X) be the species of oriented
cycles of length 10, then Figure 6 b) shows a typical A(X, D)C10(X)-structure. Taking
Ω(X, D) = E(L≥2(X)D) where E and L≥2 are the species of sets and of lists of length
≥ 2, respectively, then the species of octopuses (see Figure 6 c)) can be written as
Oct(X) = E(L≥2(X)D)C(X) where C(X) is the species of oriented cycles.
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c)b)a)

unlabelled X:

F

:T

Ω

Figure 6. a) Ω(X, D)F (X)-structure, b) A(X, D)C10(X)-structure and
c) an octopus

Another example is given by taking Ω(X, D) = E(P≥2(X)D), where P(X) is any
species of the form P(X) = X + P≥2(X). Then, it is easily seen that

E(P≥2(X)D)F (X) = F (P(X))

and formula (13) of Proposition 1 below reduces to the plethystic substitution ZF◦P =
ZF ◦ ZP as the reader can check. The operator P≥2(X)D is similar to an “eclosion”
operator in the terminology of [10].

Note that the restrictions on Ω or F in Definition 1 are necessary in order that
(9) defines a species. For example, for the species C(X) of oriented cycles (of arbitrary
lengths), A(X, D)C(X) is not a species since the number of structures would be infinite
on any non-empty finite set U . From now, we will always assume that the restrictions
in Definition 1 are satisfied.

Since every two-sort species Ω(X, T ) can be written as a linear combination∑
ωK

XnT k

K
of molecular species, every differential operator Ω(X, D) is a linear combi-

nation of the corresponding molecular linear operators of the form XnDk/K, K ≤ Sn,k.
We will denote the action of these operators on species F (X) by

(
XnDk

K

)
F (X) =

XnF (k)(X)

K

in conformity with the classical notation XnDkF (X) = XnF (k)(X) corresponding to
the degenerate case where K = {id}. With these notations, we have

Theorem 1 (Generalized Leibniz rule). Let F (X) and G(X) be two species.
Then,

XnDk

K
F (X)G(X) =

∑

i+j=k

∑

L:Sn,i,j

(
K

L

)
XnF (i)(X)G(j)(X)

L
, (10)

where L : Sn,i,j means that L runs through a complete system of representatives of

the conjugacy classes of subgroups of Sn,i,j and the coefficients
(

K
L

)
are defined by the

“addition formula” [1],

Xn(T1 + T2)
k/K =

∑

i+j=k

∑

L:Sn,i,j

(
K

L

)
XnT i

1T
j
2 /L. (11)
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Proof. By definition of XnDk/K, we have (see Figure 7)

XnDk

K
F (X) · G(X) =

XnT k

K
×T (F (X + T ) · G(X + T ))

∣∣∣∣
T :=1

. (12)

The result then follows immediately from (11) by interpreting the white squares in

G

X T
n

K

k

F

Figure 7. Overview of a [XnDk/K]F (X)G(X)-structure

the F -structure (respectively in the G-structure) as unlabelled singletons of sort T1

(respectively T2) and using linearity. �

For example, n = 0 and K = {id} corresponds to the classical Leibniz rule

DkF (X)G(X) =
∑

i+j=k

(
k

i

)
F (i)(X)G(j)(X),

while, the molecular operator E2(XD), where E2 is the species of 2-sets, corresponds
to the formula

E2(XD)(F · G) = (E2(XD)F ) · G + X2F
′

· G
′

+ F · (E2(XD)G) .

In the context of cycle index series, the combinatorial differential operators behave
as follows.

Proposition 1. Let G(X) = Ω(X, D)F (X), then we have

ZG(x1, x2, x3, . . .) = ZΩ(x1, x2, x3, . . . ;
∂

∂x1

, 2
∂

∂x2

, 3
∂

∂x3

, . . .)ZF (x1, x2, x3, . . .). (13)

Proof. Writing ZΩ(X,T ) in the form

ZΩ(X,T )(x1, x2, . . . ; t1, t2, . . .) =
∑

n1,n2,...

ωn1,n2,...(x1, x2, . . .)
tn1

1 tn2

2 · · ·

1n1n1!2n2n2! · · ·
,
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we have successively, using (7),

ZG(x1, x2, . . .) = ZΩ(x1, x2, . . . ; t1, t2, . . .) ×t ZF (x1 + t1, x2 + t2, . . .)
∣∣
ti:=1

= ZΩ(x1, x2, . . . ; t1, t2, . . .) ×t e
t1( ∂

∂x1
)+t2( ∂

∂x2
)+···

ZF (x1, x2, . . .)
∣∣
ti:=1

=
∑

n1,n2,...

ωn1,n2,...(x1, x2, . . .)

