Logical Termination of Worflows: An Interdisciplinary Approach

Glória Cravo

Center for Linear Structures and Combinatorics and University of Madeira

The 61st Séminaire Lotharingien de Combinatoire Curia, September 21-24, 2008

Introduction Main Results

Definition 1 A workflow is a tri-logic acyclic directed graph WG = (T, A), where $T = \{t_1, t_2, ..., t_n\}$ is a finite nonempty set of vertices representing workflow tasks.

ヨッ イヨッ イヨッ

Definition 1 A workflow is a tri-logic acyclic directed graph WG = (T, A), where $T = \{t_1, t_2, ..., t_n\}$ is a finite nonempty set of vertices representing workflow tasks. Each task t_i (i.e., a vertex) has an input logic operator (represented by $\succ t_i$) and an output logic operator (represented by $t_i \prec$).

Definition 1 A workflow is a tri-logic acyclic directed graph WG = (T, A), where $T = \{t_1, t_2, ..., t_n\}$ is a finite nonempty set of vertices representing workflow tasks. Each task t_i (i.e., a vertex) has an input logic operator (represented by $\succ t_i$) and an output logic operator (represented by $t_i \prec$). An input/output logic operator can be the logical AND (•), the $OR (\otimes)$, or the XOR - exclusive-or (\oplus). Definition 1 A workflow is a tri-logic acyclic directed graph WG = (T, A), where $T = \{t_1, t_2, ..., t_n\}$ is a finite nonempty set of vertices representing workflow tasks. Each task t_i (i.e., a vertex) has an input logic operator (represented by $\succ t_i$) and an output logic operator (represented by $t_i \prec$). An input/output logic operator can be the logical AND (•), the $OR (\otimes)$, or the XOR - exclusive-or (\oplus). The set $A = \{a_{\sqcup}, a_{\sqcap}, a_{1}, a_{2}, \ldots, a_m\}$ is a finite nonempty set of arcs representing workflow transitions. Definition 1 A workflow is a tri-logic acyclic directed graph WG = (T, A), where $T = \{t_1, t_2, ..., t_n\}$ is a finite nonempty set of vertices representing workflow tasks. Each task t_i (i.e., a vertex) has an input logic operator (represented by $\succ t_i$) and an output logic operator (represented by $t_i \prec$). An input/output logic operator can be the logical AND (•), the $OR (\otimes)$, or the XOR - exclusive-or (\oplus). The set $A = \{a_{\sqcup}, a_{\sqcap}, a_{1}, a_{2}, \ldots, a_{m}\}$ is a finite nonempty set of arcs representing workflow transitions. Each transition $a_i, i \in \{1, \ldots, m\}$, is a tuple (t_k, t_l) where $t_k, t_l \in T$.

Definition 1 A workflow is a tri-logic acyclic directed graph WG = (T, A), where $T = \{t_1, t_2, \dots, t_n\}$ is a finite nonempty set of vertices representing workflow tasks. Each task t_i (i.e., a vertex) has an input logic operator (represented by $\succ t_i$) and an output logic operator (represented by $t_i \prec$). An input/output logic operator can be the logical AND (\bullet) , the OR (\otimes), or the XOR - exclusive-or (\oplus). The set $A = \{a_{\sqcup}, a_{\sqcap}, a_{\sqcup}, a_{\sqcap}, a_{\sqcap}, a_{\mid}, a_{\sqcap}, a_{\mid}, a_{\mid}$ a_1, a_2, \ldots, a_m is a finite nonempty set of arcs representing workflow transitions. Each transition $a_i, i \in \{1, \ldots, m\}$, is a tuple (t_k, t_l) where $t_k, t_l \in T$. The transition $a_{l,l}$ is a tuple of the form (\sqcup, t_1) and transition a_{\Box} is a tuple of the form (t_n, \Box) .

