## Dyck partitions,

# quasi-minuscule quotiens and 

## Kazhdan-Lusztig polynomials

## Federico Incitti

Curia 23/9/2008
partly based on a joint work with
Francesco Brenti and Mario Marietti

## 1. Background

1.1 The symmetric group
$\mathbf{P}=\{1,2,3, \ldots\}, \quad[n]=\{1,2, \ldots, n\} \quad(n \in P)$,
Symmetric group: $S_{n}=\{v:[n] \rightarrow[n]$ bijection $\}$.
We denote $v \in S_{n}$ by the word $v(1) v(2) \ldots v(n)$ and by its diagram.

Example. $v=61523748 \in S_{8}$ has diagram

$S_{n}$ is a Coxeter group, with generators the simple transpositions:

$$
S=\{(1,2),(2,3), \ldots,(n-1, n)\}
$$

When we refer to these generators, the transposition ( $i, i+1$ ) is simply denoted by $i$. With this convention, the set of generators of $S_{n}$ is

$$
S=[n-1]
$$

Let $J \subseteq[n-1]$. The quotient of $S_{n}$ by $J$ is

$$
\left(S_{n}\right)^{J}=\left\{v \in S_{n}: v^{-1}(r)<v^{-1}(r+1) \text { for all } r \in J\right\}
$$

The maximal quotients of $S_{n}$ are obtained by taking

$$
J=[n-1] \backslash\{i\} \quad(i \in[n-1])
$$

The quasi-minuscule quotients of $S_{n}$ are obtained by taking

$$
J=[n-1] \backslash\{i-1, i\} \quad(2 \leqslant i \leqslant n-1)
$$

or

$$
J=[n-1] \backslash\{1, n-1\} .
$$

In this talk we study the quasi-minuscule quotiens of $S_{n}$.

### 1.2 Partitions and lattice paths

We identify a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \subseteq\left(n^{m}\right)$ with its diagram:

$$
\left\{(i, j) \in \mathbf{P}^{2}: 1 \leqslant i \leqslant k \text { and } 1 \leqslant j \leqslant \lambda_{i}\right\}
$$

Example. $\lambda=(3,2,2,1,1) \subseteq\left(4^{5}\right)$.


English notation


French notation


Our notation (Russian)

Given a partition $\lambda \subseteq\left(n^{m}\right)$, the path associated with $\lambda$ is the lattice path from $(0, m)$ to $(n+m, n)$, with steps $(1,1)$ (up steps) and ( $1,-1$ ) (down steps) which is the upper border of the diagram of $\lambda$ :

$$
\operatorname{path}(\lambda)=x_{1} x_{2} \ldots x_{n+m}, \quad x_{k} \in\{\mathrm{U}, \mathrm{D}\}
$$

Note that path $(\lambda)$ has exactly $n$ U's and $m$ D's.

Example. $\lambda=(3,2,2,1,1) \subseteq\left(4^{5}\right)$.


Let $\lambda, \mu \in \mathcal{P}$, with $\mu \subseteq \lambda$. Then we call $\lambda \backslash \mu$ a skew partition.
A skew partition is a border strip (also called a ribbon) if it contains no $2 \times 2$ square of cells. For brevity, we call a connected (by which we mean "rookwise connected") border strip a cbs.

The outer border strip $\theta$ of $\lambda \backslash \mu$ is the set of cells of $\lambda \backslash \mu$ such that the cell directly above it is not in $\lambda \backslash \mu$.


A cbs $\theta \subset \mathbf{P}^{2}$ is called a Dyck cbs if it is a "Dyck path", which means that no cell of $\theta$ has level strictly less than that of either the leftmost or the rightmost of its cells. (In particular, in a Dyck cbs the leftmost and rightmost cells have the same level.)


Dyck

non-Dyck

non-Dyck

Let $\lambda \backslash \mu \subset \mathbf{P}^{2}$ be a skew partition.

Recall that $\lambda \backslash \mu$ is defined to be Dyck in the following inductive way:
(1) the empty partition is Dyck,
(2) if $\lambda \backslash \mu$ is connected, then $\lambda \backslash \mu$ is Dyck if and only if (a) its outer border strip $\theta$ is a Dyck cbs,
(b) $(\lambda \backslash \mu) \backslash \theta$ is Dyck,
(3) if $\lambda \backslash \mu$ is not connected, then $\lambda \backslash \mu$ is Dyck if and only if all of its connected components are Dyck.