(
∂

∂x1

)n1
(

2
∂

∂x2

)n2

· · ·

· ZF (x1, x2, . . .)
tn1

1 tn2

2 · · ·

1n1n1!2n2n2! · · ·

∣∣∣∣
ti:=1

= ZΩ(x1, x2, . . . ;
∂

∂x1
, 2

∂

∂x2
, . . .)ZF (x1, x2, . . .).

�

In Proposition 1, the convention of writing all the tj’s to the right of all the xi’s
in ZΩ(x1, x2, . . . , t1, t2, . . .) must be applied. For example, taking Ω(X, D) = E(XD),
where E is the species sets, we have E(XD)F (X) = F (2X). In this case, we must take

ZE(XD)(x1, x2, . . . ,
∂

∂x1

, 2
∂

∂x2

, . . .) =
∑ xn1

1 xn2

2 · · · ( ∂
∂x1

)n1( ∂
∂x2

)n2 · · ·

n1!n2! · · ·
,

not
∑ (x1

∂
∂x1

)n1(x2
∂

∂x2

)n2 · · ·

n1!n2! · · ·
.

Corollary 1. Let G(X) = Ω(X, D)F (X). Then, the exponential generating series G(x)

for labelled G-structures and the tilde generating series G̃(x) for unlabelled G-structures
are given by

G(x) =
∑

n1,n2,...

ωn1,n2,...(x, 0, 0, . . .)




(
∂

∂x1

)n1
(

∂
∂x2

)n2

· · ·

n1!n2! · · ·
ZF


 (x, 0, 0, . . .), (14)

G̃(x) =
∑

n1,n2,...

ωn1,n2,...(x, x2, x3, . . .)




(
∂

∂x1

)n1
(

∂
∂x2

)n2

· · ·

n1!n2! · · ·
ZF


 (x, x2, x3, . . .), (15)

where ωn1,n2,...(x1, x2, x3, . . .) are defined by

ZΩ(x1, x2, . . . ; t1, t2, . . .) =
∑

n1,n2,...

ωn1,n2,...(x1, x2, x3, . . .)
tn1

1 tn2

2 · · ·

1n1n1!2n2n2! · · ·
. (16)

Proof. Immediate from the proof of Proposition 1 and the fact that G(x) = ZG(x, 0, 0,

. . .) and G̃(x) = ZG(x, x2, x3, . . .). �

Note that, in the particular case Ω(X, D) = D, formulas (14) and (15) reduce to the
classical formulas

(DF )(x) =
∂

∂x
F (x), F̃ ′(x) =

[
∂

∂x1

ZF

]
(x, x2, x3, . . .).

However, for a general differential operator Ω(X, D), the computation of [Ω(X, D)F ] (x)

and ˜[Ω(X, D)F ](x) depends on ZΩ and the mixed derivations
(

∂
∂x1

)n1
(

∂
∂x2

)n2

· · ·ZF .
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Definition 2 (Composition of differential operators). Let Ω1(X, T ) and
Ω2(X, T ) be two-sort species. Then, we define the composition of Ω1(X, T ) by Ω2(X, T )
by

Ω2(X, T ) ⊙ Ω1(X, T ) = Ω3(X, T ), (17)

where
Ω3(X, T ) = Ω2(X, T + T0) ×T0

Ω1(X + T0, T )|T0:=1, (18)

and T0 is an auxiliary extra sort. The differential operator corresponding to Ω3(X, T ) is
denoted Ω2(X, D) ⊙ Ω1(X, D) and is called the composition of Ω1(X, D) by Ω2(X, D).

Figure 8 illustrates an Ω3(X, T )-structure.

unlabelled

1
2

0

:

:

Ω Ω

T
:
X
T

Figure 8. Ω2(X, T + T0) ×T0
Ω1(X + T0, T )|T0:=1-structure

The operation ⊙ is noncommutative and associative. For example, (XD)⊙ (X2D) =
2X2D + X3D2 while (X2D)⊙ (XD) = X2D + X3D2. The proof of associativity is left
to the reader. The next proposition states that the composition Ω2(X, D) ⊙ Ω1(X, D)
corresponds to the application of Ω1(X, D) followed by Ω2(X, D).

Proposition 2. For any species F = F (X),

(Ω2(X, D) ⊙ Ω1(X, D))F (X) = Ω2(X, D) [Ω1(X, D)F (X)] .

Proof. We first write

Ω2(X, D) [Ω1(X, D)F (X)] = Ω2(X, D) [Ω1(X, T1) ×T1
F (X + T1)|T1:=1]

=

{
Ω2(X, T2) ×T2

[ [
Ω1(X, T1) ×T1

F (X + T1)
∣∣
T1:=1

] ]∣∣∣∣
X:=X+T2

} ∣∣∣∣
T2:=1

.

The proof is then established by examining Figure 9. �

For cycle index series, the operation ⊙ has the following counterpart.

Theorem 2. Let Ω2(X, T ) and Ω1(X, T ) be any two-sort species. Then, we have

ZΩ2⊙Ω1
=

∑

n1,n2,...

