Dyck partitions,

quasi-minuscule quotiens and

Kazhdan-Lusztig polynomials

Federico Incitti

Curia 23/9/2008

partly based on a joint work with Francesco Brenti and Mario Marietti

1. Background

1.1 The symmetric group

 $\mathbf{P} = \{1, 2, 3, \dots\}, \quad [n] = \{1, 2, \dots, n\} \quad (n \in \mathbf{P}),$

Symmetric group: $S_n = \{v : [n] \rightarrow [n] \text{ bijection}\}.$

We denote $v \in S_n$ by the word $v(1)v(2) \dots v(n)$ and by its *diagram*.

Example. $v = 61523748 \in S_8$ has diagram

 S_n is a Coxeter group, with generators the simple transpositions:

$$S = \{(1,2), (2,3), \dots, (n-1,n)\}.$$

When we refer to these generators, the transposition (i, i+1) is simply denoted by *i*. With this convention, the set of generators of S_n is

$$S = [n - 1].$$

Let $J \subseteq [n-1]$. The quotient of S_n by J is $(S_n)^J = \{v \in S_n : v^{-1}(r) < v^{-1}(r+1) \text{ for all } r \in J\}.$ The maximal quotients of S_n are obtained by taking

$$J = [n - 1] \setminus \{i\} \quad (i \in [n - 1]).$$

The quasi-minuscule quotients of S_n are obtained by taking

$$J = [n-1] \setminus \{i-1,i\} \quad (2 \leq i \leq n-1)$$

or

$$J = [n-1] \setminus \{1, n-1\}.$$

In this talk we study the quasi-minuscule quotiens of S_n .

1.2 Partitions and lattice paths

We identify a partition $\lambda = (\lambda_1, \dots, \lambda_k) \subseteq (n^m)$ with its *diagram*: $\{(i, j) \in \mathbf{P}^2 : 1 \leq i \leq k \text{ and } 1 \leq j \leq \lambda_i\}.$

Example. $\lambda = (3, 2, 2, 1, 1) \subseteq (4^5).$

Given a partition $\lambda \subseteq (n^m)$, the *path* associated with λ is the lattice path from (0,m) to (n+m,n), with steps (1,1) (up steps) and (1,-1) (down steps) which is the upper border of the diagram of λ :

$$\mathsf{path}(\lambda) = x_1 x_2 \dots x_{n+m}, \quad x_k \in \{\mathsf{U},\mathsf{D}\},$$

Note that $path(\lambda)$ has exactly n U's and m D's.

Example. $\lambda = (3, 2, 2, 1, 1) \subseteq (4^5).$

Let $\lambda, \mu \in \mathcal{P}$, with $\mu \subseteq \lambda$. Then we call $\lambda \setminus \mu$ a *skew partition*.

A skew partition is a *border strip* (also called a *ribbon*) if it contains no 2×2 square of cells. For brevity, we call a connected (by which we mean "rookwise connected") border strip a *cbs*.

The *outer border strip* θ of $\lambda \setminus \mu$ is the set of cells of $\lambda \setminus \mu$ such that the cell directly above it is not in $\lambda \setminus \mu$.

A cbs $\theta \subset \mathbf{P}^2$ is called a *Dyck cbs* if it is a "Dyck path", which means that no cell of θ has level strictly less than that of either the leftmost or the rightmost of its cells. (In particular, in a Dyck cbs the leftmost and rightmost cells have the same level.)

- Let $\lambda \setminus \mu \subset \mathbf{P}^2$ be a skew partition.
- Recall that $\lambda \setminus \mu$ is defined to be *Dyck* in the following inductive way:
- (1) the empty partition is *Dyck*,
- (2) if λ \ μ is connected, then λ \ μ is *Dyck* if and only if
 (a) its outer border strip θ is a Dyck cbs,
 (b) (λ \ μ) \ θ is Dyck,
- (3) if $\lambda \setminus \mu$ is not connected, then $\lambda \setminus \mu$ is *Dyck* if and only if all of its connected components are Dyck.

