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Abstract. Let x = {x1, . . . , xr}, y = {y1, . . . , yn}, z = {z1, . . . , zn} be
three sets of indeterminates. We give the value of the determinant
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when specializing y and z to the set of roots of yn − 1 and zn − ξn,
respectively.

In the case where r = 2 and x = {1, 1} the determinant
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factorizes into the determinant of the Cauchy matrix [(y − z)−1] and its
permanent (see [1], respectively [11, vol. 2, pp. 173–175]). Scott [13, 10]
found the value of this permanent when specializing y to the roots of yn − 1
and z to the roots of zn +1. Han [4] described more generally the case where
z is the set of roots of zn + azk + b instead of zn + 1.

Instead of restricting to r = 2 and specializing x, we shall consider the
determinant
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,

and obtain in Theorem 2 its value when specializing y and z. The remarkable
feature is that this value is a product of sums of monomial functions in x

without multiplicities, thus extending the factorized expressions of [13, 4].
We first need a few generalities about symmetric functions [7].
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Given two sets of indeterminates x, z (we say alphabets), the complete
functions Sn(x − z) are the coefficients of the generating function

∑

n

γnSn(x − z) =
∏

z∈z

(1 − γz)
∏

x∈x

(1 − γx)−1 .

For any r, any λ ∈ Z
r, Sλ(x − z) = det

(
Sλi+j−i(x − z)

)
.

In the case where z = 0, and x of cardinality r, these functions can be
obtained by symmetrization over the symmetric group Sr. Let πω be the
following operator on functions in x:

f → fπω :=
∑

σ∈Sr

(

f
∏

1≤i<j≤r

(1 − xj/xi)
−1

)σ

.

Then, when λ ≥ [1 − r, . . . ,−1, 0] (i.e., λ1 ≥ 1 − r, . . . , λr ≥ 0), the
monomial xλ = xλ1

1 · · ·xλr
r is sent to Sλ(x) under πω. When λ is a partition

(i.e., λ1 ≥ · · · ≥ λr ≥ 0), Sλ(x) is the usual Schur function of index λ.

Let n be a positive integer, ξ an indeterminate, and z be the set of roots
of zn − ξn. Equivalently, ei(z) = 0 for 1 ≤ i ≤ n − 1, en(z) = (−1)n−1ξn.
For any integer j, any x, one has

Sj(x − z) = Sj(x) − ξnSj−n(x) ,

and, more generally, from the determinantal expression for Schur functions,
for any λ ∈ N

r,

Sλ(x − z) =
∑

u∈{0,n}r

Sλ−u(x)(−1)|u|/nξ|u| ,

where |u| denotes the sum of the coordinates of u.
In particular, when λ = n − 1, . . . , n − 1

︸ ︷︷ ︸

r−1

, p (which we shall also denote as

λ = (n−1)rp), then the terms with negative last component −(n−p) vanish,
and the set

{
λ−u : u ∈ {0, n}r

}
to consider is

{
[v, p] : v ∈ {n−1,−1}r−1

}
.

Reordering indices, putting q = p − r + 1, one can rewrite the sum as

S(n−1)r−1p(x − z) = (−1)r−1
∑

u∈{0,n}r−1

Sq,u(x)(−1)(|λ|−|u|−q)/nξ|λ|−|u|−q . (1)

Since xvπω = Sv(x), for any v ≥ [1 − r, . . . ,−1, 0], one can rewrite (1) as
a symmetrization of monomial functions in x − x1 = {x2, . . . , xr} :

S(n−1)r−1p(x − z) = (−1)r−1

r−1∑

j=0

xq
1mnj(x − x1)(−1)r−1−jξ|λ|−jn−q πω . (2)
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From the identity

mnj (x − x1) = mnj (x) − xn
1mnj−1(x) + x2n

1 mnj−2(x) + · · ·+ (−xn
1 )j ,

one sees that xq
1mnj (x − x1) πω is equal to

Sq(x)mnj (x) − Sq+n(x)mnj−1(x) + · · ·+ (−1)jSq+jn(x) . (3)

On the other hand, S(n−1)r−1p(x − z) belongs to the linear span of Schur
functions indexed by partitions µ such that µ1 ≤ n − 1. This implies that
S(n−1)r−1p(x − z) belongs to the linear span of monomial functions indexed
by the same set of partitions. Consequently, one can restrict the sum in (3)
to the term (−1)jSq+jn(x).

In summary, one has the following expression for the specialization of the
Schur function that we are considering.

Proposition 1. Let x be an alphabet of cardinality r, z be the set of roots

zn − ξn = 0, p ≤ n − 1, N = (n − 1)(r − 1). Then

S(n−1)r−1p(x − z) =
∑

µ

mµ(x) ξN+p−|µ| , (4)

where the sum is over all partitions µ ∈ N
r, µ1 ≤ n−1, |µ| ≡ p−r+1 mod n.

For example, for n = 4, r = 2, one has

S30(x − z) = m3(x) + m21(x), S31(x − z) = m31(x) + m22(x) + ξ4 ,

S32(x− z) = m32(x)+ ξ4m1(x), S33(x− z) = m33(x)+ ξ4(m2(x)+m11(x)) .