(
( ∂

∂t1
)n1(2 ∂

∂t2
)n2 · · ·ZΩ1

)(
( ∂

∂x1

)n1(2 ∂
∂x2

)n2 · · ·ZΩ2

)

1n1n1!2n2n2! · · ·
. (19)

Proof. We have

ZΩ2(X,T0+T ) = e
t01

∂
∂t1

+
t02
2

2∂
∂t2

+
t03
3

3∂
∂t3

+···
ZΩ2(X,T )(x1, x2, . . . ; t1, t2, . . .) (20)

=
∑

n1,n2,...

tn1

01 t
n2

02 · · · (
∂

∂t1
)n1(2 ∂

∂t2
)n2 · · ·

1n1n1!2n2n2! · · ·
ZΩ2(X,T )(x1, x2, . . . ; t1, t2, . . .) (21)
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a) b)

1
2

1
2

unlabelledunlabelled

0
unlabelled:

Ω

T
: X:

F

Ω

:

Ω

TT X:

F

Ω

Figure 9. a) Ω2(X, D) [Ω1(X, D)F (X)] and b) [Ω2(X, D) ⊙ Ω1(X, D)]F (X)

In a similar way,

ZΩ1(X+T0,T ) =
∑

n1,n2,...

tn1

01 t
n2

02 · · · (
∂

∂x1

)n1(2 ∂
∂x2

)n2 · · ·

1n1n1!2n2n2! · · ·
ZΩ1(X,T )(x1, x2, . . . ; t1, t2, . . .). (22)

The result follows using the Hadamard product according to the sort T0 and letting
t0i := 1, i = 1, 2, 3, . . .. �

The following example exhibits a curious hidden symmetry involving combinatorial
differential operators. Let F = F (X) be a species and consider the combinatorial
operator F (X + XD) associated to the two-sort species F (X + XT ). For any species
G(X), we have the combinatorial equality

F (X + XD)G(X) = G(X + XD)F (X) (23)

as Figure 10 shows. In this equality, F and G play symmetric roles. We denote the
common value in (23) by F ×̇G and call it the “kiss product” of the species F and G for
obvious reasons. The two classical products F · G and F × G are subspecies of F ×̇G
since they can be respectively interpreted as the “empty kiss product” and the “full
kiss product” of the species F and G :

F · G ⊂ F ×̇G and F × G ⊂ F ×̇G (24)

The computations of the associated series ZF ×̇G(x1, x2, . . .), (F ×̇G)(x) and F̃ ×̇G(x)

F
G

F
GG

F

Figure 10. F (X + XD)G = F ×̇G = G(X + XD)F

are left to the reader.
Figure 11 shows a C×̇C-structure, where C is the species of oriented cycles.
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Figure 11. A C×̇C-structure

2.2. Bilinear form and adjoint operators. In [8], Joyal introduced a bilinear form,
denoted 〈 , 〉, in the realm of species in the following way: given two species F = F (X)
and G = G(X), 〈F (X), G(X) 〉 is defined by

〈F (X), G(X) 〉 = F (X)×X G(X)|X:=1 = number of unlabelled F × G− structures,
(25)

provided it is finite (see Figure 12 a)). He showed that, for any species H(X),

〈H(D)F (X), G(X) 〉 = 〈F (X), H(X)G(X) 〉, (26)

which means that multiplication by H(X) is a right adjoint to H(D).
We have the following more general result:

Proposition 3. Let Ω(X, T ) be a two-sort species. Then,

〈Ω(X, D)F (X), G(X) 〉 = 〈F (X), Ω(D, X)G(X) 〉. (27)

That is (Ω(X, D))∗ := Ω(D, X) is the adjoint operator of Ω(X, D).

Proof. See Figure 12 b). �

Ω

a) b)

F

G

F G F

GΩ =~

Figure 12. a) 〈F (X), G(X) 〉 and b) 〈Ω(X, D)F (X)), G(X) 〉 =
〈F (X), Ω(D, X)G(X) 〉

Proposition 4. Let Ω1(X, D) and Ω2(X, D) be two sort-species. Then, we have

(Ω2(X, D) ⊙ Ω1(X, D))∗ = Ω∗
1(X, D) ⊙ Ω∗

2(X, D) = Ω1(D, X) ⊙ Ω2(D, X). (28)

�
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3. Special cases

3.1. Combinatorial Hammond differential operators. The special case Ω(X, T ) =
Θ(T ) corresponds to the classical Hammond combinatorial differential operator defined
by (see [6, 9])

Θ(D)F (X) = (E(X)Θ(T )) × (F (X + T ))

∣∣∣∣
T :=1

:= Θ(T ) ×T F (X + T )

∣∣∣∣
T :=1

. (29)

Figure 13 shows a typical Θ(D)F (X)-structure. Note that, contrarily to the general

unlabelledT X:

F

:

Ω

Figure 13. A typical Ω(D)F (X)-structure

case, the composition Θ(D) ⊙ Ψ(D) of Hammond operators is commutative since it
corresponds to ordinary multiplication:

Θ(D) ⊙ Ψ(D) = (Θ · Ψ)(D). (30)

Example 1. The following relations can be easily established by appropriate drawings
and details are left to the reader.