Let $\lambda \backslash \mu \subset \mathbf{P}^{2}$ be a skew partition (not necessarily Dyck).

The depth of $\lambda \backslash \mu$ is defined inductively by

$$
\operatorname{dp}(\lambda \backslash \mu)= \begin{cases}0, & \text { if } \lambda=\mu \\ c(\theta)+\operatorname{dp}((\lambda \backslash \mu) \backslash \theta), & \text { otherwise }\end{cases}
$$

where $\theta$ is the outer border strip of $\lambda \backslash \mu$ and

$$
c(\theta)=\# \text { connected components of } \theta
$$

Example. Dyck skew partition:


## 2. Parabolic Kazhdan-Lusztig polynomials

Theorem. (Deodhar, 1987) Let $(W, S)$ be any Coxeter system and let $J \subseteq S$. Then, there is a unique family of polynomials

$$
\left\{P_{u, v}^{J}(q)\right\}_{u, v \in W^{J}} \subseteq \mathbf{Z}[q]
$$

such that, for all $u, v \in W^{J}$, with $u \leqslant v$, and fixed $s \in D(v)$, one has

$$
P_{u, v}^{J}(q)=\widetilde{P}(q)-\sum_{\{u \leqslant w \leqslant v s: w s<w\}} \mu(w, v s) q^{\frac{\ell(w, v)}{2}} P_{u, w}^{J}(q),
$$

where

$$
\tilde{P}(q)= \begin{cases}P_{u s, v s}^{J}(q)+q P_{u, v s}^{J}(q), & \text { if } u s<u \\ q P_{u s, v s}^{J}(q)+P_{u, v s}^{J}(q), & \text { if } u<u s \in W^{J} \\ 0, & \text { if } u<u s \notin W^{J}\end{cases}
$$

and

$$
\mu(u, v)=\left[q^{\frac{\ell(u, v)-1}{2}}\right]\left(P_{u, v}^{J}\right)
$$

The $P_{u, v}^{J}(q)$ are the parabolic Kazhdan-Lusztig polynomials of $W^{J}$.

For $J=\emptyset$, we get the (ordinary) Kazhdan-Lusztig polynomials of $W$ :

$$
P_{u, v}(q)=P_{u, v}^{\emptyset}(q)
$$

Conversely, parabolic Kazhdan-Lusztig polynomials can be expressed in terms their ordinary counterparts.

Proposition. Let $J \subseteq S$, and $u, v \in W^{J}$. Then

$$
P_{u, v}^{J}(q)=\sum_{w \in W_{J}}(-1)^{\ell(w)} P_{w u, v}(q)
$$

## 3. Quasi-minuscule quotiens

We will now give a combinatorial description of the quasi-minuscule quotients in $S_{n}$. We start with the following simple observation.

A permutation $v \in S_{n}$ belongs to $S_{n}^{[n-1] \backslash\{i-1, i\}}$ if and only if

$$
v^{-1}(1)<\cdots<v^{-1}(i-1) \quad \text { and } \quad v^{-1}(i)<\cdots<v^{-1}(n)
$$

Example. $v=61523748 \in S_{8}^{[7] \backslash\{4,5\}}$


Let $\lambda \subseteq\left(n^{m}\right)$ be a partition and let

$$
\operatorname{path}(\lambda)=x_{1} \ldots x_{n+m}, \quad x_{k} \in\{\mathrm{U}, \mathrm{D}\} .
$$

We say that an index $k \in[n+m-1]$ is a

$$
\begin{cases}\text { valley of } \lambda, & \text { if }\left(x_{k}, x_{k+1}\right)=(\mathrm{D}, \mathrm{U}), \\ \text { peak of } \lambda, & \text { if }\left(x_{k}, x_{k+1}\right)=(\mathrm{U}, \mathrm{D})\end{cases}
$$

Definition. A rooted partition is a pair $(\lambda, r)$, where $\lambda$ is a partition with at least one valley and $r$ is one of its valleys.

We think of a rooted partition as a lattice path with a ball in one of its valleys. If $\lambda \subseteq\left(n^{m}\right)$ and $\operatorname{path}(\lambda)=x_{1} \ldots, x_{n+m}$, then

$$
\operatorname{path}(\lambda, r)=x_{1} \ldots x_{r} \bullet x_{r+1} \ldots x_{n+m}
$$

Let $v \in S_{n}^{[n-1] \backslash\{i-1, i\}}$. The partition associated with $v$, denoted by $\Lambda(v)$, is the non-increasing rearrangement of the inversion table of $v$.

