Isometry classes of Generalized Associahedra

YORK

Nantel Bergeron

UNIVERSITÉ wy

 $\mathbf{U} \; \mathbf{N} \; \mathbf{I} \; \mathbf{V} \; \mathbf{E} \; \mathbf{R} \; \mathbf{S} \; \mathbf{I} \; \mathbf{T} \; \mathbf{Y}$

Canada Research Chair Mathematics www.math.yorku.ca/bergeron E-Mail: bergeron@yorku.ca

(joint work with **C. Hohlweg**, **C. Lange** and **H. Thomas**) Fields Institute Workshop

Generalized Associahedra [Fomin, Zelevinski + Chapoton + Reading + HLT] (W, S) a finite Coxeter system acting on $(V, \langle \cdot, \cdot \rangle)$. Φ root system with simple roots $\Delta = \{\alpha_s \mid s \in S\}$. $\Delta^* = \{v_s \mid s \in S\}$ be the dual simple roots of Δ . Generalized Associahedra

[Fomin, Zelevinski + Chapoton + Reading + HLT]

(W, S) a finite Coxeter system acting on $(V, \langle \cdot, \cdot \rangle)$.

 Φ root system with simple roots $\Delta = \{\alpha_s \mid s \in S\}.$

 $\Delta^* = \{ v_s \mid s \in S \}$ be the dual simple roots of Δ .

$$v = \sum_{s \in S} v_s$$

The permutahedron: $Perm(W) = convex hull \{w(v) | w \in W\}.$

Generalized Associahedra [Fomin, Zelevinski + Chapoton + Reading + HLT] $Perm(W) = convex hull \{w(v) | w \in W\}$ where $v = \sum_{s \in S} v_s$.

Generalized Associahedra [Fomin, Zelevinski + Chapoton + Reading + HLT] $\operatorname{Perm}(W) = \operatorname{convex} \operatorname{hull} \{w(v) \mid w \in W\}$ where $v = \sum_{s \in S} v_s$. <u>Fix</u> a coxeter element c of (W, S). $c = \prod s$ in some order. $s \in S$ example: for $W = A_3$ and $S = \{s_1, s_2, s_3\}$ we can choose $c = s_1 s_2 s_3$ $c = s_1 s_3 s_2 = s_3 s_1 s_2$ $c = s_2 s_1 s_3 = s_2 s_3 s_1$ $c = s_3 s_2 s_1$

Generalized Associahedra [Fomin, Zelevinski + Chapoton + Reading + HLT] $Perm(W) = convex hull \{w(v) | w \in W\}$ where $v = \sum_{s \in S} v_s$. <u>Fix</u> a coxeter element c of (W, S). $c = \prod_{s \in S} s$ in some order.

Let $w_0 = c_{K_1} c_{K_2} \cdots c_{K_p}$ (unique) reduced factorization such that

$$K_1 \supseteq K_2 \supseteq \cdots \supseteq K_p$$
 and $c_K = \prod_{s \in K} s$

example: for $W = A_3$ and $S = \{s_1, s_2, s_3\}$, if we choose

$$c = s_1 s_2 s_3 \quad \rightarrow \quad w_0 = s_1 s_2 s_3 s_1 s_2 s_1 = c_{\{1,2,3\}} c_{\{1,2\}} c_{\{1\}}$$
$$c = s_1 s_3 s_2 \quad \rightarrow \quad w_0 = s_1 s_3 s_2 s_1 s_3 s_2 = c_{\{1,2,3\}} c_{\{1,2,3\}}$$

Generalized Associahedra [Fomin, Zelevinski + Chapoton + Reading + HLT] $\operatorname{Perm}(W) = \operatorname{convex} \operatorname{hull} \{w(v) \mid w \in W\}$ where $v = \sum_{s \in S} v_s$. <u>Fix</u> a coxeter element c of (W, S). $c = \prod s$ in some order. $s \in S$ Let $w_0 = c_{K_1} c_{K_2} \cdots c_{K_p}$ (unique) reduced factorization $T_{c} = \{ u \in W : u \text{ is a prefix of } c_{K_{1}} c_{K_{2}} \cdots c_{K_{p}} \text{ up to commutations} \}$ Using only the allowed commutation $s_i s_j = s_j s_i$. example: for $W = A_3$ and $S = \{s_1, s_2, s_3\}$, with $c = s_1 s_3 s_2$ we have $w_0 = s_1 s_3 s_2 \cdot s_1 s_3 s_2$ and $T_c = \{e, s_1, s_1s_3, s_1s_3s_2, s_1s_3s_2s_1, s_1s_3s_2s_1s_3, w_0, s_3, s_1s_3s_2s_3\}$

Generalized Associahedra [Fomin, Zelevinski + Chapoton + Reading + HLT] $Perm(W) = convex hull \{w(v) | w \in W\}$ where $v = \sum_{s \in S} v_s$. <u>Fix</u> a coxeter element c of (W, S). $c = \prod_{s \in S} s$ in some order. Let $w_0 = c_{K_1} c_{K_2} \cdots c_{K_p}$ (unique) reduced factorization $T_c = \{u \in W : u \text{ is a prefix of } c_{K_1} c_{K_2} \cdots c_{K_p} \text{ up to commutations}\}$

$\operatorname{Ass}_{c}(W)$

is the polytope defined by the hyperplanes of Perm(W) that contains elements u(v) for $u \in T_c$.

Generalized Associahedra: A_2 and $c = s_2 s_1$

 $w_0 = s_2 s_1 \cdot s_2$ and $T_c = \{e, s_2, s_2 s_1, w_0\}$

Some questions

 T_c is know to be a lattice, but what is $|T_c|$ (even for type A)?

Some questions

 T_c is know to be a lattice, but what is $|T_c|$ (even for type A)? How many distinct polytope do we get (up to isometry)?

Some questions

 T_c is know to be a lattice, but what is $|T_c|$ (even for type A)? How many distinct polytope do we get (up to isometry)?

Theorem [BHLT] For (W, S) irreducible finite Coxeter system and c, c' Coxeter elements:

 $\operatorname{Ass}_{c}(W) \cong \operatorname{Ass}_{c'}(W) \qquad \Longleftrightarrow \qquad c' = \mu(c)^{\pm 1}$

where μ is an automorphism of the Coxeter graph of W.

The Main Theorem

Theorem [BHLT] For (W, S) irreducible finite Coxeter system and c, c' Coxeter elements:

 $\operatorname{Ass}_{c}(W) \cong \operatorname{Ass}_{c'}(W) \quad \iff \quad c' = \mu(c)^{\pm 1}$

where μ is an automorphism of the Coxeter graph of W.

In type A, an isometry class contains 1,2 or 4 coxeter elements In type D, an isometry class contains 1,2 or 4 coxeter elements (except for D_4 which has a class of 12 elements)

Idea of proof

- 1. An isometry $\operatorname{Ass}_{c}(W) \to \operatorname{Ass}_{c'}(W)$ must fix the set $\{e, w_0\}$ and $\operatorname{Perm}(W)$.
- 2. Such isometry send coxeter elements c to $c' = \mu(c)^{\pm 1}$.
- 3. Conversely, there is such an isometry for any μ and the map $w \mapsto ww_0$ induces an isometry $\operatorname{Ass}_c(W) \to \operatorname{Ass}_{c^{-1}}(W)$.

For more details, see paper...[ArXive]