Definition 1 A workflow is a tri-logic acyclic directed graph WG = (T, A), where $T = \{t_1, t_2, \dots, t_n\}$ is a finite nonempty set of vertices representing workflow tasks. Each task t_i (i.e., a vertex) has an input logic operator (represented by $\succ t_i$) and an output logic operator (represented by $t_i \prec$). An input/output logic operator can be the logical AND (\bullet) , the OR (\otimes), or the XOR - exclusive-or (\oplus). The set $A = \{a_{\sqcup}, a_{\sqcap}, a_{\sqcup}, a_{\sqcap}, a_{\sqcap}, a_{\mid}, a_{\sqcap}, a_{\mid}, a_{\mid}$ a_1, a_2, \ldots, a_m is a finite nonempty set of arcs representing workflow transitions. Each transition $a_i, i \in \{1, \ldots, m\}$, is a tuple (t_k, t_l) where $t_k, t_l \in T$. The transition $a_{l,l}$ is a tuple of the form (\sqcup, t_1) and transition a_{\Box} is a tuple of the form (t_n, \Box) . The symbols \sqcup and \sqcap represent abstract tasks which indicate the entry and ending point of the workflow, respectively.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition 1 A workflow is a tri-logic acyclic directed graph WG = (T, A), where $T = \{t_1, t_2, \dots, t_n\}$ is a finite nonempty set of vertices representing workflow tasks. Each task t_i (i.e., a vertex) has an input logic operator (represented by $\succ t_i$) and an output logic operator (represented by $t_i \prec$). An input/output logic operator can be the logical AND (•), the *OR* (\otimes), or the XOR - exclusive-or (\oplus). The set $A = \{a_{\sqcup}, a_{\sqcap}, a_{\sqcap}, a_{\dashv}, a_{+}, a_{+}$ a_1, a_2, \ldots, a_m is a finite nonempty set of arcs representing workflow transitions. Each transition $a_i, i \in \{1, \ldots, m\}$, is a tuple (t_k, t_l) where $t_k, t_l \in T$. The transition $a_{l,l}$ is a tuple of the form (\sqcup, t_1) and transition a_{\Box} is a tuple of the form (t_n, \Box) . The symbols \sqcup and \sqcap represent abstract tasks which indicate the entry and ending point of the workflow, respectively. We use the symbol ' to reference the label of a transition, i.e., a', references transition $a_i, a_i \in A$.

(人間) ト く ヨ ト く ヨ ト

Definition 1 A workflow is a tri-logic acyclic directed graph WG = (T, A), where $T = \{t_1, t_2, \dots, t_n\}$ is a finite nonempty set of vertices representing workflow tasks. Each task t_i (i.e., a vertex) has an input logic operator (represented by $\succ t_i$) and an output logic operator (represented by $t_i \prec$). An input/output logic operator can be the logical AND (•), the OR (\otimes), or the XOR - exclusive-or (\oplus). The set $A = \{a_{\sqcup}, a_{\sqcap}, a_{\sqcup}, a_{\sqcap}, a_{\sqcap}, a_{\mid}, a_{\sqcap}, a_{\mid}, a_{\mid}$ a_1, a_2, \ldots, a_m is a finite nonempty set of arcs representing workflow transitions. Each transition $a_i, i \in \{1, \ldots, m\}$, is a tuple (t_k, t_l) where $t_k, t_l \in T$. The transition $a_{l,l}$ is a tuple of the form (\sqcup, t_1) and transition a_{\Box} is a tuple of the form (t_n, \Box) . The symbols \sqcup and \sqcap represent abstract tasks which indicate the entry and ending point of the workflow, respectively. We use the symbol ' to reference the label of a transition, i.e., a'_i references transition $a_i, a_i \in A$. The elements a'_i are called Boolean terms and form the set A'.

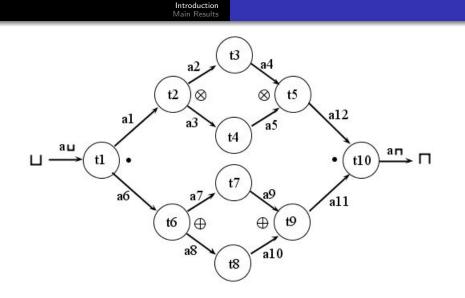


Figure: Example of a tri-logic acyclic directed graph (i.e., a workflow)

< E

3

Introduction Main Results

Example 2 Figure 1 shows a workflow WG = (T, A), where $T = \{t_1, \ldots, t_{10}\}, A = \{a_{\sqcup}, a_{\sqcap}, a_1, \ldots, a_{12}\}$ and $A' = \{a'_{\sqcup}, a'_{\sqcap}, a'_{1}, \ldots, a'_{12}\}$. The tuple $a_2 = (t_2, t_3)$ is an example of a transition. In task t_2 , \otimes is the output logic operator $(t_2 \prec)$.