Let $\lambda \setminus \mu \subset \mathbf{P}^2$ be a skew partition (not necessarily Dyck).

The *depth* of $\lambda \setminus \mu$ is defined inductively by

$$dp(\lambda \setminus \mu) = \begin{cases} 0, & \text{if } \lambda = \mu, \\ c(\theta) + dp((\lambda \setminus \mu) \setminus \theta), & \text{otherwise,} \end{cases}$$

where θ is the outer border strip of $\lambda \setminus \mu$ and

 $c(\theta) = \#$ connected components of θ .

10/27

Example. Dyck skew partition:

 $dp(\lambda \setminus \mu) = 8.$

2. Parabolic Kazhdan-Lusztig polynomials

Theorem. (Deodhar, 1987) Let (W, S) be any Coxeter system and let $J \subseteq S$. Then, there is a unique family of polynomials

$$\{P_{u,v}^J(q)\}_{u,v\in W^J} \subseteq \mathbf{Z}[q]$$

such that, for all $u, v \in W^J$, with $u \leq v$, and fixed $s \in D(v)$, one has

$$P_{u,v}^{J}(q) = \tilde{P}(q) - \sum_{\{u \le w \le vs: ws < w\}} \mu(w, vs) q^{\frac{\ell(w,v)}{2}} P_{u,w}^{J}(q),$$

where

$$\widetilde{P}(q) = \begin{cases} P_{us,vs}^J(q) + q P_{u,vs}^J(q), & \text{if } us < u, \\ q P_{us,vs}^J(q) + P_{u,vs}^J(q), & \text{if } u < us \in W^J, \\ 0, & \text{if } u < us \notin W^J. \end{cases}$$

and

$$\mu(u,v) = \left[q^{\frac{\ell(u,v)-1}{2}}\right](P_{u,v}^J).$$

The $P_{u,v}^J(q)$ are the parabolic Kazhdan-Lusztig polynomials of W^J .

For $J = \emptyset$, we get the (ordinary) Kazhdan-Lusztig polynomials of W: $P_{u,v}(q) = P_{u,v}^{\emptyset}(q).$

Conversely, parabolic Kazhdan-Lusztig polynomials can be expressed in terms their ordinary counterparts.

Proposition. Let $J \subseteq S$, and $u, v \in W^J$. Then

$$P_{u,v}^J(q) = \sum_{w \in W_J} (-1)^{\ell(w)} P_{wu,v}(q).$$

3. Quasi-minuscule quotiens

We will now give a combinatorial description of the quasi-minuscule quotients in S_n . We start with the following simple observation.

A permutation $v \in S_n$ belongs to $S_n^{[n-1] \setminus \{i-1,i\}}$ if and only if

$$v^{-1}(1) < \cdots < v^{-1}(i-1)$$
 and $v^{-1}(i) < \cdots < v^{-1}(n)$.

Example. $v = 61523748 \in S_8^{[7] \setminus \{4,5\}}$

Let $\lambda \subseteq (n^m)$ be a partition and let

$$\mathsf{path}(\lambda) = x_1 \dots x_{n+m}, \quad x_k \in \{\mathsf{U}, \mathsf{D}\}.$$

We say that an index $k \in [n + m - 1]$ is a

$$\begin{cases} \text{valley of } \lambda, & \text{if } (x_k, x_{k+1}) = (\mathsf{D}, \mathsf{U}), \\ \text{peak of } \lambda, & \text{if } (x_k, x_{k+1}) = (\mathsf{U}, \mathsf{D}). \end{cases}$$

Definition. A *rooted partition* is a pair (λ, r) , where λ is a partition with at least one valley and r is one of its valleys.

We think of a rooted partition as a lattice path with a ball in one of its valleys. If $\lambda \subseteq (n^m)$ and $path(\lambda) = x_1 \dots, x_{n+m}$, then

$$path(\lambda, r) = x_1 \dots x_r \bullet x_{r+1} \dots x_{n+m}$$

Let $v \in S_n^{[n-1]\setminus\{i-1,i\}}$. The *partition* associated with v, denoted by $\Lambda(v)$, is the non-increasing rearrangement of the inversion table of v.

