Isometry classes of Generalized Associahedra

Nantel Bergeron
Canada Research Chair Mathematics www.math.yorku.ca/bergeron
E-Mail: bergeron@yorku.ca
(joint work with C. Hohlweg, C. Lange and H. Thomas) Fields Institute Workshop

Pierre Leroux

Associahedron (Stasheff polytope)

Associahedron (Stasheff polytope)

Associahedron (Stasheff polytope)

Associahedron (Stasheff polytope)

Loday's construction

Permutahedron

\qquad \rightarrow Associahedron

$\left\{\alpha_{1}, \alpha_{2}\right\}$ is a basis of the root system of type A_{2}

Generalized Associahedra

[Fomin, Zelevinski + Chapoton + Reading + HLT]
(W, S) a finite Coxeter system acting on $(V,\langle\cdot, \cdot\rangle)$.
Φ root system with simple roots $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$.
$\Delta^{*}=\left\{v_{s} \mid s \in S\right\}$ be the dual simple roots of Δ.

Generalized Associahedra

[Fomin, Zelevinski + Chapoton + Reading + HLT]
(W, S) a finite Coxeter system acting on $(V,\langle\cdot, \cdot\rangle)$.
Φ root system with simple roots $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$.
$\Delta^{*}=\left\{v_{s} \mid s \in S\right\}$ be the dual simple roots of Δ.

$$
v=\sum_{s \in S} v_{s}
$$

The permutahedron: $\operatorname{Perm}(W)=$ convex hull $\{w(v) \mid w \in W\}$.

Generalized Associahedra

[Fomin, Zelevinski + Chapoton + Reading + HLT]

$$
\operatorname{Perm}(W)=\text { convex hull }\{w(v) \mid w \in W\} \text { where } v=\sum_{s \in S} v_{s}
$$

Generalized Associahedra

$[$ Fomin, Zelevinski + Chapoton + Reading + HLT $]$
$\operatorname{Perm}(W)=$ convex hull $\{w(v) \mid w \in W\}$ where $v=\sum_{s \in S} v_{s}$.
Fix a coxeter element c of $(W, S) . c=\prod_{s \in S} s$ in some order.
example: for $W=A_{3}$ and $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ we can choose

$$
\begin{aligned}
& c=s_{1} s_{2} s_{3} \\
& c=s_{1} s_{3} s_{2}=s_{3} s_{1} s_{2} \\
& c=s_{2} s_{1} s_{3}=s_{2} s_{3} s_{1} \\
& c=s_{3} s_{2} s_{1}
\end{aligned}
$$

Generalized Associahedra

$[$ Fomin, Zelevinski + Chapoton + Reading + HLT $]$
$\operatorname{Perm}(W)=$ convex hull $\{w(v) \mid w \in W\}$ where $v=\sum_{s \in S} v_{s}$.
Fix a coxeter element c of $(W, S) . c=\prod_{s \in S} s$ in some order.
Let $w_{0}=c_{K_{1}} c_{K_{2}} \cdots c_{K_{p}}$ (unique) reduced factorization such that

$$
K_{1} \supseteq K_{2} \supseteq \cdots \supseteq K_{p} \quad \text { and } \quad c_{K}=\prod_{s \in K} s
$$

example: for $W=A_{3}$ and $S=\left\{s_{1}, s_{2}, s_{3}\right\}$, if we choose

$$
\begin{array}{ll}
c=s_{1} s_{2} s_{3} & \rightarrow \quad w_{0}=s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}=c_{\{1,2,3\}} c_{\{1,2\}} c_{\{1\}} \\
c=s_{1} s_{3} s_{2} & \rightarrow \quad w_{0}=s_{1} s_{3} s_{2} s_{1} s_{3} s_{2}=c_{\{1,2,3\}} c_{\{1,2,3\}}
\end{array}
$$

Generalized Associahedra

[Fomin, Zelevinski + Chapoton + Reading + HLT]
$\operatorname{Perm}(W)=$ convex hull $\{w(v) \mid w \in W\}$ where $v=\sum_{s \in S} v_{s}$.
Fix a coxeter element c of $(W, S) . c=\prod_{s \in S} s$ in some order.
Let $w_{0}=c_{K_{1}} c_{K_{2}} \cdots c_{K_{p}}$ (unique) reduced factorization
$T_{c}=\left\{u \in W: u\right.$ is a prefix of $c_{K_{1}} c_{K_{2}} \cdots c_{K_{p}}$ up to commutations $\}$
Using only the allowed commutation $s_{i} s_{j}=s_{j} s_{i}$.
example: for $W=A_{3}$ and $S=\left\{s_{1}, s_{2}, s_{3}\right\}$, with $c=s_{1} s_{3} s_{2}$ we have $w_{0}=s_{1} s_{3} s_{2} \cdot s_{1} s_{3} s_{2}$ and

$$
T_{c}=\left\{e, s_{1}, s_{1} s_{3}, s_{1} s_{3} s_{2}, s_{1} s_{3} s_{2} s_{1}, s_{1} s_{3} s_{2} s_{1} s_{3}, w_{0}, s_{3}, s_{1} s_{3} s_{2} s_{3}\right\}
$$

