Combinatorial aspects of supercharacter theories of the unitriangular groups

Carlos A. M. André
(CELC, University of Lisbon)

61st Séminaire Lotharingien de Combinatoire (Curia, Portugal, September 22-24, 2008)

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

UNITRIANGULAR GROUP $=1+$ NILTRIANGULAR ALGEBRA

$$
\left[\begin{array}{lllll}
1 & \star & \star & \cdots & \star \\
& 1 & \star & \cdots & \star \\
& & 1 & \cdots & \star \\
& & & \ddots &
\end{array}\right]=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & \ddots
\end{array}\right]+\left[\begin{array}{ccccc}
0 & \star & \star & \cdots & \star \\
& 0 & \star & \cdots & \star \\
& & 0 & \cdots & \star \\
& & & \ddots &
\end{array}\right]
$$

- (number of) conjugacy classes?
- (number of) irreducible characters?
(These are "wild" problems.)

Supercharacters and superclasses

- Supercharacters and superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of supercharacters
- "Indecomposable" supercharacters
- The unitriangular group II
- Pattern groups

Supercharacters and superclasses

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with se partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups
"SUPERCHARACTERS AND SUPERCLASSES" were first introduced for finite unitriangular groups by C. André (in a series of papers in J. of Algebra) using polynomial equations defining certain algebraic varieties (invariant under conjugation).

Supercharacters and superclasses

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with se
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups
"SUPERCHARACTERS AND SUPERCLASSES" were first introduced for finite unitriangular groups by C. André (in a series of papers in J. of Algebra) using polynomial equations defining certain algebraic varieties (invariant under conjugation).

Algebraic geometry was avoided and the construction was simplified by N . Yan (2000). Later, the notion of a "SUPERCHARACTER THEORY" for an arbitrary finite group was developed by P. Diaconis and I. M. Isaacs in the paper

- P. Diaconis \& I. M. Isaacs, Supercharacters and superclasses for algebra groups, Trans. AMS (2008).

Supercharacters and superclasses

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with se partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups
"SUPERCHARACTERS AND SUPERCLASSES" were first introduced for finite unitriangular groups by C. André (in a series of papers in J. of Algebra) using polynomial equations defining certain algebraic varieties (invariant under conjugation).

Algebraic geometry was avoided and the construction was simplified by N . Yan (2000). Later, the notion of a "SUPERCHARACTER THEORY" for an arbitrary finite group was developed by P. Diaconis and I. M. Isaacs in the paper

- P. Diaconis \& I. M. Isaacs, Supercharacters and superclasses for algebra groups, Trans. AMS (2008).

Roughly, a "sUPERCHARACTER THEORY" replaces

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

A SUPERCHARACTER THEORY of a finite group G consists of

- a partition \mathcal{K} of G
- a set \mathcal{X} of (complex) characters of G
satisfying the following three axioms:

1. $|\mathcal{K}|=|\mathcal{X}|$;
2. every irreducible character of G is a constituent of a unique $\xi \in \mathcal{X}$;
3. the characters in \mathcal{X} are constant on the members of \mathcal{K}.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

A SUPERCHARACTER THEORY of a finite group G consists of

- a partition \mathcal{K} of G
- a set \mathcal{X} of (complex) characters of G
satisfying the following three axioms:

1. $|\mathcal{K}|=|\mathcal{X}|$;
2. every irreducible character of G is a constituent of a unique $\xi \in \mathcal{X}$;
3. the characters in \mathcal{X} are constant on the members of \mathcal{K}.

- The elements of \mathcal{K} are called the superclasses of G,
- the elements of \mathcal{X} are called the supercharacters of G.
- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Any finite group has two trivial supercharacter theories:

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Any finite group has two trivial supercharacter theories:

1. Superclasses: $\{1\}, G-\{1\}$; Supercharacters: $1_{G}, \quad \rho_{G}-1_{G}$.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Any finite group has two trivial supercharacter theories:

1. Superclasses: $\{1\}, G-\{1\}$;

Supercharacters: $1_{G}, \quad \rho_{G}-1_{G}$.
2. The full character theory:

SUPERCLASSES: conjugacy classes of G,
SUPERCHARACTERS: irreducible characters of G.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Any finite group has two trivial supercharacter theories:

1. Superclasses: $\{1\}, G-\{1\}$;

Supercharacters: $1_{G}, \quad \rho_{G}-1_{G}$.
2. The full character theory:

SUPERCLASSES: conjugacy classes of G,
Supercharacters: irreducible characters of G.