(1) For Θ(T ) = E2(T ), the species of two-element sets, we have

E2(D)(F · G) = (E2(D)F ) · G + F
′

G
′

+ (E2(D)G) · F, (31)

E2(D)(E ◦ F ) = (E ◦ F ) · (E2(D)F + E2(F
′

)). (32)

In particular, for the species F = C of oriented cycles and E ◦ C = S of
permutations, the previous equation takes the form

E2(D)S = S · (E2(D)F + E2(L)).

(2) Translation operators. Taking Θ(X) = E(X), the species of sets, we obtain the
translation operator denoted E(D), whose action is described by

E(D)F (X) = F (X + 1), En(D)F (X) = F (X + n).

(3) When Θ(T ) = T n, n ≥ 0, then we recover the usual n-th derivatives

Θ(D)F (X) = DnF (X) =
dnF (X)

dXn
.

(4) Catalan derivative. Let Θ(T ) = B(T ) be the species of binary trees. It is well
known that this species satisfies the functional equation B = 1 + TB2. Since
1/B(T ) = 1 − TB(T ) we deduce that

B(D)F (X) = G(X) ⇐⇒ F (X) = (1 − DB(D))G(X).

It is important to notice that the species 1 − TB(T ) is virtual, in this case.



14 GILBERT LABELLE AND CÉDRIC LAMATHE

(5) We can generalize the preceding example by taking any species B = B(T ) with
constant term equal to 1 since such a species is invertible under product (in the
context of virtual species; see [2, 9]), we have

B(D)F (X) = G(X) ⇐⇒ F (X) =
1

B(D)
G(X).

�

3.2. Self-adjoint and pointing operators. Since the adjoint of an operator Ω(X, D)
is Ω(D, X), self-adjoint operators correspond to symmetric species Ω(X, T ) = Ω(T, X).
For example, the operator X3D3/K, where K = 〈 (123)(456) 〉 ≤ S3,3 is self-adjoint and
Φ(X + D) is self-adjoint for any species Φ(X).

An important class of self-adjoint operators is the Λ-pointing operators defined by
Λ(XD), where Λ = Λ(T ) is an arbitrary species. Figure 14 a) shows a typical
Λ(XD)F (X)-structure. The special case Λ(T ) = T corresponds to the classical one-
element pointing. The composition of pointing operators is commutative and is given
by

Λ2(XD) ⊙ Λ1(XD) = (Λ2×̇Λ1)(XD),

where ×̇ denotes the kiss product operation.

or

a) b) c)

F F F FΛ

Figure 14. a) Λ-pointed F -structure, b) (XD)2F -structure and c)
(XD ⊙ XD)F -structure

Taking Λ(T ) = T 2, we obtain the operator (XD)2 which corresponds to point an
ordered pair of distinct elements in structures (see Figure 14 b)). Note that

(XD) ⊙ (XD) = XD + X2D2 6= (XD)2 = X2D2

since we can point the same element in two successive pointings (see Figure 14 c)).
Taking Λ(T ) = C(T ), the species of oriented cycles, we obtain the operator C(XD) of

cyclic-pointing. An interesting subspecies of C(XD)F (X) has recently been introduced
by Bodirsky et al. [3]. It consists of all unbiased cyclically pointed F -structures. In such
structures, the pointed cycle must be one of the cycles of an automorphism of the F -
structure. They applied this unbiased pointing to the uniform random generation of
classes of unlabelled structures.

3.3. Finite differences operators. We saw in Section 3.1, that E(D) is the trans-
lation operator on species (of finite degree): E(D)F (X) = F (X + 1). Hence, we can
define the difference operator ∆ by the equation

∆ = E+(D),
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where E+ = E − 1 is the species of non-empty finite sets. We obviously have

∆F (X) = F (X + 1) − F (X). (33)

Note that the right-hand side of (33) is not a virtual species since F (X) is always a
subspecies of F (X + 1). Conversely, we can write D = E<−1>

+ (∆), where E<−1>
+ is the

inverse under substitution of the species E+ (see [2] for a description of E<−1>
+ ). This

opens the way to a completely new theory of general combinatorial difference operators
of the form Φ(X, ∆) = Φ(X, E+(D)) where Φ(X, T ) is an arbitrary species.