Example. $v=61523748 \in S_{8}^{[7] \backslash\{4,5\}}$. Then


Remark. $\quad \wedge(v) \subseteq\left((n-i+1)^{i}\right)$ and $v^{-1}(i)$ is a valley of $\wedge(v)$.

The rooted partition associated with $v$ is

$$
\Lambda^{\bullet}(v)=\left(\wedge(v), v^{-1}(i)\right)
$$

Example. $v=61523748 \in S_{8}^{[7] \backslash\{4,5\}}$. Then


Proposition. The map $v \mapsto \Lambda^{\bullet}(v)$ is a bijection

$$
\left.S_{n}^{[n-1] \backslash\{i-1, i\}} \longleftrightarrow \text { rooted partitions } \subseteq\left((n-i+1)^{i}\right)\right\}
$$

Furthermore, $\ell(v)=|\Lambda(v)|$.

## 4. •-Dyck partitions

This is the main new combinatorial concept arising from this work.
If $(\lambda, r)$ and $(\mu, t)$ are two rooted partitions such that $\mu \subseteq \lambda$, then we call $(\lambda, r) \backslash(\mu, t)$ a skew rooted partition.


Definition. A skew rooted partition $(\lambda, r) \backslash(\mu, t)$ is •-Dyck if
(1) there are no peaks of $\lambda$ strictly between the two roots,
(2) at least one of $\lambda \backslash \mu$ and $\lambda \backslash \mu^{t}$ is Dyck.

Let $(\lambda, r) \backslash(\mu, t)$ be - -Dyck. The depth of $(\lambda, r) \backslash(\mu, t)$ is

$$
\operatorname{dp}((\lambda, r) \backslash(\mu, t))= \begin{cases}\operatorname{dp}(\lambda \backslash \mu), & \text { if } \lambda \backslash \mu \text { is Dyck } \\ \operatorname{dp}\left(\lambda \backslash \mu^{t}\right)+1, & \text { if } \lambda \backslash \mu^{t} \text { is Dyck }\end{cases}
$$

Proposition. Let $\lambda \backslash \mu$ be skew partition and let $t$ be a valley of $\mu$. Suppose that at least one of $\lambda \backslash \mu$ and $\lambda \backslash \mu^{t}$ is Dyck. Then $\lambda \backslash \mu$ and $\lambda \backslash \mu^{t}$ are both Dyck if and only if $t$ is a peak of $\lambda$. In this case,

$$
\operatorname{dp}(\lambda \backslash \mu)=\operatorname{dp}\left(\lambda \backslash \mu^{t}\right)+1
$$

Four •-Dyck skew rooted partitions:


For all of them,

$$
|\lambda \backslash \mu|=98 \quad \text { and } \quad \operatorname{dp}((\lambda, r) \backslash(\mu, t))=8
$$

## 5. Main result

Theorem. (Brenti, I., Marietti, 2008) Let $u, v \in S_{n}^{[n-1] \backslash\{i-1, i\}}$, with

$$
\Lambda^{\bullet}(v)=(\lambda, r) \quad \text { and } \quad \Lambda^{\bullet}(u)=(\mu, t)
$$

Then

$$
P_{u, v}^{J}(q)= \begin{cases}q^{\frac{|\lambda \backslash \mu|-\operatorname{dp}((\lambda, r) \backslash(\mu, t))}{2},} & \text { if }(\lambda, r) \backslash(\mu, t) \text { is } \bullet \text {-Dyck } \\ 0, & \text { otherwise } .\end{cases}
$$

Example. If $(\lambda, r) \backslash(\mu, t)$ is one of the previous four, then

$$
P_{u, v}^{J}(q)=q^{\frac{98-8}{2}}=q^{45} .
$$

Our main result implies the analog result for maximal quotients, found by Brenti in [Pacific Journal of Mathematics 207 (2002), 257-286].