For some groups these are the only possibilities, there are many groups for which nontrivial supercharacter theories exist.

In many cases it may be possible to obtain useful information using some particular supercharacter theory. For instance, E. Arias-Castro, P. Diaconis and R. Stanley showed that a special supercharacter theory can be applied to study a random walk on uppertriangular matrices over finite fields using techniques that traditionally required the knowledge of the full character theory.

Algebra groups

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Let

- \mathbb{F}_{q} finite field with q elements;
- A finite-dimensional associative \mathbb{F}_{q}-algebra (with identity);
- $J=J(A) \quad$ Jacobson radical of A.

Algebra groups

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Let

- \mathbb{F}_{q} finite field with q elements;
- A finite-dimensional associative $\mathbb{F}_{q^{-}}$-algebra (with identity);
- $J=J(A) \quad$ Jacobson radical of A.

The algebra group associated with J is $\quad G=1+J$ (a finite subgroup of A^{\times}).

Algebra groups

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Let

- \mathbb{F}_{q} finite field with q elements;
- A finite-dimensional associative \mathbb{F}_{q}-algebra (with identity);
- $J=J(A) \quad$ Jacobson radical of A.

The algebra group associated with J is $\quad G=1+J$ (a finite subgroup of A^{\times}).

Example (UNITRIANGULAR GROUP).

- $A=\mathfrak{b}_{n}(q)=\left\{\right.$ uppertriangular $n \times n$ matrices over $\left.\mathbb{F}_{q}\right\}$;
- $J=\mathfrak{u}_{n}(q)=\left\{\right.$ nilpotent uppertriangular matrices over $\left.\mathbb{F}_{q}\right\}$;
- $G=1+J=U_{n}(q)=\left\{\right.$ unipotent uppertriangular matrices over $\left.\mathbb{F}_{q}\right\}$.
- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Let us consider the dual space J^{*} of J as is a left A-module for the natural representation:

$$
a f(u)=f(u a) \quad\left(a \in A, f \in J^{*}, u \in J\right)
$$

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Let us consider the dual space J^{*} of J as is a left A-module for the natural representation:

$$
a f(u)=f(u a) \quad\left(a \in A, f \in J^{*}, u \in J\right)
$$

Let

- $\mathcal{L}(f)=\{a \in J: a f=0\}$,
- $L(f)=1+\mathcal{L}(f)$,
- $\vartheta_{f}: L(f) \rightarrow \mathbb{C}$ the map defined by

$$
\vartheta_{f}(1+a)=\vartheta(a) \quad(a \in \mathcal{L}(f))
$$

where ϑ is a nontrivial additive character of \mathbb{F}_{q}

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Let us consider the dual space J^{*} of J as is a left A-module for the natural representation:

$$
a f(u)=f(u a) \quad\left(a \in A, f \in J^{*}, u \in J\right)
$$

Let

- $\mathcal{L}(f)=\{a \in J: a f=0\}$,
- $L(f)=1+\mathcal{L}(f)$,
- $\vartheta_{f}: L(f) \rightarrow \mathbb{C}$ the map defined by

$$
\vartheta_{f}(1+a)=\vartheta(a) \quad(a \in \mathcal{L}(f))
$$

where ϑ is a nontrivial additive character of \mathbb{F}_{q}

- $L(f)$ is an algebra subgroup of $G=1+J$,
- ϑ_{f} is a linear character of $L(f)$.
- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

We define the supercharacter of G (associated with $f \in J^{*}$) to be the induced character $\xi_{f}=\left(\vartheta_{f}\right)^{G}$.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

We define the supercharacter of G (associated with $f \in J^{*}$) to be the induced character $\xi_{f}=\left(\vartheta_{f}\right)^{G}$.

$$
\begin{aligned}
& \text { Theorem. For any } f \in J^{*} \text {, } \\
& \text { - } \quad \xi_{f}(1)=|G f|=|J f| \text {; } \\
& \text { - }\left\langle\xi_{f}, \xi_{g}\right\rangle \neq 0 \Longleftrightarrow \quad \Longleftrightarrow \quad g \in G f G \Longleftrightarrow \xi_{f}=\xi_{g} ; \\
& \text { - }\left\langle\xi_{f}, \xi_{f}\right\rangle=|G f \cap f G|=|J f \cap f J| \text {. }
\end{aligned}
$$

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

We define the supercharacter of G (associated with $f \in J^{*}$) to be the induced character $\xi_{f}=\left(\vartheta_{f}\right)^{G}$.