Example. $v = 61523748 \in S_8^{[7] \setminus \{4,5\}}$. Then

$$\Lambda(v) = (3, 2, 2, 1, 1) =$$

Remark. $\Lambda(v) \subseteq ((n-i+1)^i)$ and $v^{-1}(i)$ is a valley of $\Lambda(v)$.

The *rooted partition* associated with v is

$$\Lambda^{\bullet}(v) = (\Lambda(v), v^{-1}(i)).$$

Example. $v = 61523748 \in S_8^{[7] \setminus \{4,5\}}$. Then

$$\Lambda^{\bullet}(v) = ((3, 2, 2, 1, 1), 3) = \checkmark$$

 \wedge

Proposition. The map $v \mapsto \Lambda^{\bullet}(v)$ is a bijection

 $S_n^{[n-1]\setminus\{i-1,i\}} \iff \{\text{rooted partitions } \subseteq ((n-i+1)^i)\}.$ Furthermore, $\ell(v) = |\Lambda(v)|.$

4. • - Dyck partitions

This is the main new combinatorial concept arising from this work.

If (λ, r) and (μ, t) are two rooted partitions such that $\mu \subseteq \lambda$, then we call $(\lambda, r) \setminus (\mu, t)$ a *skew rooted partition*.

Definition. A skew rooted partition $(\lambda, r) \setminus (\mu, t)$ is • -*Dyck* if

(1) there are no peaks of λ strictly between the two roots,

(2) at least one of $\lambda \setminus \mu$ and $\lambda \setminus \mu^t$ is Dyck.

Let $(\lambda, r) \setminus (\mu, t)$ be \bullet -Dyck. The *depth* of $(\lambda, r) \setminus (\mu, t)$ is

$$dp((\lambda, r) \setminus (\mu, t)) = \begin{cases} dp(\lambda \setminus \mu), & \text{if } \lambda \setminus \mu \text{ is Dyck,} \\ dp(\lambda \setminus \mu^t) + 1, & \text{if } \lambda \setminus \mu^t \text{ is Dyck,} \end{cases}$$

Proposition. Let $\lambda \setminus \mu$ be skew partition and let t be a valley of μ . Suppose that at least one of $\lambda \setminus \mu$ and $\lambda \setminus \mu^t$ is Dyck. Then $\lambda \setminus \mu$ and $\lambda \setminus \mu^t$ are both Dyck if and only if t is a peak of λ . In this case,

$$dp(\lambda \setminus \mu) = dp(\lambda \setminus \mu^t) + 1.$$

Four • - Dyck skew rooted partitions:

For all of them,

 $|\lambda \setminus \mu| = 98$ and $dp((\lambda, r) \setminus (\mu, t)) = 8.$

5. Main result

Theorem. (Brenti, I., Marietti, 2008) Let $u, v \in S_n^{[n-1] \setminus \{i-1,i\}}$, with $\Lambda^{\bullet}(v) = (\lambda, r)$ and $\Lambda^{\bullet}(u) = (\mu, t)$.

Then

$$P_{u,v}^{J}(q) = \begin{cases} q^{\frac{|\lambda \setminus \mu| - dp((\lambda, r) \setminus (\mu, t))}{2}}, & \text{if } (\lambda, r) \setminus (\mu, t) \text{ is } \bullet \text{-Dyck,} \\ 0, & \text{otherwise.} \end{cases}$$

Example. If $(\lambda, r) \setminus (\mu, t)$ is one of the previous four, then

$$P_{u,v}^J(q) = q^{\frac{98-8}{2}} = q^{45}.$$

Our main result implies the analog result for *maximal quotients*, found by Brenti in [*Pacific Journal of Mathematics* **207** (2002), 257–286].

