GENERALIZATION OF SCOTT'S PERMANENT IDENTITY

Alain Lascoux
IGM, Université de Paris-Est
77454 Marne-la-Vallée CEDEX 2
Alain.Lascoux@univ-mlv.fr
http://phalanstere.univ-mlv.fr/~al
dédié à la mémoire de Pierre Leroux

Abstract. Let $\mathbf{x}=\left\{x_{1}, \ldots, x_{r}\right\}, \mathbf{y}=\left\{y_{1}, \ldots, y_{n}\right\}, \mathbf{z}=\left\{z_{1}, \ldots, z_{n}\right\}$ be three sets of indeterminates. We give the value of the determinant

$$
\left|\prod_{x \in \mathbf{x}}(x y-z)^{-1}\right|_{y \in \mathbf{y}, z \in \mathbf{z}}
$$

when specializing \mathbf{y} and \mathbf{z} to the set of roots of $y^{n}-1$ and $z^{n}-\xi^{n}$, respectively.

In the case where $r=2$ and $\mathbf{x}=\{1,1\}$ the determinant $\left|(y-z)^{-2}\right|_{y \in \mathbf{y}, z \in \mathbf{z}}$ factorizes into the determinant of the Cauchy matrix $\left[(y-z)^{-1}\right]$ and its permanent (see [1], respectively [11, vol. 2, pp. 173-175]). Scott [13, 10] found the value of this permanent when specializing \mathbf{y} to the roots of $y^{n}-1$ and \mathbf{z} to the roots of $z^{n}+1$. Han [4] described more generally the case where \mathbf{z} is the set of roots of $z^{n}+a z^{k}+b$ instead of $z^{n}+1$.

Instead of restricting to $r=2$ and specializing \mathbf{x}, we shall consider the determinant

$$
\left|\prod_{x \in \mathbf{x}}(x y-z)^{-1}\right|_{y \in \mathbf{y}, z \in \mathbf{z}}
$$

and obtain in Theorem 2 its value when specializing \mathbf{y} and \mathbf{z}. The remarkable feature is that this value is a product of sums of monomial functions in \mathbf{x} without multiplicities, thus extending the factorized expressions of [13, 4].

We first need a few generalities about symmetric functions [7].

Given two sets of indeterminates \mathbf{x}, \mathbf{z} (we say alphabets), the complete functions $S_{n}(\mathbf{x}-\mathbf{z})$ are the coefficients of the generating function

$$
\sum_{n} \gamma^{n} S_{n}(\mathbf{x}-\mathbf{z})=\prod_{z \in \mathbf{z}}(1-\gamma z) \prod_{x \in \mathbf{x}}(1-\gamma x)^{-1}
$$

For any r, any $\lambda \in \mathbb{Z}^{r}, S_{\lambda}(\mathbf{x}-\mathbf{z})=\operatorname{det}\left(S_{\lambda_{i}+j-i}(\mathbf{x}-\mathbf{z})\right)$.
In the case where $\mathbf{z}=0$, and \mathbf{x} of cardinality r, these functions can be obtained by symmetrization over the symmetric group \mathfrak{S}_{r}. Let π_{ω} be the following operator on functions in \mathbf{x} :

$$
f \rightarrow f \pi_{\omega}:=\sum_{\sigma \in \mathfrak{S}_{r}}\left(f \prod_{1 \leq i<j \leq r}\left(1-x_{j} / x_{i}\right)^{-1}\right)^{\sigma} .
$$

Then, when $\lambda \geq[1-r, \ldots,-1,0]$ (i.e., $\lambda_{1} \geq 1-r, \ldots, \lambda_{r} \geq 0$), the monomial $x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{r}^{\lambda_{r}}$ is sent to $S_{\lambda}(\mathbf{x})$ under π_{ω}. When λ is a partition (i.e., $\lambda_{1} \geq \cdots \geq \lambda_{r} \geq 0$), $S_{\lambda}(\mathbf{x})$ is the usual Schur function of index λ.

Let n be a positive integer, ξ an indeterminate, and \mathbf{z} be the set of roots of $z^{n}-\xi^{n}$. Equivalently, $e_{i}(\mathbf{z})=0$ for $1 \leq i \leq n-1, e_{n}(\mathbf{z})=(-1)^{n-1} \xi^{n}$. For any integer j, any \mathbf{x}, one has

$$
S_{j}(\mathbf{x}-\mathbf{z})=S_{j}(\mathbf{x})-\xi^{n} S_{j-n}(\mathbf{x}),
$$

and, more generally, from the determinantal expression for Schur functions, for any $\lambda \in \mathbb{N}^{r}$,