> Theorem. For any $f \in J^{*}$,
> - $\xi_{f}(1)=|G f|=|J f|$;
> - $\left\langle\xi_{f}, \xi_{g}\right\rangle \neq 0 \Longleftrightarrow \quad g \in G f G \Longleftrightarrow \xi_{f}=\xi_{g}$;
> - $\left\langle\xi_{f}, \xi_{f}\right\rangle=|G f \cap f G|=|J f \cap f J|$.

Remark. We obtain a similar result by replacing the left by the right representation of A on J^{*}. In particular, $\xi_{f}(1)=|J f|=|f J|$.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

It is clear that $\left\{G f G: f \in J^{*}\right\}$ is a partition of J^{*}. In fact, we have the following.

Theorem. The regular character ρ_{G} decomposes as the (orthogonal) sum

$$
\begin{array}{r}
\rho_{G}=\sum_{G f G \subseteq J^{*}} m_{f} \xi_{f} \\
\text { where } m_{f}=\frac{|G f \cap f G|}{|G f|}=\frac{|G f|}{|G f G|}\left(f \in J^{*}\right) .
\end{array}
$$

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

It is clear that $\left\{G f G: f \in J^{*}\right\}$ is a partition of J^{*}. In fact, we have the following.

Theorem. The regular character ρ_{G} decomposes as the (orthogonal) sum

$$
\begin{array}{r}
\rho_{G}=\sum_{G f G \subseteq J^{*}} m_{f} \xi_{f} \\
\text { where } m_{f}=\frac{|G f \cap f G|}{|G f|}=\frac{|G f|}{|G f G|}\left(f \in J^{*}\right) .
\end{array}
$$

In particular, we deduce that
\square
Theorem. Every irreducible character of $G=1+J$ is a constituent of a unique supercharacter.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Theorem. For all $f \in J^{*}$ and all $a \in J$, we have

$$
\xi_{f}(1+a)=\frac{\xi_{f}(1)}{|G f G|} \sum_{g \in G f G} \vartheta_{g}(a)=\frac{\xi_{f}(1)}{|G a G|} \sum_{b \in G a G} \vartheta_{f}(b)
$$

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Theorem. For all $f \in J^{*}$ and all $a \in J$, we have

$$
\xi_{f}(1+a)=\frac{\xi_{f}(1)}{|G f G|} \sum_{g \in G f G} \vartheta_{g}(a)=\frac{\xi_{f}(1)}{|G a G|} \sum_{b \in G a G} \vartheta_{f}(b) .
$$

The superclass of $x \in G$ is defined to be $K_{x}=1+G(x-1) G$.
Theorem. The sets $\left\{\xi_{f}: f \in J^{*}\right\}$ and $\left\{K_{x}: x \in G\right\}$ define a super-
character theory for $G=1+J$.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Theorem. For all $f \in J^{*}$ and all $a \in J$, we have

$$
\xi_{f}(1+a)=\frac{\xi_{f}(1)}{|G f G|} \sum_{g \in G f G} \vartheta_{g}(a)=\frac{\xi_{f}(1)}{|G a G|} \sum_{b \in G a G} \vartheta_{f}(b) .
$$

The superclass of $x \in G$ is defined to be $K_{x}=1+G(x-1) G$.
Theorem. The sets $\left\{\xi_{f}: f \in J^{*}\right\}$ and $\left\{K_{x}: x \in G\right\}$ define a supercharacter theory for $G=1+J$.

In fact, a theorem of Brauer implies that $\quad|G \backslash J / G|=\left|G \backslash J^{*} / G\right|$.
Thus, we may define the sUPERCHARACTER TABLE of G to be the square (complex) matrix with entries given by the supercharacter values on the superclasses.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

By a superclass function of G we mean a function $G \rightarrow \mathcal{X}$ which is constant on superclasses.

Theorem. The supercharacters form an orthogonal basis of the commu-
tative algebra consisting of all supeclass functions of G.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

By a superclass function of G we mean a function $G \rightarrow \mathcal{X}$ which is constant on superclasses.