Corollary. (Brenti, 2002) Let $u, v \in S_n^{[n-1] \setminus \{i\}}$, with

$$\Lambda(v) = \lambda$$
 and $\Lambda(u) = \mu$.

Then

$$P_{u,v}^{J}(q) = \begin{cases} q^{\frac{|\lambda \setminus \mu| - dp(\lambda \setminus \mu)}{2}}, & \text{if } \lambda \setminus \mu \text{ is Dyck,} \\ 0, & \text{otherwise.} \end{cases}$$

6. Enumerative results

6.1 Enumeration of Dyck partitions

Let $\lambda \subseteq (n^m)$ be a partition and consider the associated path

$$path(\lambda) = x_1 \dots x_{n+m}, \quad x_k \in \{U, D\}.$$

We make the substitution $U \longleftrightarrow (D \longleftrightarrow)$.

We define the *matching set* and the *matching number* of λ by

 $M(\lambda) = \{k \in [n+m] : \text{parenthesis } x_k \text{ is matched}\},\$

 $mtc(\lambda) = \frac{|M(\lambda)|}{2} = \# \text{ pairs of matched parentheses in path}(\lambda).$

Example. $\lambda = (4, 3, 3, 2, 2, 2) \subseteq (5^6)$.

 $mtc(\lambda) = 4$

In 2002, Brenti enumerated the partitions μ contained in a given partition λ such that $\lambda \setminus \mu$ is Dyck and found a *q*-analog formula. This is a reformulation of his result.

Theorem. (Brenti, 2002) Let $\lambda \subseteq (n^m)$. Then $|\{\mu \subseteq \lambda : \lambda \setminus \mu \text{ is Dyck}\} = 2^{\text{mtc}(\lambda)}.$

More generally, the following q-analog holds:

$$\sum_{\substack{\mu \subseteq \lambda \\ \lambda \setminus \mu \text{ is Dyck}}} q^{\operatorname{dp}(\lambda \setminus \mu)} = (q+1)^{\operatorname{mtc}(\lambda)}.$$

Recently, all the Dyck skew partition contained in a given rectangle have been enumerated and a q-analog has been found.

Theorem. (I., August 2008)

$$|\{\lambda \setminus \mu \subseteq (n^m) \text{ Dyck}\}| = \sum_{k=0}^{\min\{n,m\}} \frac{n+m-2k+1}{n+m-k+1} \binom{n+m}{k} 2^k.$$

More generally, the following *q*-analog holds:

$$\sum_{\substack{\lambda \setminus \mu \subseteq (n^m) \\ \lambda \setminus \mu \text{ is Dyck}}} q^{\operatorname{dp}(\lambda \setminus \mu)} = \sum_{k=0}^{\min\{n,m\}} \frac{n+m-2k+1}{n+m-k+1} \binom{n+m}{k} (q+1)^k.$$

6.2 Connection with paths on regular trees

For any integer $d \ge 2$, we denote by T_d the *d*-regular tree, that is the (infinite) tree where all the vertices have degree *d*.

Given two vertices x and y in a graph G, we denote by $\mathsf{Paths}_{G,\ell}(x,y)$ the set of all paths in G of length ℓ from x to y.

Theorem. (I., August 2008) Let $n, m \in \mathbf{P}$.

Let x, y be two vertices of T_3 at distance |n - m|. Then

 $|\{\lambda \setminus \mu \subseteq (n^m) : \lambda \setminus \mu \text{ is Dyck}\}| = |\mathsf{Paths}_{T_3,n+m}(x,y)|.$

More generally, we have the following q-analog.

Let $q \in \mathbb{Z}_{\geq 0}$ and x, y be two vertices of T_{q+2} at distance |n-m|. Then

$$\sum_{\substack{\lambda \setminus \mu \subseteq (n^m) \\ \lambda \setminus \mu \text{ is Dyck}}} q^{\operatorname{dp}(\lambda \setminus \mu)} = |\operatorname{Paths}_{T_{q+2}, n+m}(x, y)|.$$