$$
S_{\lambda}(\mathbf{x}-\mathbf{z})=\sum_{u \in\{0, n\}^{r}} S_{\lambda-u}(\mathbf{x})(-1)^{|u| / n} \xi^{|u|},
$$

where $|u|$ denotes the sum of the coordinates of u.
In particular, when $\lambda=\underbrace{n-1, \ldots, n-1}_{r-1}, p$ (which we shall also denote as $\left.\lambda=(n-1)^{r} p\right)$, then the terms with negative last component $-(n-p)$ vanish, and the set $\left\{\lambda-u: u \in\{0, n\}^{r}\right\}$ to consider is $\left\{[v, p]: v \in\{n-1,-1\}^{r-1}\right\}$. Reordering indices, putting $q=p-r+1$, one can rewrite the sum as

$$
\begin{equation*}
S_{(n-1)^{r-1} p}(\mathbf{x}-\mathbf{z})=(-1)^{r-1} \sum_{u \in\{0, n\}^{r-1}} S_{q, u}(\mathbf{x})(-1)^{(|\lambda|-|u|-q) / n} \xi^{|\lambda|-|u|-q} . \tag{1}
\end{equation*}
$$

Since $x^{v} \pi_{\omega}=S_{v}(\mathbf{x})$, for any $v \geq[1-r, \ldots,-1,0]$, one can rewrite (1) as a symmetrization of monomial functions in $\mathbf{x}-x_{1}=\left\{x_{2}, \ldots, x_{r}\right\}$:

$$
\begin{equation*}
S_{(n-1)^{r-1} p}(\mathbf{x}-\mathbf{z})=(-1)^{r-1} \sum_{j=0}^{r-1} x_{1}^{q} m_{n^{j}}\left(\mathbf{x}-x_{1}\right)(-1)^{r-1-j} \xi^{|\lambda|-j n-q} \pi_{\omega} \tag{2}
\end{equation*}
$$

From the identity

$$
m_{n^{j}}\left(\mathbf{x}-x_{1}\right)=m_{n^{j}}(\mathbf{x})-x_{1}^{n} m_{n^{j-1}}(\mathbf{x})+x_{1}^{2 n} m_{n^{j-2}}(\mathbf{x})+\cdots+\left(-x_{1}^{n}\right)^{j},
$$

one sees that $x_{1}^{q} m_{n^{j}}\left(\mathbf{x}-x_{1}\right) \pi_{\omega}$ is equal to

$$
\begin{equation*}
S_{q}(\mathbf{x}) m_{n j}(\mathbf{x})-S_{q+n}(\mathbf{x}) m_{n^{j-1}}(\mathbf{x})+\cdots+(-1)^{j} S_{q+j n}(\mathbf{x}) \tag{3}
\end{equation*}
$$

On the other hand, $S_{(n-1)^{r-1} p}(\mathbf{x}-\mathbf{z})$ belongs to the linear span of Schur functions indexed by partitions μ such that $\mu_{1} \leq n-1$. This implies that $S_{(n-1)^{r-1} p}(\mathbf{x}-\mathbf{z})$ belongs to the linear span of monomial functions indexed by the same set of partitions. Consequently, one can restrict the sum in (3) to the term $(-1)^{j} S_{q+j n}(\mathbf{x})$.

In summary, one has the following expression for the specialization of the Schur function that we are considering.

Proposition 1. Let \mathbf{x} be an alphabet of cardinality r, \mathbf{z} be the set of roots $z^{n}-\xi^{n}=0, p \leq n-1, N=(n-1)(r-1)$. Then

$$
\begin{equation*}
S_{(n-1)^{r-1} p}(\mathbf{x}-\mathbf{z})=\sum_{\mu} m_{\mu}(\mathbf{x}) \xi^{N+p-|\mu|} \tag{4}
\end{equation*}
$$

where the sum is over all partitions $\mu \in \mathbb{N}^{r}, \mu_{1} \leq n-1,|\mu| \equiv p-r+1 \bmod n$.
For example, for $n=4, r=2$, one has

$$
\begin{gathered}
S_{30}(\mathbf{x}-\mathbf{z})=m_{3}(\mathbf{x})+m_{21}(\mathbf{x}), S_{31}(\mathbf{x}-\mathbf{z})=m_{31}(\mathbf{x})+m_{22}(\mathbf{x})+\xi^{4} \\
S_{32}(\mathbf{x}-\mathbf{z})=m_{32}(\mathbf{x})+\xi^{4} m_{1}(\mathbf{x}), S_{33}(\mathbf{x}-\mathbf{z})=m_{33}(\mathbf{x})+\xi^{4}\left(m_{2}(\mathbf{x})+m_{11}(\mathbf{x})\right) .
\end{gathered}
$$

Let

$$
D(\mathbf{x}, \mathbf{y}, \mathbf{z})=\left|\prod_{x \in \mathbf{x}}(x y-z)^{-1}\right|_{y \in \mathbf{y}, z \in \mathbf{z}}
$$

In the case $r=2$, this determinant has been obtained by Izergin and Korepin [5] as the partition function of the Heisenberg XXZ-antiferromagnetic model (modulo some normalization factor). Gaudin [3] had previously described the partition function of some other model as the determinant $\mid(x-$ $y)^{-1}(x-y+\gamma)^{-1} \mid$ for some parameter γ.

