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ABSTRACT. Let x = {z1,...,2.}, y ={v1,---,yn}, 2={21,...,2n} be
three sets of indeterminates. We give the value of the determinant

[[@y—2"

rTEX

Yyey,z€2
when specializing y and z to the set of roots of y” — 1 and 2" — &",
respectively.

In the case where 7 = 2 and x = {1, 1} the determinant |(y — z)_Q‘yey s

factorizes into the determinant of the Cauchy matrix [(y — z)7!] and its
permanent (see [1], respectively [11, vol. 2, pp. 173-175]). Scott [13, 10]
found the value of this permanent when specializing y to the roots of y™ — 1
and z to the roots of 2"+ 1. Han [4] described more generally the case where
z is the set of roots of 2" + az* + b instead of 2" + 1.

Instead of restricting to » = 2 and specializing x, we shall consider the
determinant

[y—2"

rTEX

Y

YEey,2€2

and obtain in Theorem 2 its value when specializing y and z. The remarkable

feature is that this value is a product of sums of monomial functions in x

without multiplicities, thus extending the factorized expressions of [13, 4].
We first need a few generalities about symmetric functions [7].
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Given two sets of indeterminates x,z (we say alphabets), the complete
functions S, (x — z) are the coefficients of the generating function

Y A Sux—z)=[[1=r2) [[1=72)".
n ZEZ rEX
For any r, any A € Z", Sx\(x — z) = det(S),+j—i(x — 2)).
In the case where z = 0, and x of cardinality r, these functions can be

obtained by symmetrization over the symmetric group &,. Let m, be the
following operator on functions in x:

f— fr, = Z (f H (1—1'j/l'i)_l> )

oe&, \ 1<i<j<r
Then, when A > [1 —r,...,—1,0] (e, Ay > 1 —1r, ..., A, > 0), the
monomial z* = z}" - - -2 is sent to Sy(x) under m,. When X is a partition

(i.e., Ay > -+ >\, >0), Si(x) is the usual Schur function of index A.

Let n be a positive integer, £ an indeterminate, and z be the set of roots
of 2" — ¢". Equivalently, e;(z) = 0 for 1 <i < n—1, e,(z) = (—1)"1¢™
For any integer j, any x, one has

Sj(x —z) = 5j(x) = £"Sj-n(x),
and, more generally, from the determinantal expression for Schur functions,
for any A\ € N"|

S\(x—z) = Z S)\_u(x)(_l)\UI/nglu\ 7
ue{0,n}"

where |u| denotes the sum of the coordinates of w.
In particular, when A =n —1,...,n — 1,p (which we shall also denote as

r‘—,l
A = (n—1)"p), then the terms with negative last component —(n—p) vanish,
and the set {\—u : u € {0,n}"} to consider is {[v,p] : v € {n—1,-1}""1}.
Reordering indices, putting ¢ = p — r + 1, one can rewrite the sum as

Stiyip(x—2) = (=177 3T S, (x) (=) ()

ue{0,n}r—1
Since x'm, = S,(x), for any v > [1 —r,..., —1,0], one can rewrite (1) as
a symmetrization of monomial functions in x — 27 = {z,...,2,} :

[y

Stu-vr-1p(x —2) = (=1)"71 Y afmy (x — a1)(=1)" N, (2)

J
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From the identity
M (X — 1) = Mypi (X) — 2Mm51(X) + 22" My (%) + - -+ (—a})7
one sees that z{m,;(x — z1) 7, is equal to

Sq () M3 (X) = Sqgn () M1 (%) 4 - -+ 4 (=1)7 S (%) - (3)

On the other hand, S(,_1)—1,(x — z) belongs to the linear span of Schur
functions indexed by partitions p such that gy < n — 1. This implies that
S(n—1)1p(x — z) belongs to the linear span of monomial functions indexed
by the same set of partitions. Consequently, one can restrict the sum in (3)
to the term (—1)7S,4jn(x).

In summary, one has the following expression for the specialization of the
Schur function that we are considering.