> Theorem. The supercharacters form an orthogonal basis of the commutative algebra consisting of all supeclass functions of G.

In particular,

- The restriction of a supercharacter to an algebra subgroup of G is a \mathbb{Z}-linear combination of supercharacters.
- The product of supercharacters is a \mathbb{Z}-linear combination of supercharacters.
- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

By a superclass function of G we mean a function $G \rightarrow \mathcal{X}$ which is constant on superclasses.
Theorem. The supercharacters form an orthogonal basis of the commu-
tative algebra consisting of all supeclass functions of G.

In particular,

- The restriction of a supercharacter to an algebra subgroup of G is a \mathbb{Z}-linear combination of supercharacters.
- The product of supercharacters is a \mathbb{Z}-linear combination of supercharacters.

REMARK. In general, induction of supercharacters is not a superclass function. However, it is possible to define a SUPERINDUCTION of superclass functions (via Frobenius reciprocity).

The unitriangular group I

- Supercharacters and superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of supercharacters
- "Indecomposable" supercharacters
- The unitriangular group II
- Pattern groups

The unitriangular group I

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Let

- $e_{i, j}$ the elementary matrix with 1 in position (i, j) and 0 's elsewhere.
- $\left\{e_{i, j}: 1 \leq i<j \leq n\right\}$ the canonical basis of $\mathfrak{u}_{n}(q)$.
- $\left\{e_{i, j}^{*}: 1 \leq i<j \leq n\right\}$ the dual basis of $\mathfrak{u}_{n}(q)^{*}$.

The unitriangular group I

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Let

- $e_{i, j}$ the elementary matrix with 1 in position (i, j) and 0 's elsewhere.
- $\left\{e_{i, j}: 1 \leq i<j \leq n\right\}$ the canonical basis of $\mathfrak{u}_{n}(q)$.
- $\left\{e_{i, j}^{*}: 1 \leq i<j \leq n\right\}$ the dual basis of $\mathfrak{u}_{n}(q)^{*}$.

The supercharacters and superclasses of $U_{n}(q)$ are in one-to-one correspondence with pairs (D, ϕ) where D is a BASIC SUBSET of

$$
\Phi(n)=\{(i, j): 1 \leq i<j \leq n\}
$$

and $\phi: D \rightarrow \mathbb{F}_{q}^{\times}$is any map.

The unitriangular group I

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Let

- $e_{i, j}$ the elementary matrix with 1 in position (i, j) and 0 's elsewhere.
- $\left\{e_{i, j}: 1 \leq i<j \leq n\right\}$ the canonical basis of $\mathfrak{u}_{n}(q)$.
- $\left\{e_{i, j}^{*}: 1 \leq i<j \leq n\right\}$ the dual basis of $\mathfrak{u}_{n}(q)^{*}$.

The supercharacters and superclasses of $U_{n}(q)$ are in one-to-one correspondence with pairs (D, ϕ) where D is a BASIC SUBSET of

$$
\Phi(n)=\{(i, j): 1 \leq i<j \leq n\}
$$

and $\phi: D \rightarrow \mathbb{F}_{q}^{\times}$is any map.
A subset $D \subseteq \Phi(n)$ is said to be BASIC if D has at most one entry from each row and each column.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups
- The supercharacter $\xi_{D, \phi}$ corresponding to the basic pair (D, ϕ) is defined by the linear function

$$
e_{D, \phi}^{*}=\sum_{(i, j) \in D} \phi(i, j) e_{i, j}^{*}
$$

in $\mathfrak{u}_{n}(q)^{*}$.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups
- The supercharacter $\xi_{D, \phi}$ corresponding to the basic pair (D, ϕ) is defined by the linear function

$$
e_{D, \phi}^{*}=\sum_{(i, j) \in D} \phi(i, j) e_{i, j}^{*}
$$

in $\mathfrak{u}_{n}(q)^{*}$.

- The superclass $K_{D, \phi}$ corresponding to the basic pair (D, ϕ) is defined by the matrix

$$
e_{D, \phi}=\sum_{(i, j) \in D} \phi(i, j) e_{i, j}
$$

in $\mathfrak{u}_{n}(q)$.