Example 2 Figure 1 shows a workflow WG = (T, A), where $T = \{t_1, \ldots, t_{10}\}, A = \{a_{\sqcup}, a_{\sqcap}, a_1, \ldots, a_{12}\}$ and $A' = \{a'_{\sqcup}, a'_{\sqcap}, a'_{1}, \ldots, a'_{12}\}$. The tuple $a_2 = (t_2, t_3)$ is an example of a transition. In task t_2 , \otimes is the output logic operator $(t_2 \prec)$.

Definition 3 The incoming transitions for task $t_i \in T$ are the tuples of the form $a_j = (x, t_i), x \in T, a_j \in A$, and the outgoing transitions for task t_i are the tuples of the form $a_l = (t_i, y), y \in T, a_l \in A$.

Example 2 Figure 1 shows a workflow WG = (T, A), where $T = \{t_1, \ldots, t_{10}\}, A = \{a_{\sqcup}, a_{\sqcap}, a_1, \ldots, a_{12}\}$ and $A' = \{a'_{\sqcup}, a'_{\sqcap}, a'_{1}, \ldots, a'_{12}\}$. The tuple $a_2 = (t_2, t_3)$ is an example of a transition. In task t_2 , \otimes is the output logic operator $(t_2 \prec)$.

Definition 3 The incoming transitions for task $t_i \in T$ are the tuples of the form $a_j = (x, t_i), x \in T, a_j \in A$, and the outgoing transitions for task t_i are the tuples of the form $a_l = (t_i, y), y \in T, a_l \in A$.

Example 4 In Figure 1, the incoming transition for task t_2 is $a_1 = (t_1, t_2)$ and the outgoing transitions are $a_2 = (t_2, t_3)$ and $a_3 = (t_2, t_4)$.

伺 ト イ ヨ ト イ ヨ ト

Example 6 In Figure 1, the incoming condition for task t_2 is a'_1 .

Example 6 In Figure 1, the incoming condition for task t_2 is a'_1 .

Definition 7 The outgoing condition for task $t_i \in T$ is a Boolean expression with terms $a' \in A'$, where a is an outgoing transition of task t_i . The terms a' are connected with the logical operator $t_i \prec .$

Example 6 In Figure 1, the incoming condition for task t_2 is a'_1 .

Definition 7 The outgoing condition for task $t_i \in T$ is a Boolean expression with terms $a' \in A'$, where a is an outgoing transition of task t_i . The terms a' are connected with the logical operator $t_i \prec .$

Example 8 In Figure 1, the outgoing condition for task t_2 is $a'_2 \otimes a'_3$.

Definition 9 Given a workflow WG = (T, A), an Event-Action (EA) model for a task $t_i \in T$ is an implication of the form $t_i : f_E \rightsquigarrow f_C$, where f_E and f_C are the incoming and outgoing conditions of task t_i , respectively. For any EA model $t_i : f_E \rightsquigarrow f_C$, f_E and f_C have the same Boolean value. The condition f_E is called the event condition and the condition f_C is called the action condition. Definition 9 Given a workflow WG = (T, A), an Event-Action (EA) model for a task $t_i \in T$ is an implication of the form $t_i : f_E \rightsquigarrow f_C$, where f_E and f_C are the incoming and outgoing conditions of task t_i , respectively. For any EA model $t_i : f_E \rightsquigarrow f_C$, f_E and f_C have the same Boolean value. The condition f_E is called the event condition and the condition f_C is called the action condition.

Remark The behavior of an *EA* model is described in Table 1.

f _E	f _C	$f_E \rightsquigarrow f_C$
0	0	0
1	1	1

Table 1

Example 10 Let us consider task t_9 illustrated in Figure 1. Task t_9 has the following Event-Action model $t_9 : a'_9 \oplus a'_{10} \rightsquigarrow a'_{11}$. This model expresses that when only one of the Boolean terms a'_9 , or a'_{10} is true, the event condition f_E is evaluated to true. In this case, the action condition f_C is evaluated to true, i.e., a'_{11} is true. Consequently, the model $f_E \rightsquigarrow f_C$ is true if and only if only one of the terms a'_9 , a'_{10} is true and a'_{11} is true. Example 10 Let us consider task t_9 illustrated in Figure 1. Task t_9 has the following Event-Action model $t_9 : a'_9 \oplus a'_{10} \rightsquigarrow a'_{11}$. This model expresses that when only one of the Boolean terms a'_9 , or a'_{10} is true, the event condition f_E is evaluated to true. In this case, the action condition f_C is evaluated to true, i.e., a'_{11} is true. Consequently, the model $f_E \rightsquigarrow f_C$ is true if and only if only one of the terms a'_9 , a'_{10} is true and a'_{11} is true.

