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e Bijections respect several statistics on the structures
e Closed form for generating function
e Modified ascent sequences and Pudwell’s conjecture.
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1 2 3 4 5 1 2 3 45
31524 € R; 32541 ¢ Rj

How can one decompose such permutations?
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The 8 belongs at position with labél
7 € Rg may be written as the pair = (7', 1) wheren’ € ;.

Repeating this until ending up with the empty permutation, we have the
sequence
(0,1,1,2,2,0,3,1).
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Considerr = 61832547 € Rg and remove the largest entry:
7 = 6132547 € R;

61,3254, 7,
00 113 255 457,
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The 8 belongs at position with labél
7 € Rg may be written as the pair = (7', 1) wheren’ € ;.

Repeating this until ending up with the empty permutation, we have the
sequence

=]

(0,1,1,2,2,0,3,1).

Theorem 1 There is a 1-1 correspondence between ascent sequences@
lengthn and permutations in,,.
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Unlabeled(2 + 2)-free posets and Interval orders

A partially ordered sef” is called(2 + 2)-freeif it contains no induced
sub-poset isomorphic t® + 2) = I I

6/12
Such posets arise as interval orders:

»
|

ammmem b b d
C d D<I\
e I a ¢ e

Theorem 2 (Not ours!) A posetP is (2 + 2)-free iff the collection of strict
orderideals D(z) = {y <z} : x € P} may be linearly ordered by inclusiofi(]

Clearly D(a) € D(c) € D(e) € D(b) € D(d).

e P. C. Fishburninterval Graphs and Interval OrdeysViley, New York, 1985.

e P. C. Fishburn, Intransitive indifference with unequal indifference interval$jath.
Psych.7 (1970) 144-149.
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How can one decompose such posets?

1
I ''''' To =1
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How can one decompose such posets?

0: e ry =0
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How can one decompose such posets?

From bottom to top list the elements
in decreasing order:

T = 31764825.
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How can one decompose such posets?

x=1(0,1,0,1,3,1,1,2)

Theorem 3 There is a 1-1 correspondence between unlab@ed 2)-free
posets om elements and ascent sequences of length

Theorem 4 There is a 1-1 correspondence between unlab@ed 2)-free
posets om elements and permutations i),.
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Statistics: For a (2 + 2)-free posetP, a sequence: and a permutation
T € IR, define:

o s()
AMP.q) =) ¢, x(z.q)=) ¢, drq) =) dd, 5iis
1=1

veP 1=0

whered; is the number of entries of between the active site labelédnd
the active site labeled+ 1.
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Statistics: For a (2 + 2)-free posetP, a sequence: and a permutation
T € IR, define:

o s()
AMP.q) =) ¢, x(z.q)=) ¢, drq) =) dd, 5iis
1=1

veP 1=0

whered; is the number of entries of between the active site labelédnd
the active site labeled+ 1.

Theorem 5 Given an ascent sequenceof lengthn, let P and be the
poset and permutation correspondingrtonder the operations described.
Then

min(P) = zeros(x) = Idr(7);

*(P) = last(x) b(r);

((P) = asc(z) = asc(m!); %
max(P) = rmax(r) = rmax(7); D]
comp(P) = comp(Z) = comp(7); ]
ANP.q) = x(x,q) = d(m,q); «
AP, q) = X(T,q) = d(m,q). »]

(0]



The generating function

Generating functior”(7) of unlabeled 2 + 2)-free posets:

P(t) = Z pnt” 9/12

=1+t + 2> 4+ 5t° + 15" + 53t° + 217¢° + 1014¢" + 5335t + O(¢"),

wherep,, is the number of2 + 2)-free posets of cardinality.
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P<t) — an tn 9/12

n>0
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Regular Linearized Chord Diagrams (RLCD’s)

A reqgular linearized chord diagrawith n chords is a matching afn points
such that the chords extending from two adjacent points are not nested
(i.e. avoid Type 1 and Type 2 below): 10/12

Type I: Type 2:

Example:
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RLCD’s may be mapped t® + 2)-free posets via the following map:

T XN KN A e

1 23 45 6 7 8 910

11/12
73l — d I e
/2 — b
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RLCD’s may be mapped t® + 2)-free posets via the following map:

T XN KN A e

1 23 45 6 7 8 910

11/12
73l — d I e
/2 — b
loll —

Theorem 7 There is a 1-1 correspondence between RLCD’s witthords
and(2 + 2)-free posets on elements.
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the (classical) patter@31 plays the role 0f352 in an occurrence of the
(classical) patter1524 12/12

Conjecture (Lara Pudwell, PhD thesis, 2008 he length generating func-
tion of 31524-avoiding permutations is
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= (1))
Equivalently, the number of such permutations of lengib
o (0 +n-1)

n—=k

k=1
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An ascent sequenceis self modifiedif it is fixed by the mapr — 7.

Theorem 8 The ascent sequences self modified if and only if the corre-
sponding permutation avoids31524.
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