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Overview of results

Bijections between the following objects

Linearized chord diagrams
with n chords

Pattern−avoiding
permutations of length n

Unlabeled (2+2)−free posets
on n elements

Ascent sequences
of length n
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Overview of results

Bijections between the following objects

Linearized chord diagrams
with n chords

Pattern−avoiding
permutations of length n

Unlabeled (2+2)−free posets
on n elements

Ascent sequences
of length n

• Bijections respect several statistics on the structures

• Closed form for generating function

• Modified ascent sequences and Pudwell’s conjecture.
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Ascent sequences

We call a sequence(x1, . . . , xn) of non-negative integers an
ascent sequenceif

• x1 = 0, and

• xi ∈ [0, 1 + asc(x1, . . . , xi−1)] for all 1 < i ≤ n.
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Ascent sequences

We call a sequence(x1, . . . , xn) of non-negative integers an
ascent sequenceif

• x1 = 0, and

• xi ∈ [0, 1 + asc(x1, . . . , xi−1)] for all 1 < i ≤ n.

asc(0, 0, 1, 0, 1, 2, 0) = 3

All ascent sequences of length 4:

(0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,1,2) (0,1,0,0) (0,1,0,1)
(0,1,0,2) (0,1,1,0) (0,1,1,1) (0,1,1,2) (0,1,2,0) (0,1,2,1) (0,1,2,2)
(0,1,2,3)
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Pattern avoiding permutations

Classical pattern avoidance:
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Pattern avoiding permutations

Classical pattern avoidance:
ConsiderSn(231); the collection of all permutationsπ ∈ Sn such that there
do not exist indices1 ≤ i < j < k ≤ n with πk < πi < πj.
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Classical pattern avoidance:
ConsiderSn(231); the collection of all permutationsπ ∈ Sn such that there
do not exist indices1 ≤ i < j < k ≤ n with πk < πi < πj.

Sn(231) = Sn

(
 

 

 

)
Generalized pattern avoidance:
• E. Babson and E. Steingrı́msson, Generalized permutation patterns and a classification of

the Mahonian statistics,Śem. Lothar. Combin.44 (2000) Art. B44b, 18 pp.
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Pattern avoiding permutations

Classical pattern avoidance:
ConsiderSn(231); the collection of all permutationsπ ∈ Sn such that there
do not exist indices1 ≤ i < j < k ≤ n with πk < πi < πj.

Sn(231) = Sn

(
 

 

 

)
Generalized pattern avoidance:
• E. Babson and E. Steingrı́msson, Generalized permutation patterns and a classification of

the Mahonian statistics,Śem. Lothar. Combin.44 (2000) Art. B44b, 18 pp.

ConsiderSn(23− 1)
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Pattern avoiding permutations

Classical pattern avoidance:
ConsiderSn(231); the collection of all permutationsπ ∈ Sn such that there
do not exist indices1 ≤ i < j < k ≤ n with πk < πi < πj.

Sn(231) = Sn
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)
Generalized pattern avoidance:
• E. Babson and E. Steingrı́msson, Generalized permutation patterns and a classification of

the Mahonian statistics,Śem. Lothar. Combin.44 (2000) Art. B44b, 18 pp.

ConsiderSn(23− 1); the collection of all permutationsπ ∈ Sn such that
there do not exist indices1 ≤ i < i + 1 < k ≤ n with πk < πi < πi+1.
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The ‘−’ introduces an elastic length.
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A new class of pattern avoiding permutations:
What about

Rn = Sn

(
 

 

 

)
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What about

Rn = Sn
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)
?

Formally a permutation is in the class if there do not exist indicesi andk
satisfying1 ≤ i < i + 1 < k ≤ n and such that

πk + 1 = πi < πi+1.
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A new class of pattern avoiding permutations:
What about
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)
?

Formally a permutation is in the class if there do not exist indicesi andk
satisfying1 ≤ i < i + 1 < k ≤ n and such that

πk + 1 = πi < πi+1.

1 2 3 4 5
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31524 ∈ R5 32541 6∈ R5



4/12

�

�

�

�

�

�

	

A new class of pattern avoiding permutations:
What about

Rn = Sn

(
 

 

 

)
?

Formally a permutation is in the class if there do not exist indicesi andk
satisfying1 ≤ i < i + 1 < k ≤ n and such that

πk + 1 = πi < πi+1.

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

31524 ∈ R5 32541 6∈ R5

How can one decompose such permutations?
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Considerπ = 61832547 ∈ R8
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Considerπ = 61832547 ∈ R8 and remove the largest entry:

π′ = 6132547 ∈ R7
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?6 1?3 2?5 4? 7?
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Considerπ = 61832547 ∈ R8 and remove the largest entry:

π′ = 6132547 ∈ R7

?6 1?3 2?5 4? 7?

06 113 225 4374
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Considerπ = 61832547 ∈ R8 and remove the largest entry:

π′ = 6132547 ∈ R7

?6 1?3 2?5 4? 7?

06 113 225 4374

The8 belongs at position with label1.
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Considerπ = 61832547 ∈ R8 and remove the largest entry:

π′ = 6132547 ∈ R7

?6 1?3 2?5 4? 7?

