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Introduction

Context: The PASEP, Partially Assymetric Self-Exclusion Process,
is a 1D-model of particles in n sites, hopping from each site to its
neighbours.

q.dt dt q.dt dt

This model is solved by a matrix ansatz (cf. Derrida &al). If:

DE − qED = D + E ,

we can write (D + E )n in normal form:

(D + E )n =
∑

i ,j≥0

cijE
iD j ,

Then the partition function is Z =< (D + E )n >=
∑

cij .
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Introduction

If we define:

D̂ = q−1
q

D + 1
q
, Ê = q−1

q
E + 1

q
.

Then we have inversion formulas:

(1 − q)n(D + E )n =
n

∑

k=0

(

n
k

)

2n−k(−1)kqk(D̂ + Ê )k , and

qn(D̂ + Ê )n =

n
∑

k=0

(

n
k

)

2n−k(−1)k(1 − q)k(D + E )k .

And the commutation relation is (cf. Uchiyama-Sasamoto, Evans) :

D̂Ê − qÊ D̂ = 1−q

q2
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Introduction

The rewriting of (D + E )n in normal form is combinatorially
described by alternative tableaux (cf. Viennot).

This explains the link between the PASEP and the combinatorics
of permutations (cf. Corteel-Williams).

The rewriting of (D̂ + Ê )n in normal form is combinatorially
described by rook placements in Young diagrams.
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Rewriting rules for D̂ and Ê

Definition
A rook placement is a filling of the cells of a Young diagram with
◦, with at most one ◦ per line (resp. column).

◦

◦
◦

◦

We distinguish by a × the cells that are
not directly below or to the left of a ◦
(cf. Garsia-Remmel).

Each ◦ has a weight p.
Each × has a weight q.

Theorem
Suppose more generally that D̂Ê − qÊ D̂ = p, then < (D̂ + Ê )n >

is the sum of weight of rook placements of half-perimeter n.
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Rewriting rules for D̂ and Ê

Since (D̂ + Ê )n expands into the sum of all words of length n in D̂
and Ê , it is consequence of:

Proposition

Let w be a word in D̂ and Ê . Then < w > is the sum of weights
of rook placements of shape λ(w).

w = D̂Ê Ê D̂... λ(w)=
...

D̂

Ê

Ê D̂
. . .
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Rewriting rules: Sketch of proof

Operator point of view:

D̂Ê D̂(D̂Ê )D̂Ê Ê = D̂Ê D̂(qÊ D̂)D̂Ê Ê + D̂Ê D̂(p)D̂Ê Ê

Combinatorial point of view:

= × + ◦ = q +p
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Rewriting rules: Sketch of proof

Operator point of view:

D̂Ê D̂(D̂Ê )D̂Ê Ê = D̂Ê D̂(qÊ D̂)D̂Ê Ê + D̂Ê D̂(p)D̂Ê Ê

Combinatorial point of view:

= × + ◦ = q +p

These are identical recurrence relations.
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Enumeration of rook placements: Examples

Let Tj ,k,n be the sum of weights of rook placements of
half-perimeter n, with k lines and j lines without rook. We have:

Proposition

Tk,k,n =

[

n

k

]

q

.

Proposition

When p = 1 and q = 0, T0,k,n is the number of (left factor of)
Dyck paths of n steps ending at height n − 2k. Hence:

T0,k,n =

(

n

k

)

−

(

n

k − 1

)

.
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This is a consequence of:

Proposition

For any λ there is at most one rook placement of shape λ with no
× and one rook per line, with equality in the case where the NE
boudary of λ is a Dyck path.

If the path goes
below the diagonal, it
is impossible to place
one rook per line.

If it is a Dyck path there is only one way to
place the rooks:
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Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

1 2 3 4

5
6
7 8

9

10

11

◦ × ×

×

◦ ×

◦
×
×
×
×

◦

I = b b b b b b b b b b b

1 2 3 4 5 6 7 8 9 1011
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This is not a bijection because fixed points may correspond either
to empty lines or empty columns.
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Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

1 2 3 4

5
6
7 8
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×
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→ → ↓

This is not a bijection because fixed points may correspond either
to empty lines or empty columns.