Connections with set partitions

- Supercharacters and superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of supercharacters
- "Indecomposable" supercharacters
- The unitriangular group II
- Pattern groups

Connections with set partitions

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

The basic subsets of $\Phi(n)$ are in one-to-one correspondence with the set partitions of $\{1,2, \ldots, n\}$.

Connections with set partitions

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

The basic subsets of $\Phi(n)$ are in one-to-one correspondence with the set partitions of $\{1,2, \ldots, n\}$. For example,

$$
\{(1,3),(3,6),(6,7),(2,4),(4,8)\} \longleftrightarrow 1367 / 2487 / 5
$$

which we represent by "arcs":

Connections with set partitions

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

The basic subsets of $\Phi(n)$ are in one-to-one correspondence with the set partitions of $\{1,2, \ldots, n\}$. For example,

$$
\{(1,3),(3,6),(6,7),(2,4),(4,8)\} \longleftrightarrow 1367 / 2487 / 5
$$

which we represent by "arcs":

Theorem. Let $D \subseteq \Phi(n)$ be a basic subset and let $\phi: D \rightarrow \mathbb{F}_{q}^{\times}$be any map. Then,

$$
\left\langle\xi_{D, \phi}, \xi_{D, \phi}\right\rangle=q^{c(D)}
$$

where $c(D)$ is the number of crossings of the set partition corresponding to D.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Theorem. The supercharacter $\xi_{D, \phi}$ is irreducible if and only if the basic
subset $D \subseteq \Phi(n)$ corresponds to a non-crossing set partition.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

> Theorem. The supercharacter $\xi_{D, \phi}$ is irreducible if and only if the basic subset $D \subseteq \Phi(n)$ corresponds to a non-crossing set partition.

$\alpha \in \mathbb{F}_{q}{ }^{\times}$) corresponds uniquely to an irreducible supercharacter $\xi_{i, j}(\alpha)$ defined by $\alpha e_{i, j}^{*} \in \mathfrak{u}_{n}(q)^{*}$.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

> Theorem. The supercharacter $\xi_{D, \phi}$ is irreducible if and only if the basic subset $D \subseteq \Phi(n)$ corresponds to a non-crossing set partition.

$\left.\alpha \in \mathbb{F}_{q}{ }^{\times}\right)$corresponds uniquely to an irreducible supercharacter $\xi_{i, j}(\alpha)$ defined by $\alpha e_{i, j}^{*} \in \mathfrak{u}_{n}(q)^{*}$.

Theorem. Given a basic subset $D \subseteq \Phi(n)$ and $\operatorname{map} \phi: D \rightarrow \mathbb{F}_{q} \times$, the supercharacter $\xi_{D, \phi}$ is the product

$$
\xi_{D, \phi}=\prod_{(i, j) \in D} \xi_{i, j}\left(\alpha_{i, j}\right)
$$

where $\alpha_{i, j}=\phi(i, j)$.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Example. $\{(1,3),(3,6),(6,7),(2,4),(4,8)\}$

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set

partitions

- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Example. $\{(1,3),(3,6),(6,7),(2,4),(4,8)\}$

$$
\xi_{D, \phi}(1)=\left|J e_{D, \phi}^{*}\right|=q^{7}
$$

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set

partitions

- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Example. $\{(1,3),(3,6),(6,7),(2,4),(4,8)\}$

$$
\xi_{D, \phi}(1)=\left|e_{D, \phi}^{*} J\right|=q^{7}
$$

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Example. $\{(1,3),(3,6),(6,7),(2,4),(4,8)\}$

$$
\left\langle\xi_{D, \phi}, \xi_{D, \phi}\right\rangle=\left|J e_{D, \phi}^{*} \cap e_{D, \phi}^{*} J\right|=q^{3}
$$

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

On the other extreme, we may consider nests of a set partition: for example,

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

On the other extreme, we may consider nests of a set partition: for example,

A supercharacter corresponding to a nest is always irreducible.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

On the other extreme, we may consider nests of a set partition: for example,

A supercharacter corresponding to a nest is always irreducible. As a particular case, we have the following.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

On the other extreme, we may consider nests of a set partition: for example,

A supercharacter corresponding to a nest is always irreducible. As a particular case, we have the following.

Theorem. The irreducible characters of $U_{n}(q)$ with maximal degree are exactly (almost) all the supercharacters corresponding to maximal nests of $\{1,2, \ldots, n\}$.