Proposition 1. Let x be an alphabet of cardinality v, z be the set of roots
=" =0,p<n—1, N=(n—-1)(r—1). Then

Syl —2) = 3 my(x) €0 (4)

where the sum is over all partitions pp € N", 1y <n—1, |u| = p—r+1 mod n.
For example, for n = 4, r = 2, one has
S30(X — Z) = mg(X) + mgl(X), Sgl(X — Z) = m31(X) + m22(x) + 54,

Sao(X —2) = maa(x) +E*my(X), Saz3(x —2z) = maz(x) +EH(ma(x) +myi (X)) .

Let
Dixy.2) = | [(@y =)

rTEX

YEey,2€2

In the case r = 2, this determinant has been obtained by Izergin and Ko-
repin [5] as the partition function of the Heisenberg XXZ-antiferromagnetic
model (modulo some normalization factor). Gaudin [3] had previously de-
scribed the partition function of some other model as the determinant ‘(m —
y)~'(z —y + )| for some parameter .

The Izergin—Korepin determinant is used in the enumeration of alternat-
ing sign matrices [2]. In that case, one first specializes x = {e*™/3 e¥7/3},
Kuperberg [6] and Okada [12] evaluate more general partition functions cor-
responding to similar determinants or Pfaffians, and to other roots of unity
(see also [8, Th. 7.2]).
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We shall take another point of view, keep x generic, but specialize instead
y and z. In [9, Formula 4], it is shown that the function

Gixy.m) = PR T o - )

TEX YCY 2€2Z

is equal to the determinant of the matrix
[S(n_l)rq]—(yix — z)] , (5)

7=0..n—1,i=1l..n
where A(z) = H1§i<j§n(zi — zj).
For any k € N, let ¢, be the sum of all monomial functions m,,(x) of
degree k, with uy < n — 1 (notice that ¢, = 0 when & > (n — 1)r). From

(4), one sees that S(,_1)~—1;(yx — z) specializes, when z is the set of roots
of 2" —&", to

S(n_l)r-flj(’yix — Z)
=y T one Y T N+ €Y T T 0N o+, (6)

where, as before, N = (n — 1)(r — 1). Further specializing y to the roots of
y™ — 1, one sees that the matrix (5) factorizes into the product of the matrix

[yi(NH )], where the symbol (N + j) stands for the remainder of division of

N + j by n, and the diagonal matrix

diag<(§0N+§an—n+§2nQ0N—2n+‘ . ), (¢N+1+§H¢N+1—N+€2N¢N+1—2n+' - )’
oy (ONgn—1 €M ONIn—1-n + fanONH—n + - )) .

For example, for n = 3, r = 3,

Sano(Yix — z) = yi o1 + yip1€”, Saz (yix — 2) = )05 + Y7262,
Saoa(yix — z) = ye + yips&® + £°,

and the matrix factorizes into

y1oyi 1] [ea+ ¢ 0 0
Y2 y3 1 0 @5 + P23 0
ys y3 1 0 0 6 + 383 + €6

Taking into account that [], , .(zy — 2) specializes to [], ,(z"y" —&") =
[Liex(2™ — &)™, and that the determinant of powers of the y € y is a
permutation of the Vandermonde in y, one obtains the following theorem.
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Theorem 2. Let n,r be two positive integers, N = (n—1)(r —1). Let x be
an alphabet of cardinality v, y be the set of roots of y" — 1, z be the set of
roots of 2" — &". Then

T

A(y)A(z) H(ifk?/z' —z)™!

k=1 i,j=1...mn
n—1 (e}
(=1)(n=D(n/24r-1) .
= YN i—n'g ! .
HwEX('xn _ gn)n ];10: ; +i—nj
For x = {1,1}, this theorem is due to Han[4]. In that case, ¢; =i+ 1
and ¢, 14, =n—1forv=0,...,n — 1, and the product appearing in the
theorem is

nn—14+&Yn—-242")---(1+ (n—1)¢§").

For r =5, n = 3, as a further example, the theorem yields the expression

5
H(xi — &7 (s + 058 + ©28°) (o + w6&® + 3E° + &)
k=1

(8010 + @78 + s’ + @159) ;
which specializes, for x = {1,1,1,1, 1}, to
(1 —&3)71(15 + 51€3 + 15€5)(5 + 45¢% + 30£° + €7)(1 + 3063 + 45¢° + 5¢9) .
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