3.4. Handle operators. Let K be a subgroup of Sn,k. By definition, the number k is
called the degree of the molecular differential operator XnDk/K. More generally, the
degree of the differential operator Ω(X, D), is the supremum (possibly infinite) of the
degrees occurring in its molecular expansion Ω(X, D) =

∑
K ωKXnDk/K. If all the

degrees involved are k, the operator is said to be homogeneous of degree k. Degree 0
operator are simply the multiplication operators H(X) which are adjoint, as we saw
before, to the Hammond operators H(D). Homogeneous operators of degree 1 are easily
classified. They are of the form H(X)D, since every species Ω(X, T ), homogeneous of
degree 1 in T is of the form H(X)T . Homogeneous operator of degree 2 are a little
more involved. We call them handle operators for obvious reasons (see Figure 15). The
molecular handle operators XnD2/K fall into two classes:

a) the oriented ones, for which the second projection π2(K) is trivial in S2;
b) the unoriented ones, for which π2(K) ≃ S2.

For example, C3(X)D2 is oriented and E2(XD) is unoriented.

a) b) c)

FΩ F F

Figure 15. a) Handle, b) oriented handle and c) unoriented handle

3.5. Splittable and classical operators. Let us say that a molecular operator
XnDk/K is splittable if it can be written in the form of a product

XnDk

K
=

Xn

K1

·
Dk

K2

where K1 ≤ Sn and K2 ≤ Sk. More generally, any linear combination of splittable oper-
ators is called splittable. For example, X3D2 and C(X)E2(D)+E(D) are splittable but
E(XD) and the operator X3D3/K where K = 〈 (123)(456) 〉 ≤ S3,3 are not splittable.
Of course, the adjoint of a splittable operator is always splittable. In particular, every
Hammond operator H(D) is splittable as well as every multiplication H(X). How-
ever, splittable operators are not closed under composition ⊙. To see this, consider the
composition of the splittable operators C4(D) and C4(X). Some computations gives

C4(D) ⊙ C4(X) = C4(X)C4(D) + X3D3 + 4X2D2 + E2(XD) + 6XD + 3,
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which is not splittable since

E2(XD) =
X2D2

〈 (12)(34) 〉

is not.
An important subclass of splittable combinatorial operators are those for which K2 =

{id}. These operators are closed under ⊙ and form an algebra:

(A(X)Dk) ⊙ (B(X)Dℓ) =
k∑

i=0

(
k

i

)
A(X)B(i)(X)Dk+ℓ−i.

Such operators have been used by Mishna to define a notion of holonomic species [11].
When both subgroups K1 and K2 are trivial, the corresponding operators are said to be
classical. They also form an algebra (using complex coefficients in molecular expansions)
under + and ⊙ which is isomorphic to the classical Weyl C-algebra generated by X
and D.

3.6. Computations with molecular and atomic differential operators. Recall
that every species F (X) can be written (uniquely, up to isomorphism [2]) as a N-linear
combination of molecular species Xn/H ,

F (X) =
∑

H,n

fH
Xn

H
, (34)

where, for each n ≥ 0, H runs through a system of representatives of the conjugacy
classes of subgroups of Sn (written H : Sn), and, similarly

Ω(X, T ) =
∑

K,m,k

ωK
XmT k

K
, (35)

where K : Sm,k ≃ Sm × Sk. Hence, the computation of Ω(X, D)F (X) can be reduced,
by linearity, to the computation of

XmDk

K

Xn

H
. (36)

We have the following general reduction formulas from which the computation of (36)
can be achieved, using, for example, the GAP software [5].

Theorem 3. For any subgroups H ≤ Sn and K ≤ Sm,k, we have

i)
XmDk

K

Xn

H
=

XmT k

K
×T

(X + T )n

H

∣∣
T :=1

,

ii)
(X + T )n

H
=

n∑

k=0

∑

ω∈Sn−k,k\Sn/H

Xn−kT k

ωHω−1 ∩ Sn−k,k
,

iii)
XaT k

A
×T

XbT k

B
=

∑

τ∈(π2A)\Sk/(π2B)

Xa+bT k

A
×Sk

Bτ ,

iv)

[
XaT k

A

]

T :=1

=
Xa

π1A
,
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where, ω∈H1\Sp/H2 means that ω runs through a system of representatives of the
bilateral cosets H1σH2, σ ∈ Sp; πiG = {gi ∈ Sni

| (g1, g2) ∈ G}, G ≤ Sn1,n2
;

Bτ = (id[b], τ)B(id[b], τ
−1); A ×Sk

B is the fibered product (pullback) of A by B over
Sk.

Proof (Sketch). Formula (i) is immediate by definition. Formula (ii) is a classical addi-
tion formula (for more details see [2])). Formula (iii) essentially follows form the fact
that the stabilizer of a (XaT k/A)×T (XbT k/B)-structure s = (s1, s2) on [a, b, k], where
s1 ∈ (XaT k/A)[a, k] and s2 ∈ (XbT k/B)[b, k] is of the form

stab(s1, s2) = {(σ1, σ2, τ) | (σ1, τ) ∈ stab(s1) , (σ2, τ) ∈ stab(s2)}

= stab(s1) ×Sk
stab(s2).