Corollary. (Brenti, 2002) Let $u, v \in S_{n}^{[n-1] \backslash\{i\}}$, with

$$
\wedge(v)=\lambda \quad \text { and } \quad \wedge(u)=\mu
$$

Then

$$
P_{u, v}^{J}(q)= \begin{cases}q^{\frac{|\lambda \backslash \mu|-\operatorname{dp}(\lambda \backslash \mu)}{2},} & \text { if } \lambda \backslash \mu \text { is Dyck } \\ 0, & \text { otherwise }\end{cases}
$$

## 6. Enumerative results

### 6.1 Enumeration of Dyck partitions

Let $\lambda \subseteq\left(n^{m}\right)$ be a partition and consider the associated path

$$
\operatorname{path}(\lambda)=x_{1} \ldots x_{n+m}, \quad x_{k} \in\{\mathrm{U}, \mathrm{D}\} .
$$

We make the substitution

$D \longleftrightarrow)$.
We define the matching set and the matching number of $\lambda$ by

$$
\begin{aligned}
M(\lambda) & =\left\{k \in[n+m]: \text { parenthesis } x_{k} \text { is matched }\right\} \\
\operatorname{mtc}(\lambda) & =\frac{|M(\lambda)|}{2}=\# \text { pairs of matched parentheses in path }(\lambda) .
\end{aligned}
$$

Example. $\lambda=(4,3,3,2,2,2) \subseteq\left(5^{6}\right)$.


$$
\operatorname{path}(\lambda)=(\underline{-}(\underset{-}{)})(\underset{-}{()})(
$$

$$
\begin{aligned}
M(\lambda) & =\{1,2,3,4,6,7,10,11\} \\
\operatorname{mtc}(\lambda) & =4
\end{aligned}
$$

In 2002, Brenti enumerated the partitions $\mu$ contained in a given partition $\lambda$ such that $\lambda \backslash \mu$ is Dyck and found a $q$-analog formula.

This is a reformulation of his result.

Theorem. (Brenti, 2002) Let $\lambda \subseteq\left(n^{m}\right)$. Then

$$
\mid\{\mu \subseteq \lambda: \lambda \backslash \mu \text { is } \operatorname{Dyck}\}=2^{\mathrm{mtc}(\lambda)}
$$

More generally, the following $q$-analog holds:

$$
\sum_{\substack{\mu \subseteq \lambda \\ \lambda \backslash \mu \text { is Dyck }}} q^{\operatorname{dp}(\lambda \backslash \mu)}=(q+1)^{\mathrm{mtc}(\lambda)} .
$$

Recently, all the Dyck skew partition contained in a given rectangle have been enumerated and a $q$-analog has been found.

Theorem. (I., August 2008)

$$
\left|\left\{\lambda \backslash \mu \subseteq\left(n^{m}\right) \mathrm{Dyck}\right\}\right|=\sum_{k=0}^{\min \{n, m\}} \frac{n+m-2 k+1}{n+m-k+1}\binom{n+m}{k} 2^{k}
$$

More generally, the following $q$-analog holds:

$$
\sum_{\lambda \backslash \mu \subseteq\left(n^{m}\right)} q^{\mathrm{dp}(\lambda \backslash \mu)}=\sum_{k=0}^{\min \{n, m\}} \frac{n+m-2 k+1}{n+m-k+1}\binom{n+m}{k}(q+1)^{k} .
$$

$$
\lambda \backslash \mu \text { is Dyck }
$$

### 6.2 Connection with paths on regular trees

For any integer $d \geqslant 2$, we denote by $T_{d}$ the $d$-regular tree, that is the (infinite) tree where all the vertices have degree $d$.


Given two vertices $x$ and $y$ in a graph $G$, we denote by Paths $_{G, \ell}(x, y)$ the set of all paths in $G$ of length $\ell$ from $x$ to $y$.

Theorem. (I., August 2008) Let $n, m \in \mathbf{P}$.
Let $x, y$ be two vertices of $T_{3}$ at distance $|n-m|$. Then

$$
\mid\left\{\lambda \backslash \mu \subseteq\left(n^{m}\right): \lambda \backslash \mu \text { is Dyck }\right\}|=| \text { Paths }_{T_{3}, n+m}(x, y) \mid
$$

More generally, we have the following $q$-analog.
Let $q \in \mathbf{Z}_{\geqslant 0}$ and $x, y$ be two vertices of $T_{q+2}$ at distance $|n-m|$. Then

$$
\sum_{\substack{\lambda \backslash \mu \subseteq\left(n^{m}\right) \\ \lambda \backslash \mu \text { is Dyck }}} q^{\mathrm{dp}(\lambda \backslash \mu)}=\mid \text { Paths }_{T_{q+2}, n+m}(x, y) \mid .
$$