EXERCISE. Evaluate $\xi_{D, \phi}$ at the superclass $K_{D, \phi}$, and obtain relation with the nesting number of the set partition corresponding to D.

Factorization of supercharacters

(Joint work with O. Pinho)

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Factorization of supercharacters

(Joint work with O. Pinho)

Question. Given $f_{1}, \ldots, f_{t} \in J^{*}$, find conditions for the existence of $f \in J^{*}$ such that $\xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}}$.

Factorization of supercharacters

(Joint work with O. Pinho)

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with se partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Question. Given $f_{1}, \ldots, f_{t} \in J^{*}$, find conditions for the existence of $f \in J^{*}$ such that $\xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}}$.
Theorem. Let $f \in J^{*}$, and suppose that $J f=J f_{1} \oplus \cdots \oplus J f_{t}$ for
some $f_{1}, \ldots, f_{t} \in J^{*}$ with $f=f_{1}+\cdots+f_{t}$. Then, $\xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}}$.

Factorization of supercharacters

(Joint work with O. Pinho)

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Question. Given $f_{1}, \ldots, f_{t} \in J^{*}$, find conditions for the existence of $f \in J^{*}$ such that $\xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}}$.
Theorem. Let $f \in J^{*}$, and suppose that $J f=J f_{1} \oplus \cdots \oplus J f_{t}$ for
some $f_{1}, \ldots, f_{t} \in J^{*}$ with $f=f_{1}+\cdots+f_{t}$. Then, $\xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}}$.

Conversely,
Theorem. Let $f_{1}, \ldots, f_{t} \in J^{*}$, and suppose that $\xi_{f_{1}} \cdots \xi_{f_{t}}=\xi_{f}$ for
some $f \in J^{*}$. Then, $x f y=f_{1}+\cdots+f_{t}$ for some $x, y \in G$, and
$J f \cong J f y=J f_{1} \oplus \cdots \oplus J f_{t}$.

Factorization of supercharacters

(Joint work with O. Pinho)
Question. Given $f_{1}, \ldots, f_{t} \in J^{*}$, find conditions for the existence of $f \in J^{*}$ such that $\xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}}$.
Theorem. Let $f \in J^{*}$, and suppose that $J f=J f_{1} \oplus \cdots \oplus J f_{t}$ for
some $f_{1}, \ldots, f_{t} \in J^{*}$ with $f=f_{1}+\cdots+f_{t}$. Then, $\xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}}$.

Conversely,
Theorem. Let $f_{1}, \ldots, f_{t} \in J^{*}$, and suppose that $\xi_{f_{1}} \cdots \xi_{f_{t}}=\xi_{f}$ for
some $f \in J^{*}$. Then, $x f y=f_{1}+\cdots+f_{t}$ for some $x, y \in G$, and
$J f \cong J f y=J f_{1} \oplus \cdots \oplus J f_{t}$.

Theorem. Let $f \in J^{*}$, and suppose that $f=f_{1}+\cdots+f_{t}$. Then,

$$
\begin{aligned}
\xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}} & \Longleftrightarrow \quad J f=J f_{1} \oplus \cdots \oplus J f_{t} \\
& \Longleftrightarrow \quad f J=f_{1} J \oplus \cdots \oplus f_{t} J .
\end{aligned}
$$

"Indecomposable" supercharacters

- Supercharacters and superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of supercharacters
- "Indecomposable" supercharacters
- The unitriangular group II
- Pattern groups

"Indecomposable" supercharacters

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

A special situation occurs when we consider the decomposition $A f=M_{1} \oplus \cdots \oplus M_{t}$ of the left A-module $A f$ into indecomposable submodules. Then, $M_{i}=A f_{i}$ for some $f_{i} \in J^{*}$ with $f=f_{1}+\cdots+f_{t}$, and thus

$$
A f=A f_{1} \oplus \cdots \oplus A f_{t}
$$

It follows that

$$
J f=J f_{1} \oplus \cdots \oplus J f_{t} \quad \text { and } \quad \xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}}
$$

"Indecomposable" supercharacters

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

A special situation occurs when we consider the decomposition $A f=M_{1} \oplus \cdots \oplus M_{t}$ of the left A-module $A f$ into indecomposable submodules. Then, $M_{i}=A f_{i}$ for some $f_{i} \in J^{*}$ with $f=f_{1}+\cdots+f_{t}$, and thus

$$
A f=A f_{1} \oplus \cdots \oplus A f_{t}
$$

It follows that

$$
J f=J f_{1} \oplus \cdots \oplus J f_{t} \quad \text { and } \quad \xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}}
$$

We say that a supercharacter ξ_{f} is "indecomposable" if the A-module $A f$ is indecomposable.