The Izergin-Korepin determinant is used in the enumeration of alternating sign matrices [2]. In that case, one first specializes $\mathbf{x}=\left\{e^{2 i \pi / 3}, e^{4 i \pi / 3}\right\}$. Kuperberg [6] and Okada [12] evaluate more general partition functions corresponding to similar determinants or Pfaffians, and to other roots of unity (see also [8, Th. 7.2]).

We shall take another point of view, keep \mathbf{x} generic, but specialize instead \mathbf{y} and \mathbf{z}. In [9, Formula 4], it is shown that the function

$$
G(\mathbf{x}, \mathbf{y}, \mathbf{z})=\frac{D(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\Delta(\mathbf{z})} \prod_{x \in \mathbf{x}} \prod_{y \in \mathbf{y}} \prod_{z \in \mathbf{z}}(x y-z)
$$

is equal to the determinant of the matrix

$$
\begin{equation*}
\left[S_{(n-1)^{r-1} j}\left(y_{i} \mathbf{x}-\mathbf{z}\right)\right]_{j=0 \ldots n-1, i=1 \ldots n} \tag{5}
\end{equation*}
$$

where $\Delta(\mathbf{z})=\prod_{1 \leq i<j \leq n}\left(z_{i}-z_{j}\right)$.
For any $k \in \mathbb{N}$, let φ_{k} be the sum of all monomial functions $m_{\mu}(\mathbf{x})$ of degree k, with $\mu_{1} \leq n-1$ (notice that $\varphi_{k}=0$ when $k>(n-1) r$). From (4), one sees that $S_{(n-1)^{r-1} j}\left(y_{i} \mathbf{x}-\mathbf{z}\right)$ specializes, when \mathbf{z} is the set of roots of $z^{n}-\xi^{n}$, to

$$
\begin{align*}
& S_{(n-1)^{r-1} j}\left(y_{i} \mathbf{x}-\mathbf{z}\right) \\
& \quad=y_{i}^{N+j} \varphi_{N+j}+\xi^{n} y_{i}^{N+j-n} \varphi_{N+j-n}+\xi^{2 n} y_{i}^{N+j-2 n} \varphi_{N+j-2 n}+\cdots \tag{6}
\end{align*}
$$

where, as before, $N=(n-1)(r-1)$. Further specializing \mathbf{y} to the roots of $y^{n}-1$, one sees that the matrix (5) factorizes into the product of the matrix $\left[y_{i}^{(N+j)}\right]$, where the symbol $(N+j)$ stands for the remainder of division of $N+j$ by n, and the diagonal matrix

$$
\begin{array}{r}
\operatorname{diag}\left(\left(\varphi_{N}+\xi^{n} \varphi_{N-n}+\xi^{2 n} \varphi_{N-2 n}+\cdots\right),\left(\varphi_{N+1}+\xi^{n} \varphi_{N+1-n}+\xi^{2 n} \varphi_{N+1-2 n}+\cdots\right)\right. \\
\left.\cdots,\left(\varphi_{N+n-1}+\xi^{n} \varphi_{N+n-1-n}+\xi^{2 n} \varphi_{N+1-n}+\cdots\right)\right)
\end{array}
$$

For example, for $n=3, r=3$,

$$
\begin{aligned}
& S_{220}\left(y_{i} \mathbf{x}-\mathbf{z}\right)=y_{i}^{4} \varphi_{4}+y_{i} \varphi_{1} \xi^{3}, S_{221}\left(y_{i} \mathbf{x}-\mathbf{z}\right)=y_{i}^{5} \varphi_{5}+y_{i}^{2} \varphi_{2} \xi^{3} \\
& S_{222}\left(y_{i} \mathbf{x}-\mathbf{z}\right)=y_{i}^{6} \varphi_{6}+y_{i}^{3} \varphi_{3} \xi^{3}+\xi^{6}
\end{aligned}
$$

and the matrix factorizes into

$$
\left[\begin{array}{lll}
y_{1} & y_{1}^{2} & 1 \\
y_{2} & y_{2}^{2} & 1 \\
y_{3} & y_{3}^{2} & 1
\end{array}\right]\left[\begin{array}{ccc}
\varphi_{4}+\varphi_{1} \xi^{3} & 0 & 0 \\
0 & \varphi_{5}+\varphi_{2} \xi^{3} & 0 \\
0 & 0 & \varphi_{6}+\varphi_{3} \xi^{3}+\xi^{6}
\end{array}\right]
$$