Let

D(x,y, z) =
∣
∣
∣

∏

x∈x

(xy − z)−1
∣
∣
∣
y∈y,z∈z

.

In the case r = 2, this determinant has been obtained by Izergin and Ko-
repin [5] as the partition function of the Heisenberg XXZ-antiferromagnetic
model (modulo some normalization factor). Gaudin [3] had previously de-
scribed the partition function of some other model as the determinant

∣
∣(x−

y)−1(x − y + γ)−1
∣
∣ for some parameter γ.

The Izergin–Korepin determinant is used in the enumeration of alternat-
ing sign matrices [2]. In that case, one first specializes x = {e2iπ/3, e4iπ/3}.
Kuperberg [6] and Okada [12] evaluate more general partition functions cor-
responding to similar determinants or Pfaffians, and to other roots of unity
(see also [8, Th. 7.2]).
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We shall take another point of view, keep x generic, but specialize instead
y and z. In [9, Formula 4], it is shown that the function

G(x,y, z) =
D(x,y, z)

∆(z)

∏

x∈x

∏

y∈y

∏

z∈z

(xy − z)

is equal to the determinant of the matrix
[

S(n−1)r−1j(yix − z)
]

j=0...n−1, i=1...n
, (5)

where ∆(z) =
∏

1≤i<j≤n(zi − zj).

For any k ∈ N, let ϕk be the sum of all monomial functions mµ(x) of
degree k, with µ1 ≤ n − 1 (notice that ϕk = 0 when k > (n − 1)r). From
(4), one sees that S(n−1)r−1j(yix − z) specializes, when z is the set of roots
of zn − ξn, to

S(n−1)r−1j(yix − z)

= yN+j
i ϕN+j + ξnyN+j−n

i ϕN+j−n + ξ2nyN+j−2n
i ϕN+j−2n + · · · , (6)

where, as before, N = (n − 1)(r − 1). Further specializing y to the roots of
yn−1, one sees that the matrix (5) factorizes into the product of the matrix
[

y
(N+j)
i

]

, where the symbol (N + j) stands for the remainder of division of

N + j by n, and the diagonal matrix

diag
(

(ϕN+ξnϕN−n+ξ2nϕN−2n+· · · ), (ϕN+1+ξnϕN+1−n+ξ2nϕN+1−2n+· · · ),

· · · , (ϕN+n−1 + ξnϕN+n−1−n + ξ2nϕN+1−n + · · · )
)

.

For example, for n = 3, r = 3,

S220(yix − z) = y4
i ϕ4 + yiϕ1ξ

3, S221(yix − z) = y5
i ϕ5 + y2

i ϕ2ξ
3,

S222(yix − z) = y6
i ϕ6 + y3

i ϕ3ξ
3 + ξ6 ,

and the matrix factorizes into




y1 y2
1 1

y2 y2
2 1

y3 y2
3 1









ϕ4 + ϕ1ξ
3 0 0

0 ϕ5 + ϕ2ξ
3 0

0 0 ϕ6 + ϕ3ξ
3 + ξ6



 .

Taking into account that
∏

x,y,z(xy − z) specializes to
∏

y,x(x
nyn − ξn) =

∏

x∈x(x
n − ξn)n, and that the determinant of powers of the y ∈ y is a

permutation of the Vandermonde in y, one obtains the following theorem.
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Theorem 2. Let n, r be two positive integers, N = (n− 1)(r − 1). Let x be

an alphabet of cardinality r, y be the set of roots of yn − 1, z be the set of

roots of zn − ξn. Then

∆(y)∆(z)

∣
∣
∣
∣
∣

r∏

k=1

(xkyi − zj)
−1

∣
∣
∣
∣
∣
i,j=1...n

=
(−1)(n−1)(n/2+r−1)

∏

x∈x(x
n − ξn)n

n−1∏

i=0

(
∞∑

j=0

ϕN+i−nj ξnj

)

.

For x = {1, 1}, this theorem is due to Han[4]. In that case, ϕi = i + 1
and ϕn−1+i = n − i for i = 0, . . . , n − 1, and the product appearing in the
theorem is

n (n − 1 + ξn) (n − 2 + 2ξn) · · · (1 + (n − 1)ξn) .

For r = 5, n = 3, as a further example, the theorem yields the expression

5∏

k=1

(x3
k − ξ3)−3

(
ϕ8 + ϕ5ξ

3 + ϕ2ξ
6
) (

ϕ9 + ϕ6ξ
3 + ϕ3ξ

6 + ξ9
)

(
ϕ10 + ϕ7ξ

3 + ϕ4ξ
6 + ϕ1ξ

9
)

,

which specializes, for x = {1, 1, 1, 1, 1}, to

(1 − ξ3)−15(15 + 51ξ3 + 15ξ6)(5 + 45ξ3 + 30ξ6 + ξ9)(1 + 30ξ3 + 45ξ6 + 5ξ9) .
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