Open question. Is it true that every indecomposable supercharacter is irreducible?

"Indecomposable" supercharacters

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

A special situation occurs when we consider the decomposition $A f=M_{1} \oplus \cdots \oplus M_{t}$ of the left A-module $A f$ into indecomposable submodules. Then, $M_{i}=A f_{i}$ for some $f_{i} \in J^{*}$ with $f=f_{1}+\cdots+f_{t}$, and thus

$$
A f=A f_{1} \oplus \cdots \oplus A f_{t}
$$

It follows that

$$
J f=J f_{1} \oplus \cdots \oplus J f_{t} \quad \text { and } \quad \xi_{f}=\xi_{f_{1}} \cdots \xi_{f_{t}}
$$

We say that a supercharacter ξ_{f} is "indecomposable" if the A-module $A f$ is indecomposable.

Open question. Is it true that every indecomposable supercharacter is irreducible?

Theorem. Let $f \in J^{*}$, and suppose that $A f$ is indecomposable. Then,
$\operatorname{End}_{A}(A f) \cong \mathbb{F}_{q} \quad \Longrightarrow \quad \xi_{f}$ is irreducible.

- Supercharacters and superclasses
- Algebra groups
- The unitriangular group I
- Connections with set partitions
- Factorization of supercharacters
- "Indecomposable" supercharacters
- The unitriangular group II
- Pattern groups

The unitriangular group II

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups
- The indecomposable left $\mathfrak{b}_{n}(q)$-submodules of $\mathfrak{u}_{n}(q)^{*}$ are:

$$
E_{i, j}=\mathfrak{b}_{n}(q) e_{i, j}^{*} \quad \text { for } 1 \leq i<j<n
$$

The unitriangular group II

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups
- The indecomposable left $\mathfrak{b}_{n}(q)$-submodules of $\mathfrak{u}_{n}(q)^{*}$ are:

$$
E_{i, j}=\mathfrak{b}_{n}(q) e_{i, j}^{*} \quad \text { for } 1 \leq i<j<n .
$$

- The supercharacters corresponding to $E_{i, j}$ are:

$$
\xi_{i, j}(\alpha), \quad \text { for } \alpha \in \mathbb{F}_{q}^{\times}
$$

The unitriangular group II

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups
- The indecomposable left $\mathfrak{b}_{n}(q)$-submodules of $\mathfrak{u}_{n}(q)^{*}$ are:

$$
E_{i, j}=\mathfrak{b}_{n}(q) e_{i, j}^{*} \quad \text { for } 1 \leq i<j<n .
$$

- The supercharacters corresponding to $E_{i, j}$ are:

$$
\xi_{i, j}(\alpha), \quad \text { for } \alpha \in \mathbb{F}_{q}^{\times}
$$

- Since $\operatorname{End}_{\mathfrak{b}_{n}(q)}\left(E_{i, j}\right) \cong \mathbb{F}_{q}$,
$\xi_{i, j}(\alpha)$ is an irreducible character.

The unitriangular group II

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups
- The indecomposable left $\mathfrak{b}_{n}(q)$-submodules of $\mathfrak{u}_{n}(q)^{*}$ are:

$$
E_{i, j}=\mathfrak{b}_{n}(q) e_{i, j}^{*} \quad \text { for } 1 \leq i<j<n .
$$

- The supercharacters corresponding to $E_{i, j}$ are:

$$
\xi_{i, j}(\alpha), \quad \text { for } \alpha \in \mathbb{F}_{q}^{\times}
$$

- Since $\operatorname{End}_{\mathfrak{b}_{n}(q)}\left(E_{i, j}\right) \cong \mathbb{F}_{q}$,
$\xi_{i, j}(\alpha)$ is an irreducible character.
- For $f \in J^{*}$, there exists a unique basic subset $D \subseteq \Phi(n)$ such that

$$
A f \cong \sum_{(i, j) \in D} E_{i, j}=A e_{D}^{*}, \quad e_{D}^{*}=\sum_{(i, j) \in D} e_{i, j}
$$

