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1. Background

1.1 The symmetric group

P=1{1,2,3,...}, [n]={1,2,...,n} (neP),

Symmetric group: S, = {v : [n] — [n] bijection}.

1/27

We denote v € S;, by the word v(1)v(2)...v(n) and by its diagram.

Example.

v = 61523748 € Sg has diagram
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Sn 1S a Coxeter group, with generators the simple transpositions:

S =1{(1,2),(2,3),...,(n—1,n)}.

When we refer to these generators, the transposition (4,7+1) is simply
denoted by . With this convention, the set of generators of S,, is

S =[n—1].

Let J C [n— 1]. The quotient of S, by J is

(Sp)’ = {v € Sp: v () < v (r 4+ 1) for all r € J}.
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The maximal quotients of S;, are obtained by taking

J=[n—-1]\{i} (@(Ge[n-—1]).

The quasi-minuscule quotients of S, are obtained by taking
J=[n-1\{i-1,i} (2<i<n-1)
or

J=[n—1]\{1,n—1}.

In this talk we study the quasi-minuscule quotiens of Sj,.
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1.2 Partitions and lattice paths

We identify a partition A = (A1,...,Ar) C (n™) with its diagram:
{(i,j)eP?:1<i<kand 1<j<)\}

Example. )\ = (3,2,2,1,1) C (4>).

English French Our notation
notation notation (Russian)
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Given a partition A C (n™), the path associated with X is the lattice
path from (0,m) to (n+m,n), with steps (1,1) (up steps) and (1,—1)
(down steps) which is the upper border of the diagram of A:

path(\) = z122...Ty4ym, 2 € {U,D},
Note that path()\) has exactly n U's and m D’s.

Example. ) = (3,2,2,1,1) C (49).

ath(\) = ¢
P () = uUDDuUDDUDU
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Let A\, u € P, with pw C A. Then we call A\ u a skew partition.

A skew partition is a border strip (also called a ribbon) if it contains
no 2 x 2 square of cells. For brevity, we call a connected (by which we
mean “rookwise connected” ) border strip a cbs.

The outer border strip 8 of A\ u is the set of cells of A\ p such that
the cell directly above it is not in A\ u.

skew outer
partition border strip
A\ p of A\ u
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A cbs 6 C P2 is called a Dyck cbs if it is a “Dyck path’, which means
that no cell of 8 has level strictly less than that of either the leftmost
or the rightmost of its cells. (In particular, in a Dyck cbs the leftmost
and rightmost cells have the same level.)

Dyck non-Dyck non-Dyck
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Let A\ u C P2 be a skew partition.

Recall that A\ u is defined to be Dyck in the following inductive way:
(1) the empty partition is Dyck,

(2) if A\ pu is connected, then A\ u is Dyck if and only if
(a) its outer border strip 6 is a Dyck cbs,

(b) (A\ w) \ @ is Dyck,

(3) if A\ pn is not connected, then A\ u is Dyck if and only if all of its
connected components are Dyck.
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Let A\ u C P2 be a skew partition (not necessarily Dyck).

The depth of A\ p is defined inductively by

0, if A= pu,

P\ W) = {cw) +dp((\\ 1)\ 6), otherwise,

where 6 is the outer border strip of A\ p and

c(0) = # connected components of 6.



Example. Dyck skew partition:
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dp(A\ p) =8.
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2. Parabolic Kazhdan-Lusztig polynomials

Theorem. (Deodhar, 1987) Let (W,S) be any Coxeter system and
let J CS. Then, there is a unique family of polynomials

{P (@)} pew C Zld]

such that, for all u,v € WY, with « < v, and fixed s € D(v), one has

B L(w,v)
{uw<vsiws<w}
where o . |
- 'Fh8ﬂ$(Q)'+'q}%%vs(Q), if us < u,
P(q) =« qPiL]s,vs(Q) + Ptivs(Q) ifu<usé€e W‘],
\O’ |f’U/<’U,S€W‘]
and

w(u,w) = [ 2 [(PY).
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The P/,(q) are the parabolic Kazhdan-Lusztig polynomials of W+,

For J = 0, we get the (ordinary) Kazhdan-Lusztig polynomials of W

Pun(q) = Pg,v(Q)-

Conversely, parabolic Kazhdan-Lusztig polynomials can be expressed
in terms their ordinary counterparts.

Proposition. Let JC S, and u,v € WY, Then

Pl@)= Y (—1)" ) Py u(q).

weW;
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3. Quasi-minuscule quotiens

We will now give a combinatorial description of the quasi-minuscule
quotients in S;. We start with the following simple observation.

A permutation v € S, belongs to Sq[zn_l]\{i_l’i} if and only if

v (D) <o <o i —1) and v TG) <o <o i(n).

Example. v = 61523748 € SY/N*2) e
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Let A C (n"™) be a partition and let
path(A\) =x1...24m, =z € {U,D}.
We say that an index k€ [n+m — 1] is a

valley of X, if (xkaxk—l—l) = (D, U),
peak of A, if (:I:k,:ck_|_1) = (U, D)

Definition. A rooted partition is a pair (\,r), where X\ is a partition
with at least one valley and r is one of its valleys.