Taking into account that $\prod_{x, y, z}(x y-z)$ specializes to $\prod_{y, x}\left(x^{n} y^{n}-\xi^{n}\right)=$ $\prod_{x \in \mathbf{x}}\left(x^{n}-\xi^{n}\right)^{n}$, and that the determinant of powers of the $y \in \mathbf{y}$ is a permutation of the Vandermonde in \mathbf{y}, one obtains the following theorem.

Theorem 2. Let n, r be two positive integers, $N=(n-1)(r-1)$. Let \mathbf{x} be an alphabet of cardinality r, \mathbf{y} be the set of roots of $y^{n}-1, \mathbf{z}$ be the set of roots of $z^{n}-\xi^{n}$. Then

$$
\begin{aligned}
\Delta(\mathbf{y}) \Delta(\mathbf{z}) \mid \prod_{k=1}^{r}\left(x_{k} y_{i}-z_{j}\right)^{-1} & \left.\right|_{i, j=1 \ldots n} \\
& =\frac{(-1)^{(n-1)(n / 2+r-1)}}{\prod_{x \in \mathbf{x}}\left(x^{n}-\xi^{n}\right)^{n}} \prod_{i=0}^{n-1}\left(\sum_{j=0}^{\infty} \varphi_{N+i-n j} \xi^{n j}\right) .
\end{aligned}
$$

For $\mathbf{x}=\{1,1\}$, this theorem is due to Han[4]. In that case, $\varphi_{i}=i+1$ and $\varphi_{n-1+i}=n-i$ for $i=0, \ldots, n-1$, and the product appearing in the theorem is

$$
n\left(n-1+\xi^{n}\right)\left(n-2+2 \xi^{n}\right) \cdots\left(1+(n-1) \xi^{n}\right)
$$

For $r=5, n=3$, as a further example, the theorem yields the expression

$$
\begin{aligned}
& \prod_{k=1}^{5}\left(x_{k}^{3}-\xi^{3}\right)^{-3}\left(\varphi_{8}+\varphi_{5} \xi^{3}+\varphi_{2} \xi^{6}\right)\left(\varphi_{9}+\varphi_{6} \xi^{3}+\varphi_{3} \xi^{6}+\xi^{9}\right) \\
& \quad\left(\varphi_{10}+\varphi_{7} \xi^{3}+\varphi_{4} \xi^{6}+\varphi_{1} \xi^{9}\right)
\end{aligned}
$$

which specializes, for $\mathbf{x}=\{1,1,1,1,1\}$, to
$\left(1-\xi^{3}\right)^{-15}\left(15+51 \xi^{3}+15 \xi^{6}\right)\left(5+45 \xi^{3}+30 \xi^{6}+\xi^{9}\right)\left(1+30 \xi^{3}+45 \xi^{6}+5 \xi^{9}\right)$.

References

[1] C. W. Borchardt, Bestimmung der symmetrischen Verbindungen vermittelst ihrer erzeugenden Funktion, Crelle J. 53 (1855), 193-198.
[2] D. Bressoud. Proofs and Confirmations: the Story of the Alternating Sign Matrix Conjecture, Cambridge University Press (1999).
[3] M. Gaudin. La fonction d'onde de Bethe, Masson (1983).
[4] Han Guoniu. Généralisation de l'identité de Scott sur les permanents, Linear Alg. Appl. 311 (2000) 25-34.
[5] A.G. Izergin. Partition function of the six-vertex model in a finite volume, Soviet Phys. Dokl. 32 (1987), 878-879.
[6] G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, Ann. Math. 156 (2002), 835-866.
[7] A. Lascoux. Symmetric Functions \& Combinatorial Operators on Polynomials, CBMS/AMS Lectures Notes 99, (2003).
[8] A. Lascoux. Pfaffians and representations of the symmetric group Acta Math. Sinica 25 (2009) 1929-1950.
[9] A. Lascoux. Gaudin functions, and Euler-Poincaré characteristics, ar χ iv: 0709.1635 (2007).
[10] H. Minc. Permanents, Encyclopedia of mathematics and its applications, vol. 6, Addison-Wesley (1978).
[11] T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols, Macmillan, London, 1906-1923.
[12] S. Okada. Enumeration of symmetry classes of alternating sign matrices and characters of classical groups, J. Alg. Combin. 23 (2006) 43-69.
[13] R. F. Scott. Mathematical notes, Messenger of Math. 10 (1881) 142-149.