Definition 11 Let WG be a workflow and let $t_i : f_E \rightsquigarrow f_C$ be an EA model. We say that the EA model is positive if its value is 1, otherwise we say that the model is negative.

A B > A B >

-

(1) The workflow starts its execution by asserting a'_{\sqcup} to be true.

.

(1) The workflow starts its execution by asserting a'_{\sqcup} to be true.

(2) For every EA model $t_i : f_{E_i} \rightsquigarrow f_{C_i}, i \in \{1, \ldots, n\}$, the Boolean values of f_{E_i} and f_{C_i} will be asserted according to Table 1.

(1) The workflow starts its execution by asserting $a'_{||}$ to be true.

(2) For every EA model $t_i : f_{E_i} \rightsquigarrow f_{C_i}, i \in \{1, \ldots, n\}$, the Boolean values of f_{E_i} and f_{C_i} will be asserted according to Table 1.

(3) The workflow stops its execution when one of the following cases occurs:

(1) The workflow starts its execution by asserting $a'_{||}$ to be true.

(2) For every EA model $t_i : f_{E_i} \rightsquigarrow f_{C_i}, i \in \{1, ..., n\}$, the Boolean values of f_{E_i} and f_{C_i} will be asserted according to Table 1.

(3) The workflow stops its execution when one of the following cases occurs:

(3.1) a'_{\Box} is asserted to be true;

(1) The workflow starts its execution by asserting a'_{i+} to be true.

(2) For every EA model $t_i : f_{E_i} \rightsquigarrow f_{C_i}, i \in \{1, \ldots, n\}$, the Boolean values of f_{E_i} and f_{C_i} will be asserted according to Table 1.

(3) The workflow stops its execution when one of the following cases occurs:

(3.1) a'_{\square} is asserted to be true; (3.2) a'_{\square} is asserted to be false.

伺 ト イ ヨ ト イ ヨ ト

Definition 13 Let WG be a workflow. We say that WG logically terminates if a'_{\Box} is true whenever a'_{\Box} is true.

伺 ト く ヨ ト く ヨ ト

-

Definition 13 Let WG be a workflow. We say that WG logically terminates if a'_{\square} is true whenever a'_{\square} is true.

Definition 14 An EA model $f_E \rightsquigarrow f_C$ is said to be simple if $f_E = a'_i$ and $f_C = a'_i$, $i, j \in \{\sqcup, \sqcap, 1, \ldots, m\}$, with $i \neq j$.

伺 ト く ヨ ト く ヨ ト

Definition 13 Let WG be a workflow. We say that WG logically terminates if a'_{\square} is true whenever a'_{\square} is true.

Definition 14 An EA model $f_E \rightsquigarrow f_C$ is said to be simple if $f_E = a'_i$ and $f_C = a'_i$, $i, j \in \{ \sqcup, \sqcap, 1, \ldots, m \}$, with $i \neq j$.

Definition 15 An EA model $f_E \rightsquigarrow f_C$ is said to be complex if $f_E = a'_i$ and $f_C = a'_{j_1}\varphi a'_{j_2}\varphi \dots \varphi a'_{j_k}$, or $f_E = a'_{j_1}\varphi a'_{j_2}\varphi \dots \varphi a'_{j_k}$ and $f_C = a'_i$, where $\varphi \in \{\otimes, \bullet, \oplus\}$.

くほし くほし くほし

Definition 13 Let WG be a workflow. We say that WG logically terminates if a'_{\square} is true whenever a'_{\square} is true.

Definition 14 An EA model $f_E \rightsquigarrow f_C$ is said to be simple if $f_E = a'_i$ and $f_C = a'_j$, $i, j \in \{ \sqcup, \sqcap, 1, \ldots, m \}$, with $i \neq j$.

Definition 15 An EA model $f_E \rightsquigarrow f_C$ is said to be complex if $f_E = a'_i$ and $f_C = a'_{j_1}\varphi a'_{j_2}\varphi \dots \varphi a'_{j_k}$, or $f_E = a'_{j_1}\varphi a'_{j_2}\varphi \dots \varphi a'_{j_k}$ and $f_C = a'_i$, where $\varphi \in \{\otimes, \bullet, \oplus\}$.