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Therefore, we conclude the proof of the following.
Theorem. Let ξ be a supercharacter of $U_{n}(q)$. Then, there exists a basic subset $D \subseteq \Phi(n)$ and a map $\phi: D \rightarrow \mathbb{F}_{q} \times$ such that

$$
\xi=\xi_{D, \phi}=\prod_{(i, j) \in D} \xi_{i, j}\left(\alpha_{i, j}\right)
$$

where $\alpha_{i, j}=\phi(i, j)$.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Therefore, we conclude the proof of the following.
Theorem. Let ξ be a supercharacter of $U_{n}(q)$. Then, there exists a basic subset $D \subseteq \Phi(n)$ and a map $\phi: D \rightarrow \mathbb{F}_{q} \times$ such that

$$
\xi=\xi_{D, \phi}=\prod_{(i, j) \in D} \xi_{i, j}\left(\alpha_{i, j}\right)
$$

where $\alpha_{i, j}=\phi(i, j)$.

Remark. For a fixed basic subset $D \subseteq \Phi(n)$, the supercharacters $\xi_{D, \phi}$ are all conjugate by diagonal matrices.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Therefore, we conclude the proof of the following.
Theorem. Let ξ be a supercharacter of $U_{n}(q)$. Then, there exists a basic subset $D \subseteq \Phi(n)$ and a map $\phi: D \rightarrow \mathbb{F}_{q} \times$ such that

$$
\xi=\xi_{D, \phi}=\prod_{(i, j) \in D} \xi_{i, j}\left(\alpha_{i, j}\right)
$$

where $\alpha_{i, j}=\phi(i, j)$.

Remark. For a fixed basic subset $D \subseteq \Phi(n)$, the supercharacters $\xi_{D, \phi}$ are all conjugate by diagonal matrices.
(Supercharacters of $U_{n}(q)$ were originally defined by the formula above and called basic characters. The name supercharacters was suggested by Roger W. Carter.)

Pattern groups

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

The notion of pattern group is a group-theoretic analogue of the classical notion of the incidence algebra of a poset.

Pattern groups

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

The notion of pattern group is a group-theoretic analogue of the classical notion of the incidence algebra of a poset.

Let (I, \preceq) be a finite poset, and assume that

- $I=\{1,2, \ldots, n\}$;
- $i \leq j \quad \Longrightarrow \quad i \preceq j$.

Let $A=A_{I}$ be the incidence algebra of I over \mathbb{F}_{q} (naturally identified with a subalgebra of $\left.\mathfrak{b}_{n}(q)\right)$.

Moreover, let

$$
J=J\left(A_{I}\right) \quad \text { and } \quad G_{I}=1+J
$$

$G=G_{I}$ is called the PATTERN GROUP (over \mathbb{F}_{q}) of the poset (I, \preceq).

Pattern groups

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

The notion of pattern group is a group-theoretic analogue of the classical notion of the incidence algebra of a poset.

Let (I, \preceq) be a finite poset, and assume that

- $I=\{1,2, \ldots, n\}$;
- $i \leq j \quad \Longrightarrow \quad i \preceq j$.

Let $A=A_{I}$ be the incidence algebra of I over \mathbb{F}_{q} (naturally identified with a subalgebra of $\left.\mathfrak{b}_{n}(q)\right)$.

Moreover, let

$$
J=J\left(A_{I}\right) \quad \text { and } \quad G_{I}=1+J .
$$

$G=G_{I}$ is called the PATTERN GROUP (over \mathbb{F}_{q}) of the poset (I, \preceq).
EXAMPLE. $U_{n}(q)$ is the pattern group associated with the chain

$$
1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow n
$$

The incidence algebra is $\mathfrak{b}_{n}(q)$.

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Example.

A pattern group G_{I}

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Example.

A pattern group G_{J}

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set

partitions

- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Example.

G_{J} is a normal subgroup of G_{I}

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

Example.

The algebra group G_{I} / G_{J}

- Supercharacters and
superclasses
- Algebra groups
- The unitriangular group I
- Connections with set
partitions
- Factorization of
supercharacters
- "Indecomposable"
supercharacters
- The unitriangular group II
- Pattern groups

We expect to use (combinatorial) methods from the theory of quiver representations (more precisely, linear representations of posets) to obtain results about supercharacters of finite pattern groups... (work in progress)...