06 113 225 4374

The8 belongs at position with label1.
π ∈ R8 may be written as the pairπ = (π′, 1) whereπ′ ∈ R7.
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Considerπ = 61832547 ∈ R8 and remove the largest entry:

π′ = 6132547 ∈ R7

?6 1?3 2?5 4? 7?

06 113 225 4374

The8 belongs at position with label1.
π ∈ R8 may be written as the pairπ = (π′, 1) whereπ′ ∈ R7.

Repeating this until ending up with the empty permutation, we have the
sequence

(0, 1, 1, 2, 2, 0, 3, 1).
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Considerπ = 61832547 ∈ R8 and remove the largest entry:

π′ = 6132547 ∈ R7

?6 1?3 2?5 4? 7?

06 113 225 4374

The8 belongs at position with label1.
π ∈ R8 may be written as the pairπ = (π′, 1) whereπ′ ∈ R7.

Repeating this until ending up with the empty permutation, we have the
sequence

(0, 1, 1, 2, 2, 0, 3, 1).

Theorem 1 There is a 1-1 correspondence between ascent sequences of
lengthn and permutations inRn.
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Unlabeled(2 + 2)-free posets and Interval orders

A partially ordered setP is called(2 + 2)-free if it contains no induced

sub-poset isomorphic to(2 + 2) =
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Unlabeled(2 + 2)-free posets and Interval orders

A partially ordered setP is called(2 + 2)-free if it contains no induced

sub-poset isomorphic to(2 + 2) =

Such posets arise as interval orders:

a

b

c

d

e

d

b

a c e

{a,c,e}

{a,c}

0

a b
c d

e
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Unlabeled(2 + 2)-free posets and Interval orders

A partially ordered setP is called(2 + 2)-free if it contains no induced

sub-poset isomorphic to(2 + 2) =

Such posets arise as interval orders:

a

b

c

d

e

d

b

a c e

{a,c,e}

{a,c}

0

a b
c d

e

Theorem 2 (Not ours!) A posetP is (2 + 2)-free iff the collection of strict
order ideals{D(x) = {y < x} : x ∈ P}may be linearly ordered by inclusion.
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Unlabeled(2 + 2)-free posets and Interval orders

A partially ordered setP is called(2 + 2)-free if it contains no induced

sub-poset isomorphic to(2 + 2) =

Such posets arise as interval orders:

a

b

c

d

e

d

b

a c e

{a,c,e}

{a,c}

0

a b
c d

e

Theorem 2 (Not ours!) A posetP is (2 + 2)-free iff the collection of strict
order ideals{D(x) = {y < x} : x ∈ P}may be linearly ordered by inclusion.

ClearlyD(a) ⊆ D(c) ⊆ D(e) ⊆ D(b) ⊆ D(d).

• P. C. Fishburn,Interval Graphs and Interval Orders, Wiley, New York, 1985.

• P. C. Fishburn, Intransitive indifference with unequal indifference intervals,J. Math.
Psych.7 (1970) 144–149.
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How can one decompose such posets?

x = (x1, . . . , x8) ?



7/12

�

�

�

�

�

�

	

How can one decompose such posets?

0
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3

4

x = ?
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How can one decompose such posets?

*
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3

4

# #

x8 = 2
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How can one decompose such posets?

3

2

0

1 * *
x7 = 1
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How can one decompose such posets?
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x6 = 1
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How can one decompose such posets?

1

0

2

3 *

x5 = 3
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How can one decompose such posets?
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* x4 = 1
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How can one decompose such posets?
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1

*

x3 = 0
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How can one decompose such posets?

0

1 *

x2 = 1
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How can one decompose such posets?

0 x1 = 0
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How can one decompose such posets?

0

1

2

3

4

x = (0, 1, 0, 1, 3, 1, 1, 2)

Recording the order in which elements were removed:

0

1

2

3

4

8

7

2

5

1

46

3

From bottom to top list the elements
in decreasing order:

π = 31764825.
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How can one decompose such posets?

0

1

2

3

4

x = (0, 1, 0, 1, 3, 1, 1, 2)

Theorem 3 There is a 1-1 correspondence between unlabeled(2 + 2)-free
posets onn elements and ascent sequences of lengthn.

Theorem 4 There is a 1-1 correspondence between unlabeled(2 + 2)-free
posets onn elements and permutations inRn.
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Statistics: For a (2 + 2)-free posetP , a sequencex and a permutation
π ∈ Rn, define:

λ(P, q) =
∑
v∈P

q`(v), χ(x, q) =

|x|∑
i=1

qxi, δ(π, q) =

s(π)∑
i=0

diq
i,

wheredi is the number of entries ofπ between the active site labeledi and
the active site labeledi + 1.
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Statistics: For a (2 + 2)-free posetP , a sequencex and a permutation
π ∈ Rn, define:

λ(P, q) =
∑
v∈P

q`(v), χ(x, q) =

|x|∑
i=1

qxi, δ(π, q) =

s(π)∑
i=0

diq
i,

wheredi is the number of entries ofπ between the active site labeledi and
the active site labeledi + 1.