Definition 16 An EA model $f_E \rightsquigarrow f_C$ is said to be hybrid if $f_E = a'_{i_1} \varphi a'_{i_2} \varphi \dots \varphi a'_{i_l}$ and $f_C = a'_{j_1} \psi a'_{j_2} \psi \dots \psi a'_{j_k}$, where $\varphi, \psi \in \{\otimes, \bullet, \oplus\}$.

Definition 17 The EA models from definitions 15, 16 are called *non-simple* EA models.

• • = • • = •

-

Definition 17 The EA models from definitions 15, 16 are called non-simple EA models.

Example 18 In Figure 1 the EA model $t_3 : a'_2 \rightsquigarrow a'_4$ is simple, while the EA models $t_2 : a'_1 \rightsquigarrow a'_2 \otimes a'_3$ and $t_9 : a'_9 \oplus a'_{10} \rightsquigarrow a'_{11}$ are non-simple.

- 4 E b 4 E b

Introduction EA Models Structure Main Results Termination of Workflows

Theorem 19 A hybrid EA model $f_E \rightsquigarrow f_C$ can be split into two derived equivalent complex EA models $f_E \rightsquigarrow a_i^*$ and $a_i^* \rightsquigarrow f_C$.

A B > A B >

Introduction EA Models Structure Main Results Termination of Workflows

Theorem 19 A hybrid EA model $f_E \rightsquigarrow f_C$ can be split into two derived equivalent complex EA models $f_E \rightsquigarrow a_i^*$ and $a_i^* \rightsquigarrow f_C$.

Proof. Suppose that $t_i : f_E \rightsquigarrow f_C$ is a hybrid *EA* model. Then both f_E and f_C are Boolean terms with an and (•), an or (\otimes), or an exclusive-or (\oplus).

伺 ト イ ヨ ト イ ヨ ト

Theorem 19 A hybrid EA model $f_E \rightsquigarrow f_C$ can be split into two derived equivalent complex EA models $f_E \rightsquigarrow a_i^*$ and $a_i^* \rightsquigarrow f_C$.

Proof. Suppose that $t_i : f_E \rightsquigarrow f_C$ is a hybrid *EA* model. Then both f_E and f_C are Boolean terms with an and (•), an or (\otimes), or an exclusive-or (\oplus). Let us create two auxiliary tasks t'_i , t''_i and an auxiliary transition $a_i^{\mathsf{T}} = (t'_i, t''_i)$.

Theorem 19 A hybrid EA model $f_E \rightsquigarrow f_C$ can be split into two derived equivalent complex EA models $f_E \rightsquigarrow a_i^*$ and $a_i^* \rightsquigarrow f_C$.

Proof. Suppose that $t_i : f_E \rightsquigarrow f_C$ is a hybrid *EA* model. Then both f_E and f_C are Boolean terms with an and (•), an or (\otimes), or an exclusive-or (\oplus). Let us create two auxiliary tasks t'_i , t''_i and an auxiliary transition $a_i^{\mathsf{T}} = (t'_i, t''_i)$. Let a_i^* be the Boolean term associated with the auxiliary transition a_i^{T} , such that a_i^* has the same Boolean value of f_E .

Theorem 19 A hybrid EA model $f_E \rightsquigarrow f_C$ can be split into two derived equivalent complex EA models $f_E \rightsquigarrow a_i^*$ and $a_i^* \rightsquigarrow f_C$.

Proof. Suppose that $t_i : f_E \rightsquigarrow f_C$ is a hybrid *EA* model. Then both f_E and f_C are Boolean terms with an and (•), an or (\otimes), or an exclusive-or (\oplus). Let us create two auxiliary tasks t'_i , t''_i and an auxiliary transition $a_i^T = (t'_i, t''_i)$. Let a_i^* be the Boolean term associated with the auxiliary transition a_i^T , such that a_i^* has the same Boolean value of f_E . Let $t'_i : f_E \rightsquigarrow a_i^*$ and $t''_i : a_i^* \rightsquigarrow f_C$ be new *EA* models.

Theorem 19 A hybrid EA model $f_E \rightsquigarrow f_C$ can be split into two derived equivalent complex EA models $f_E \rightsquigarrow a_i^*$ and $a_i^* \rightsquigarrow f_C$.