Generalized Associahedra

$[$ Fomin, Zelevinski + Chapoton + Reading + HLT $]$
$\operatorname{Perm}(W)=$ convex hull $\{w(v) \mid w \in W\}$ where $v=\sum_{s \in S} v_{s}$.
Fix a coxeter element c of $(W, S) . c=\prod_{s \in S} s$ in some order.
Let $w_{0}=c_{K_{1}} c_{K_{2}} \cdots c_{K_{p}}$ (unique) reduced factorization
$T_{c}=\left\{u \in W: u\right.$ is a prefix of $c_{K_{1}} c_{K_{2}} \cdots c_{K_{p}}$ up to commutations $\}$

$$
\operatorname{Ass}_{c}(W)
$$

is the polytope defined by the hyperplanes of $\operatorname{Perm}(W)$ that contains elements $u(v)$ for $u \in T_{c}$.

Generalized Associahedra: A_{2} and $c=s_{2} s_{1}$

$$
w_{0}=s_{2} s_{1} \cdot s_{2} \text { and } T_{c}=\left\{e, s_{2}, s_{2} s_{1}, w_{0}\right\}
$$

Generalized Associahedra: A_{3} and $c=s_{1} s_{2} s_{3}$

$$
w_{0}=s_{1} s_{2} s_{3} \cdot s_{1} s_{2} \cdot s_{1} \text { and } T_{c}=\left\{e, s_{1}, s_{1} s_{2}, c, s_{1} s_{2} s_{1}, c s_{1}, c s_{1} s_{2}, w_{0}\right\}
$$

Generalized Associahedra: A_{3} and $c=s_{1} s_{3} s_{2}$

$$
w_{0}=s_{1} s_{3} s_{2} \cdot s_{1} s_{3} s_{2} \text { and } T_{c}=\left\{e, s_{1}, s_{3}, s_{1} s_{3}, c, c s_{1}, c s_{3}, c s_{1} s_{3}, w_{0},\right\}
$$

Some questions

T_{c} is know to be a lattice, but what is $\left|T_{c}\right|$ (even for type A)?

Some questions

T_{c} is know to be a lattice, but what is $\left|T_{c}\right|$ (even for type A)?
How many distinct polytope do we get (up to isometry)?

Some questions

T_{c} is know to be a lattice, but what is $\left|T_{c}\right|$ (even for type A)?
How many distinct polytope do we get (up to isometry)?

Theorem [BHLT] For (W, S) irreducible finite Coxeter system and c, c^{\prime} Coxeter elements:

$$
\operatorname{Ass}_{c}(W) \cong \operatorname{Ass}_{c^{\prime}}(W) \quad \Longleftrightarrow \quad c^{\prime}=\mu(c)^{ \pm 1}
$$

where μ is an automorphism of the Coxeter graph of W.

The Main Theorem

Theorem [BHLT] For (W, S) irreducible finite Coxeter system and c, c^{\prime} Coxeter elements:

$$
\operatorname{Ass}_{c}(W) \cong \operatorname{Ass}_{c^{\prime}}(W) \quad \Longleftrightarrow \quad c^{\prime}=\mu(c)^{ \pm 1}
$$

where μ is an automorphism of the Coxeter graph of W.
In type A, an isometry class contains 1,2 or 4 coxeter elements In type D, an isometry class contains 1,2 or 4 coxeter elements (except for D_{4} which has a class of 12 elements)

Idea of proof

1. An isometry $\operatorname{Ass}_{c}(W) \rightarrow \operatorname{Ass}_{c^{\prime}}(W)$ must fix the set $\left\{e, w_{0}\right\}$ and Perm (W).
2. Such isometry send coxeter elements c to $c^{\prime}=\mu(c)^{ \pm 1}$.
3. Conversely, there is such an isometry for any μ and the map $w \mapsto w w_{0}$ induces an isometry $\operatorname{Ass}_{c}(W) \rightarrow \operatorname{Ass}_{c^{-1}}(W)$.

For more details, see paper...[ArXive]