Theorem 5 Given an ascent sequencex of lengthn, let P andπ be the
poset and permutation corresponding tox under the operations described.
Then

min(P ) = zeros(x) = ldr(π);

`?(P ) = last(x) = b(π);

`(P ) = asc(x) = asc(π−1);

max(P ) = rmax(x̂) = rmax(π);

comp(P ) = comp(x̂) = comp(π);

λ(P, q) = χ(x̂, q) = δ(π, q);

λ(P, q) = χ(x̂, q) = δ(π, q).
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The generating function

Generating functionP (t) of unlabeled(2 + 2)-free posets:

P (t) =
∑
n≥0

pn tn

= 1 + t + 2t2 + 5t3 + 15t4 + 53t5 + 217t6 + 1014t7 + 5335t8 + O(t9),

wherepn is the number of(2 + 2)-free posets of cardinalityn.
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Generating functionP (t) of unlabeled(2 + 2)-free posets:

P (t) =
∑
n≥0

pn tn

= 1 + t + 2t2 + 5t3 + 15t4 + 53t5 + 217t6 + 1014t7 + 5335t8 + O(t9),

wherepn is the number of(2 + 2)-free posets of cardinalityn.

The sequence(pn)n≥0 is Sequence A022493 in the OEIS.
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Generating functionP (t) of unlabeled(2 + 2)-free posets:

P (t) =
∑
n≥0

pn tn

= 1 + t + 2t2 + 5t3 + 15t4 + 53t5 + 217t6 + 1014t7 + 5335t8 + O(t9),

wherepn is the number of(2 + 2)-free posets of cardinalityn.

The sequence(pn)n≥0 is Sequence A022493 in the OEIS.

Theorem 6 The generating function of unlabeled(2 + 2)-free posets is

P (t) =
∑
n≥0

n∏
i=1

(
1− (1− t)i

)
.
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∑
n≥0

pn tn

= 1 + t + 2t2 + 5t3 + 15t4 + 53t5 + 217t6 + 1014t7 + 5335t8 + O(t9),

wherepn is the number of(2 + 2)-free posets of cardinalityn.

The sequence(pn)n≥0 is Sequence A022493 in the OEIS.

Theorem 6 The generating function of unlabeled(2 + 2)-free posets is

P (t) =
∑
n≥0

n∏
i=1

(
1− (1− t)i

)
.

• A. Stoimenow, Enumeration of chord diagrams and an upper bound for Vassiliev invari-
ants,J. Knot Theory Ramifications7 no. 1 (1998) 93–114.

• D. Zagier, Vassiliev invariants and a strange identity related to the Dedeking eta-function,
Topology40 (2001) 945–960.
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Regular Linearized Chord Diagrams (RLCD’s)

A regular linearized chord diagramwith n chords is a matching of2n points
such that the chords extending from two adjacent points are not nested
(i.e. avoid Type 1 and Type 2 below):

π
i+1

π
i

i i+1 i i+1 π π
i+1 i

Type 2:Type 1:

Example:

1 2 3 4 5 6 87
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RLCD’s may be mapped to(2 + 2)-free posets via the following map:

b

a d e

c

1 2 3 4 5 6 7

a b c

d

e
8 9 10
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RLCD’s may be mapped to(2 + 2)-free posets via the following map:

b

a d e

c

1 2 3 4 5 6 7

a b c

d

e
8 9 10

Theorem 7 There is a 1-1 correspondence between RLCD’s withn chords
and(2 + 2)-free posets onn elements.
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A conjecture of Lara Pudwell

A permutationπ avoids the barred pattern31̄524̄ if every occurrence of
the (classical) pattern231 plays the role of352 in an occurrence of the
(classical) pattern31524.
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A conjecture of Lara Pudwell

A permutationπ avoids the barred pattern31̄524̄ if every occurrence of
the (classical) pattern231 plays the role of352 in an occurrence of the
(classical) pattern31524.

Conjecture (Lara Pudwell, PhD thesis, 2008)The length generating func-
tion of 31̄524̄-avoiding permutations is∑

k≥1

tk

(1− t)(
k+1
2 )

.

Equivalently, the number of such permutations of lengthn is
n∑

k=1

((
k
2

)
+ n− 1

n− k

)
.
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An ascent sequencex is self modifiedif it is fixed by the mapx 7→ x̂.
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A conjecture of Lara Pudwell

A permutationπ avoids the barred pattern31̄524̄ if every occurrence of
the (classical) pattern231 plays the role of352 in an occurrence of the
(classical) pattern31524.

Conjecture (Lara Pudwell, PhD thesis, 2008)The length generating func-
tion of 31̄524̄-avoiding permutations is∑

k≥1

tk

(1− t)(
k+1
2 )

.

Equivalently, the number of such permutations of lengthn is
n∑

k=1

((
k
2

)
+ n− 1

n− k

)
.

An ascent sequencex is self modifiedif it is fixed by the mapx 7→ x̂.

Theorem 8 The ascent sequencex is self modified if and only if the corre-
sponding permutationπ avoids31̄524̄.