Proof. Suppose that $t_i: f_F \rightsquigarrow f_C$ is a hybrid *EA* model. Then both f_F and f_C are Boolean terms with an and (•), an or (\otimes), or an exclusive-or (\oplus). Let us create two auxiliary tasks t'_i , t''_i and an auxiliary transition $a_i^{\mathsf{T}} = (t_i', t_i'')$. Let a_i^* be the Boolean term associated with the auxiliary transition a_i^{T} , such that a_i^* has the same Boolean value of f_E . Let $t'_i : f_E \rightsquigarrow a^*_i$ and $t''_i : a^*_i \rightsquigarrow f_C$ be new EA models. Since a_i^* has the same Boolean value of f_E and, as a consequence, f_C has its Boolean value depending on the Boolean value of a_i^* , when we consider these new *EA* models instead of the initial hybrid EA model, the behavior of the workflow is not modified.

▲ 同 ▶ ▲ 三 ▶ ▲ 三

Theorem 19 A hybrid EA model $f_E \rightsquigarrow f_C$ can be split into two derived equivalent complex EA models $f_E \rightsquigarrow a_i^*$ and $a_i^* \rightsquigarrow f_C$.

Proof. Suppose that $t_i: f_F \rightsquigarrow f_C$ is a hybrid *EA* model. Then both f_F and f_C are Boolean terms with an and (•), an or (\otimes), or an exclusive-or (\oplus). Let us create two auxiliary tasks t'_i , t''_i and an auxiliary transition $a_i^{\mathsf{T}} = (t_i', t_i'')$. Let a_i^* be the Boolean term associated with the auxiliary transition a_i^{T} , such that a_i^* has the same Boolean value of f_E . Let $t'_i : f_E \rightsquigarrow a^*_i$ and $t''_i : a^*_i \rightsquigarrow f_C$ be new EA models. Since a_i^* has the same Boolean value of f_E and, as a consequence, f_C has its Boolean value depending on the Boolean value of a_i^* , when we consider these new *EA* models instead of the initial hybrid EA model, the behavior of the workflow is not modified. Clearly the new EA models $f_F \rightsquigarrow a_i^*$ and $a_i^* \rightsquigarrow f_C$ are complex and so the result is satisfied.

- 4 同 6 4 日 6 4 日 6

A B > A B >

Definition 20 Let $WG_1 = (T_1, A_1)$ and $WG_2 = (T_2, A_2)$ be workflows. Suppose that $T_2 = T_1 \cup T_1^*$ and $A_2 = A_1 \cup A_1^*$. Let NH_i be the set of all non-hybrid EA models of WG_i , $i \in \{1, 2\}$. We say that WG_2 is derived from WG_1 , or WG_1 derives WG_2 , if the following conditions are satisfied:

伺 ト イ ヨ ト イ ヨ ト

Definition 20 Let $WG_1 = (T_1, A_1)$ and $WG_2 = (T_2, A_2)$ be workflows. Suppose that $T_2 = T_1 \cup T_1^*$ and $A_2 = A_1 \cup A_1^*$. Let NH_i be the set of all non-hybrid EA models of WG_i , $i \in \{1, 2\}$. We say that WG_2 is derived from WG_1 , or WG_1 derives WG_2 , if the following conditions are satisfied:

(a) $NH_1 = NH_2$;

くほし くほし くほし

Definition 20 Let $WG_1 = (T_1, A_1)$ and $WG_2 = (T_2, A_2)$ be workflows. Suppose that $T_2 = T_1 \cup T_1^*$ and $A_2 = A_1 \cup A_1^*$. Let NH_i be the set of all non-hybrid EA models of WG_i , $i \in \{1, 2\}$. We say that WG_2 is derived from WG_1 , or WG_1 derives WG_2 , if the following conditions are satisfied:

(a) $NH_1 = NH_2$;

(b) Every hybrid EA model of WG_1 is split into two complex EA models of WG_2 .

- 4 同 6 4 日 6 4 日 6

Theorem 21 Let $WG_1 = (T_1, A_1)$ and $WG_2 = (T_2, A_2)$ be workflows and assume that WG_2 is derived from WG_1 . Then, WG_1 logically terminates if and only if WG_2 logically terminates.

Theorem 21 Let $WG_1 = (T_1, A_1)$ and $WG_2 = (T_2, A_2)$ be workflows and assume that WG_2 is derived from WG_1 . Then, WG_1 logically terminates if and only if WG_2 logically terminates.