To keep track of empty lines or columns, we also define:

λ =
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We have a bijection between rook placements of half-perimeter n,
and couples (I , λ) where:

• I is an involution on {1, . . . , n},

• λ is a Young diagram of half-perimeter #Fix(I ).

Proposition

With respect to this decomposition R 7→ (I , λ), the parameter
”number of crosses” is additive:

#crosses(R) = |λ| + µ(I )
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We have a bijection between rook placements of half-perimeter n,
and couples (I , λ) where:

• I is an involution on {1, . . . , n},

• λ is a Young diagram of half-perimeter #Fix(I ).

Proposition

With respect to this decomposition R 7→ (I , λ), the parameter
”number of crosses” is additive:

#crosses(R) = |λ| + µ(I )

It is possible to describe µ precisely:

µ(I ) = #crossings(I ) +
∑

x∈Fix(I )

height(x)
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R =

××
◦ ×××

◦ ×
◦ ×

× ×

λ=

I= b b b b b b b b b b

• |λ| counts the number of × with no
rook in the same line, no rook in the
same column.

• #crossings counts the number of ×
with one rook in the same line, one
rook in the same column.

•
∑

height(x) counts all remaining ×.

|λ| = 3, #crossings = 2,
∑

height(x) = 1 + 1 + 2 + 0 = 4
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Consequence : Remember that Tj ,k,n is the sum of weights of rook
placements of half-perimeter n, with k lines, j lines without rook.

Then we have a factorization:

Tj ,k,n =

[

n − 2k + 2j

j

]

q

T0,k−j ,n.

∑

R w(R)
∑

λ q|λ| pk−j
∑

I qµ(I )
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Besides this factorization property, we have a recurrence relation:

T0,k,n = T0,k,n−1 + pT1,k,n−1.

Case 1:
The first column
contains no rook.

Case 2:
The first column
contains a rook.

Hence:

T0,k,n = T0,k,n−1 + p[n + 1 − 2k]qT0,k−1,n−1.
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Proposition

This recurrence is solved by:

T0,k,n =
(

p
1−q

)k
k

∑

i=0

(−1)iq
i(i+1)

2
[

n−2k+i
i

]

q

(

(

n
k−i

)

−
(

n
k−i−1

)

)

.

It remains to compute:

< (D̂ + Ê )n >=
∑

j ,k

Tj ,k,n =
∑

j ,k

[

n − 2k + 2j

j

]

q

T0,k−j ,n.
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In the PASEP case, ie. p = 1−q

q2 , we can simplify this sum with
q-binomial identities. We obtain:

Proposition

< (D̂ + Ê )n >=
2F (n) − F (n + 1)

qn(1 − q)
,

where

F (n) =

b n
2
c

∑

k=0

(

(

n
k

)

−
(

n
k−1

)

)

n−2k
∑

j=0

qj(n+1−2k−j).
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Remember that (D̂ + Ê )n and (D + E )n are linked by inversion
formulas. We get a new proof of:

Theorem

< (D + E )n−1 >= 1
(1−q)n

n
∑

k=0

(−1)k
(

(

2n
n−k

)

−
(

2n
n−k−1

)

)

×

( k
∑

j=0

qj(k+1−j) −
k−1
∑

j=0

qj(k−j)

)

.

(Conjecture of Corteel-Rubey, March 2008. Proof T. Prellberg,
May 2008. Alternative proof, J-V, August 2008)
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Conclusion

< (D + E )n > is the one-parameter function partition of the
PASEP, but also:

• The q-enumeration of permutations wrt the number of 13-2
patterns (or equivalently, the number of crossings)

• The q-enumeration of permutation tableaux wrt the number
of non-topmost 1’s.

• The momentum of simple q-Laguerre polynomials.

These results also give an expression for the 3-parameter partition
function of the PASEP, although it seems there is no nice
simplification.

A generalization to (αD + E )n and (αD̂ + Ê )n would give the
momentum of (non-simple) q-Laguerre polynomials.
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