Finally, formula (iv) is a consequence of the fact that if A = stab(s), where s is a
XnT k/A-structure, then π1A is the stabilizer of s1 where s1 is the (XnT k/A)

∣∣
T :=1

-
structure associated to s by unlabelling all its underlying elements of sort T . �

A molecular species XmT k/K is said to be an atomic species if it is irreducible under
the ordinary (Cauchy) product of species. Atomic species behave as prime numbers
since Y. N. Yeh [12] has proved that every molecular species can be written in a unique
way (up to isomorphism and order) as a product of atomic species. By convention,
the degenerate molecular species 1 is not considered as atomic (to preserve unicity as
in the case of prime numbers). The notion of atomicity is extended to combinatorial
differential operators in the obvious way :

XmDk/K is atomic if and only if XmT k/K is atomic. (37)

Hence, to generate all combinatorial differential operators, it is sufficient to consider
only the atomic ones and to use products and linear combinations.

Using the GAP software [5], we computed in Table 1 below, all “small” atomic
differential operators XmDk/K satisfying m + k ≤ 7. In this table, the subgroups
K ≤ Sm,k ≃ Sm × Sk are given in terms of generators. For better readability, these
generators are permutations of the set 1, 2, 3, . . .︸ ︷︷ ︸

m

; A, B, C, . . .︸ ︷︷ ︸
k

written in cyclic notation.

Our table extends the one given by Chiricota in [4] in which he expresses every molecular
species of the form Xm/K (K ≤ Sm, m ≤ 7) in terms of quotients of simpler species
Eν , Cν , . . ..

3.7. Further extensions of the theory. Allowing coefficients ωK in molecular ex-
pansions

Ω(X, D) =
∑

ωKXmDk/K (38)

to be a real or complex numbers, new very curious identities arise. For example, it can
be shown that for any real or complex numbers a, b, we have

E(aXD) ⊙ B(bXD) = E((a + b + ab)XD). (39)

In particular, E(−XD) is ⊙-idempotent,

E(−XD) ⊙ E(−XD) = E(−XD), (40)

and E(−2XD) is a ⊙-square root of the identity operator 1,

E(−2XD) ⊙ E(−2XD) = 1. (41)
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Furthermore, E(−1
2
XD) has no effect on E(−XD)! Indeed,

E(−1
2
XD) ⊙ E(−XD) = E(−XD). (42)

More generally, making use of multisort species, it is easy to further extend the preceding
theory to combinatorial partial differential operators as follows. Consider p sorts of
singletons X1, X2, . . . , Xp and denote by ∂1, ∂2, . . . , ∂p the usual combinatorial partial
differential operators

∂i =
∂

∂Xi
, i = 1, 2, . . . , p.

Given p extra sorts T1, T2, . . . , Tp and a multisort species

Ω(X1, X2, . . . , Xp; T1, T2, . . . , Tp),

we define a corresponding combinatorial partial differential operator

Ω(X1, X2, . . . , Xp; ∂1, ∂2, . . . , ∂p)

acting on species F (X1, X2, . . . , Xp) in the obvious manner:

Ω(X1, X2, . . . , Xp; ∂1, ∂2, . . . , ∂p)F (X1, X2, . . . , Xp)

:= Ω(X1, X2, . . . , Xp; T1, T2, . . . , Tp)

×T1,T2,...,Tp
F (X1 + T1, X2 + T2, . . . , Xp + Tp)

∣∣
Ti:=1, i=1,2,...,p

,

where the partial cartesian product ×T1,T2,...,Tp
is defined “componentwise”. The com-

position operator ⊙ is extended by the formula

Ω2(X1, X2, . . . , Xp; T1, T2, . . . , Tp) ⊙ Ω1(X1, X2, . . . , Xp; T1, T2, . . . , Tp)

= Ω2(X1, . . . , Xp; T1 + T10, . . . , Tp + Tp0)

×T10,...,Tp0
Ω1(X1 + T10, . . . , Xp + Tp0; T1, . . . , Tp)

∣∣
Ti0:=1, i=1,...,p

,

where T10, T20, . . . , Tp0 are auxiliary extra sorts of singletons. In this multisort context,
molecular and atomic differential operators are of the form

Xm1

1 Xm2

2 · · ·X
mp
p ∂k1

1 ∂k2

2 · · ·∂
kp
p

K
,

where K ≤ Sm1,m2,...,mp;k1,k2,...,kp
≃ Sm1

× Sm2
× · · · × Smp

× Sk1
× Sk2

· · · × Skp
. Hence,

every combinatorial partial differential operator Ω(X1, X2, . . . , Xp; ∂1, ∂2, . . . , ∂p) can be
written in the form

Ω(X1, X2, . . . , Xp; ∂1, ∂2, . . . , ∂p) =
∑

ωK
Xm1

1 Xm2

2 · · ·X
mp
p ∂k1

1 ∂k2

2 · · ·∂
kp
p

K
,

where the summation is taken over m1 ≥ 0, m2 ≥ 0, . . . , mp ≥ 0, k1 ≥ 0, k2 ≥
0, . . . , kp ≥ 0, K : Sm1,m2,...,mp;k1,k2,...,kp

and the coefficients ωK are arbitrary complex
numbers.