Remark According to Theorem 19, from now on, we can consider workflows without hybrid *EA* models.

4 E 6 4 E 6

Clearly, if all *EA* models of the workflow are simple, then its structure is the following:

$$\sqcup \xrightarrow{a_{\sqcup}} t_1 \xrightarrow{a_1} t_2 \xrightarrow{a_2} t_3 \dots t_{n-1} \xrightarrow{a_n} t_n \xrightarrow{a_{\sqcap}} \sqcap.$$

• • = • • = •

-

Clearly, if all *EA* models of the workflow are simple, then its structure is the following:

$$\sqcup \xrightarrow{a_{\sqcup}} t_1 \xrightarrow{a_1} t_2 \xrightarrow{a_2} t_3 \dots t_{n-1} \xrightarrow{a_n} t_n \xrightarrow{a_{\sqcap}} \sqcap.$$

In this case, the set of non-simple *EA* models is empty. This situation is a trivial case of logical termination, since all the *EA* models present in the workflow are positive, and consequently, a'_{\Box} is *true* whenever a'_{\Box} is *true*, i.e., the workflow logically terminates. From now on, we will assume that the workflow contains non-simple *EA* models.

Definition 22 Let WG = (T, A) be a workflow. A materialized workflow instance of WG is an assignment of Boolean values to all Boolean terms $a'_i \in A'$, according to Table 1.

4 B K 4 B K

Definition 22 Let WG = (T, A) be a workflow. A materialized workflow instance of WG is an assignment of Boolean values to all Boolean terms $a'_i \in A'$, according to Table 1.

Notation Let $N = \{i \in \{1, ..., n\} | t_i : f_{E_i} \rightsquigarrow f_{C_i} \text{ is a non-simple } EA \mod \}.$

Definition 23 Assume that $N = \{i_1, ..., i_l\}$ and the elements $i_1, ..., i_l$ appear in increasing order, i.e., $i_1 < \cdots < i_l$. For any materialized workflow instance of WG, let $B = [b_{i,j}] \in F^{l \times l}$ be the Boolean matrix, which entries are defined as follows:

 $b_{i,j} = \left\{ \begin{array}{ll} \text{Boolean value of the EA model $t_i: f_{E_i} \rightsquigarrow f_{C_i}$ ($i \in N), if $i = j$} \\ 0, \text{ if $i \neq j$} \end{array} \right..$

The matrix B is called the Event Action Boolean matrix.

Definition 23 Assume that $N = \{i_1, ..., i_l\}$ and the elements $i_1, ..., i_l$ appear in increasing order, i.e., $i_1 < \cdots < i_l$. For any materialized workflow instance of WG, let $B = [b_{i,j}] \in F^{l \times l}$ be the Boolean matrix, which entries are defined as follows:

 $b_{i,j} = \left\{ \begin{array}{ll} \text{Boolean value of the EA model $t_i: f_{E_i} \rightsquigarrow f_{C_i}$ ($i \in N), if $i = j$} \\ 0, \text{ if $i \neq j$} \end{array} \right..$

The matrix B is called the Event Action Boolean matrix.

Theorem 24 Let WG = (T, A) be a workflow and assume that $N = \{i_1, \ldots, i_l\}, i_1 < \cdots < i_l$. Then WG logically terminates if and only if every Event Action Boolean matrix is equal to the identity matrix of type $l \times l$.

伺 ト イ ヨ ト イ ヨ ト

Example 25 The workflow from Figure 1 has the following non-simple *EA* models: $t_1 : a'_{\sqcup} \rightsquigarrow a'_1 \bullet a'_6$, $t_2 : a'_1 \rightsquigarrow a'_2 \otimes a'_3$, $t_5 : a'_4 \otimes a'_5 \rightsquigarrow a'_{12}$, $t_6 : a'_6 \rightsquigarrow a'_7 \oplus a'_8$, $t_9 : a'_9 \oplus a'_{10} \rightsquigarrow a'_{11}$, $t_{10} : a'_{11} \bullet a'_{12} \rightsquigarrow a'_{\square}$. Hence $N = \{1, 2, 5, 6, 9, 10\}$. We have as many Event Action Boolean matrices as materialized workflow instances of *WG*. It is easy to verify that every Event Action Boolean matrix is equal to the identity matrix of type 6×6 . Therefore, the workflow logically terminates.