We think of a rooted partition as a lattice path with a ball in one of
its valleys. If A C (»n™) and path(\) = x1...,Ty4,,, then

path(\,7) =21 ... 2r @241 ... Tt
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Let v € Skn_l]\{i_l’i}. The partition associated with v, denoted by
A(v), is the non-increasing rearrangement of the inversion table of v.

Example. v = 61523748 € S5 \*%) Then

ANw) =(3,2,2,1,1) =

Remark. A(v) C ((n—i4 1)") and v—1(4) is a valley of A(v).
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The rooted partition associated with v is

A*(v) = (A(v), v (D).

Example. v = 61523748 € S5 \*5) Then

N(v) = ((3,2,2,1,1),3) =

Proposition. The map v — A®(v) is a bijection

?[17%—1]\{%'—1/@} —— {rooted partitions C ((n —i 4+ 1)")}.
Furthermore, £(v) = |A(v)].
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4. «-Dyck partitions

This is the main new combinatorial concept arising from this work.

If (A\,r) and (u,t) are two rooted partitions such that u C A, then we
call (A\,r)\ (u,t) @ skew rooted partition.
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Definition. A skew rooted partition (A, r) \ (u,t) is e -Dyck if
(1) there are no peaks of X strictly between the two roots,

(2) at least one of A\ p and X\ u! is Dyck.

Let (\,r)\ (u,t) be e-Dyck. The depth of (\,r)\ (u,t) is

~[dp(A\ W), if A\ u is Dyck,
dp((A, )\ (i, 1)) = {dp(A\ut) + 1, if A\ ! is Dyck,

Proposition. Let A\ p be skew partition and let ¢t be a valley of u.
Suppose that at least one of A\ p and X\ p! is Dyck. Then X\ u and
A\ut are both Dyck if and only if t is a peak of A. In this case,

dp(A\ ) = dp(A\ ph) + 1.
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Four e-Dyck skew rooted partitions:

CRLKES
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For all of them,

A\ul =98 and dp((A\,)\ (1) =8.
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5. Main result

Theorem. (Brenti, I, Marietti, 2008) Let u,v ¢ s =L \ith
AN (v) = (N, r) and A*(u) = (u,t).
Then

g () \ (1) is e -Dyck,

0, otherwise.

P’L{,’U(Q) — {

Example. If (\,7)\ (u,t) is one of the previous four, then

98-8
299 4
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Our main result implies the analog result for maximal quotients, found
by Brenti in [Pacific Journal of Mathematics 207 (2002), 257—286].

Corollary. (Brenti, 2002) Let u,v e S M Wwith
A(v) =X and A(u) = pu.

Then
[Mp[=dp(M\p) _
q 2 , if A\ p is Dyck,

0, otherwise.

P’U,J,‘U(Q) — {
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6. Enumerative results

6.1 Enumeration of Dyck partitions

Let A C (n™) be a partition and consider the associated path
path(A) = x1...2p4, 2 € {U,D}.

We make the substitution U+« ( D «—— ).

We define the matching set and the matching number of A by

M (X)) = {k € [n+ m] : parenthesis x; is matched},

[M (M)

5 = # pairs of matched parentheses in path(\).

mtc(\) =




Example. ) = (4,3,3,2,2,2) C (5°).

path(\) = ( () ) ) () ) () (

M) = {1,2,3,4,6,7,10,11}
mtc(\) = 4
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In 2002, Brenti enumerated the partitions p contained in a given
partition X such that A\ u is Dyck and found a g-analog formula.

This is a reformulation of his result.

Theorem. (Brenti, 2002) Let A C (n). Then

{u C XA\ pis Dyck} = 2mtc(d),

More generally, the following g-analog holds:

$ qdp(/\\u) = (¢ + 1)th(>\).

pCA
A\p is Dyck
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Recently, all the Dyck skew partition contained in a given rectangle
have been enumerated and a g-analog has been found.

Theorem. (I., August 2008)

min{n.m} 4 m — 2k 4+ 1 <n + m)Qk_

mc @™ Byekii= 3 it U

More generally, the following g-analog holds:

Z qdp(A\u) _ min%’m}n-l—m— 2k + 1(n-|-m
A\pC(n™) k=0 T m-ktl &
A\p is Dyck

)(g+ D).
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6.2 Connection with paths on regular trees

For any integer d > 2, we denote by T,; the d-regular tree, that is the
(infinite) tree where all the vertices have degree d.
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Given two vertices z and y in a graph G, we denote by PathsG,g(x,y)
the set of all paths in G of length ¢ from x to y.

Theorem. (I., August 2008) Let n,m € P.

Let x,y be two vertices of T3 at distance |n —m|. Then
A\ 1 C (™) 1 X\ is Dyck}| = |Pathsy, 4 (2, ).

More generally, we have the following g-analog.

Let g € Z3o and z,y be two vertices of T, ;5 at distance |n —m|. Then

> ¢ = Pathsy o ym(@y)l.

A\pC(n™)
A\p is Dyck