Moreover, allowing weight variables t, u, v, . . . acting multiplicatively on structures,
the coefficients ωK can be taken in the ring C[[t, u, v, . . .]]. This means that these
combinatorial differential operators form a ring (under “+” and the ordinary product
“·”) isomorphic to

C[[t, u, v, . . . ,Atomic]],

where Atomic is the set of all atomic combinatorial partial differential operators. This
ring is very rich and is equipped with a multitude of extra operations, ⊙,×, ×̇, . . . Not
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only classical differential operators (e.g. Laplacians ∂2
1 + ∂2

2 + · · · + ∂2
p or symmetric

Laplacians E2(∂1) + E2(∂2) + · · · + E2(∂p)) belong to this ring but also entirely new
ones. For example,

C((π + iu)E2(X1∂2) −
3

4
tE(tX2 + ∂4)) ∈ C[[t, u, v, . . . ,Atomic]]

where C is the species of oriented cycles. This ring contains a great variety of extra tools
for a better understanding, generation, enumeration and classification of structures that
appear in algebraic combinatorics.
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Table 1. The atomic combinatorial differential operators XmDk/K, for

K : Sm,k, m + k ≤ 7.

m = 0, k = 0
Empty, since 1 is non atomic.

m = 1, k = 0
X

m = 0, k = 1
D
This is the adjoint of X.

m = 2, k = 0
X2/〈 (1, 2) 〉

m = 1, k = 1
Empty, since XD factorizes.

m = 0, k = 2
D2/〈 (A, B) 〉
This is the adjoint of X2/〈 (1, 2) 〉.

m = 3, k = 0
X3/〈 (123) 〉
X3/〈 (132), (12) 〉

m = 2, k = 1
Empty, since D is a factor of every molecular species X2D/K.

m = 1, k = 2
Empty, since X is a factor of every molecular species XD2/K.

m = 0, k = 3
D3/〈 (ABC) 〉
D3/〈 (ACB), (AB) 〉
These are the adjoints of the case m = 3, k = 0.

m = 4, k = 0
X4/〈 (13)(24) 〉
X4/〈 (14)(23), (13)(24) 〉
X4/〈 (12)(34), (1324) 〉
X4/〈 (13)(24), (14)(23), (12) 〉
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X4/〈 (13)(24), (14)(23), (243) 〉
X4/〈 (13)(24), (14)(23), (243), (12) 〉

m = 3, k = 1
Empty, since D is a factor of every molecular species X3D/K.

m = 2, k = 2
X2D2/〈 (12)(AB) 〉 ( self-adjoint )

m = 1, k = 3
Empty, since X is a factor of every molecular species XD3/K.

m = 0, k = 4
Take the adjoints of the case m = 4, k = 0.

m = 5, k = 0
X5/〈 (12345) 〉
X5/〈 (345), (12)(45) 〉
X5/〈 (12345), (25)(34) 〉
X5/〈 (12345), (25)(34), (2354) 〉
X5/〈 (12345), (345) 〉
X5/〈 (12345), (12) 〉

m = 4, k = 1
Empty, since D is a factor of every molecular species X4D/K.

m = 3, k = 2
X3D2/〈 (132), (12)(AB) 〉

m = 2, k = 3
X2D3/〈 (ACB), (AB)(12) 〉
This is the adjoint of the case m = 3, k = 2.

m = 1, k = 4
Empty, since X is a factor of every molecular species XD4/K.

m = 0, k = 5
Take the adjoints of the case m = 5, k = 0.

m = 6, k = 0
X6/〈 (12)(34)(56) 〉
X6/〈 (123)(456) 〉
X6/〈 (34)(56), (12)(56) 〉
X6/〈 (34)(56), (12)(3546) 〉
X6/〈 (34)(56), (12)(35)(46) 〉
X6/〈 (123)(456), (14)(26)(35) 〉
X6/〈 (123)(456), (23)(56) 〉
X6/〈 (12)(34)(56), (135)(246) 〉
X6/〈 (56), (34), (12)(35)(46) 〉
X6/〈 (34)(56), (35)(46), (12)(56) 〉
X6/〈 (34)(56), (3546), (12)(56) 〉
X6/〈 (34)(56), (12)(56), (135)(246) 〉
X6/〈 (12)(34)(56), (135)(246), (35)(46) 〉
X6/〈 (456), (123), (23)(56) 〉
X6/〈 (456), (123), (14)(25)(36) 〉
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X6/〈 (56), (34), (12), (135)(246) 〉
X6/〈 (34)(56), (35)(46), (456), (12)(56) 〉
X6/〈 (34)(56), (12)(56), (135)(246), (35)(46) 〉
X6/〈 (34)(56), (12)(56), (135)(246), (3546) 〉
X6/〈 (456), (123), (23)(56), (14)(25)(36) 〉
X6/〈 (456), (123), (23)(56), (14)(2536) 〉
X6/〈 (56), (34), (12), (145)(236), (35)(46) 〉
X6/〈 (12346), (14)(56) 〉
X6/〈 (456), (46), (123), (23), (14)(25)(36) 〉
X6/〈 (15364), (16)(24), (3465) 〉
X6/〈 (12345), (456) 〉
X6/〈 (123456), (12) 〉

m = 5, k = 1
Empty, since D is a factor of every molecular species X5D/K.

m = 4, k = 2
X4D2/〈 (13)(24)(AB) 〉
X4D2/〈 (13)(24), (14)(23)(AB) 〉
X4D2/〈 (12)(34), (34)(AB) 〉
X4D2/〈 (12)(34), (1324)(AB) 〉
X4D2/〈 (13)(24), (14)(23), (12)(AB) 〉
X4D2/〈 (12)(34), (13)(24)(AB), (1324) 〉
X4D2/〈 (12)(34), (13)(24)(AB), (34) 〉
X4D2/〈 (13)(24), (14)(23), (243), (12)(AB) 〉

m = 3, k = 3
X3D3/〈 (132)(ACB) 〉 ( self-adjoint )
X3D3/〈 (132)(ACB), (23)(BC) 〉 ( self-adjoint )
X3D3/〈 (132), (ACB), (12)(AB) 〉 ( self-adjoint )

m = 2, k = 4
Take the adjoints of the case m = 4, k = 2.

m = 1, k = 5
Empty, since X is a factor of every molecular species XD5/K.

m = 0, k = 6
Take the adjoints of the case m = 6, k = 0.

m = 7, k = 0
X7/〈 (567), (12)(34)(67) 〉
X7/〈 (1234567) 〉
X7/〈 (34567), (12)(47)(56) 〉
X7/〈 (45)(67), (46)(57), (123)(567) 〉
X7/〈 (567), (34)(67), (12)(67) 〉
X7/〈 (567), (12)(34), (13)(24)(67) 〉
X7/〈 (567), (12)(34), (1324)(67) 〉
X7/〈 (1234567), (27)(36)(45) 〉
X7/〈 (34567), (47)(56), (12)(4576) 〉
X7/〈 (1234567), (235)(476) 〉
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X7/〈 (567), (34)(67), (12)(67), (13)(24)(67) 〉
X7/〈 (67), (45), (123), (23)(46)(57) 〉
X7/〈 (567), (34)(67), (12)(67), (13)(24) 〉
X7/〈 (45)(67), (46)(57), (123)(567), (23)(67) 〉
X7/〈 (1234567), (235)(476), (27)(36)(45) 〉
X7/〈 (567), (14)(23), (12)(34), (234), (34)(67) 〉
X7/〈 (12345), (345), (45)(67) 〉
X7/〈 (1234567), (12)(36) 〉
X7/〈 (1234567), (567) 〉
X7/〈 (1234567), (12) 〉

m = 6, k = 1
Empty, since D is a factor of every molecular species X6D/K.

m = 5, k = 2
X5D2/〈 (345), (12)(45)(AB) 〉
X5D2/〈 (12345), (25)(34)(AB) 〉
X5D2/〈 (45)(AB), (123), (23)(AB) 〉
X5D2/〈 (12345), (25)(34), (2354)(AB) 〉
X5D2/〈 (125), (142), (234), (45)(AB) 〉

m = 4, k = 3
X4D3/〈 (13)(24)(BC), (ABC) 〉
X4D3/〈 (14)(23), (13)(24)(BC), (ABC) 〉
X4D3/〈 (13)(24), (14)(23), (243)(ACB) 〉
X4D3/〈 (12)(34), (1324)(BC), (ABC) 〉
X4D3/〈 (12)(34), (34)(BC), (ABC) 〉
X4D3/〈 (13)(24), (14)(23), (12)(BC), (243)(ACB) 〉
X4D3/〈 (13)(24), (14)(23), (12)(BC), (ACB) 〉
X4D3/〈 (12)(34), (13)(24)(BC), (ABC), (34) 〉
X4D3/〈 (12)(34), (13)(24)(BC), (ABC), (1324) 〉
X4D3/〈 (13)(24), (14)(23), (ABC), (243), (12)(BC) 〉

m = 3, k = 4
Take the adjoints of the case m = 4, k = 3.

m = 2, k = 5
Take the adjoints of the case m = 5, k = 2.

m = 1, k = 6
Empty, since X is a factor of every molecular species XD6/K.

m = 0, k = 7
Take the adjoints of the case m = 4, k = 3.
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