Rook placements in Young diagrams

Matthieu Josuat-Vergès

Université Paris-sud
Séminaire Lotharingien de Combinatoire '08

Partially supported by a Junior Research Fellowship from the Erwin Schrödinger Institute, Vienna

Introduction

Context: The PASEP, Partially Assymetric Self-Exclusion Process, is a 1D-model of particles in n sites, hopping from each site to its neighbours.

This model is solved by a matrix ansatz (cf. Derrida \&al). If:

$$
D E-q E D=D+E
$$

we can write $(D+E)^{n}$ in normal form:

$$
(D+E)^{n}=\sum_{i, j \geq 0} c_{i j} E^{i} D^{j}
$$

Then the partition function is $Z=<(D+E)^{n}>=\sum c_{i j}$.

Introduction

If we define:

$$
\hat{D}=\frac{q-1}{q} D+\frac{1}{q}, \quad \hat{E}=\frac{q-1}{q} E+\frac{1}{q} .
$$

Then we have inversion formulas:

$$
\begin{gathered}
(1-q)^{n}(D+E)^{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{n-k}(-1)^{k} q^{k}(\hat{D}+\hat{E})^{k}, \quad \text { and } \\
q^{n}(\hat{D}+\hat{E})^{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{n-k}(-1)^{k}(1-q)^{k}(D+E)^{k} .
\end{gathered}
$$

And the commutation relation is (cf. Uchiyama-Sasamoto, Evans) :

$$
\hat{D} \hat{E}-q \hat{E} \hat{D}=\frac{1-q}{q^{2}}
$$

Introduction

The rewriting of $(D+E)^{n}$ in normal form is combinatorially described by alternative tableaux (cf. Viennot).

This explains the link between the PASEP and the combinatorics of permutations (cf. Corteel-Williams).

The rewriting of $(\hat{D}+\hat{E})^{n}$ in normal form is combinatorially described by rook placements in Young diagrams.

Rewriting rules for \hat{D} and \hat{E}

Definition

A rook placement is a filling of the cells of a Young diagram with \circ, with at most one \circ per line (resp. column).

We distinguish by a \times the cells that are not directly below or to the left of a o (cf. Garsia-Remmel).

Each \circ has a weight p.
Each \times has a weight q.

Theorem
Suppose more generally that $\hat{D} \hat{E}-q \hat{E} \hat{D}=p$, then $<(\hat{D}+\hat{E})^{n}>$ is the sum of weight of rook placements of half-perimeter n.

Rewriting rules for \hat{D} and \hat{E}

Definition

A rook placement is a filling of the cells of a Young diagram with \circ, with at most one o per line (resp. column).

We distinguish by a \times the cells that are not directly below or to the left of a o (cf. Garsia-Remmel).

Each \circ has a weight p.
Each \times has a weight q.

Theorem
Suppose more generally that $\hat{D} \hat{E}-q \hat{E} \hat{D}=p$, then $<(\hat{D}+\hat{E})^{n}>$ is the sum of weight of rook placements of half-perimeter n.

Rewriting rules for \hat{D} and \hat{E}

Since $(\hat{D}+\hat{E})^{n}$ expands into the sum of all words of length n in \hat{D} and \hat{E}, it is consequence of:

Proposition
Let w be a word in \hat{D} and \hat{E}. Then $\langle w\rangle$ is the sum of weights of rook placements of shape $\lambda(w)$.

$$
w=\hat{D} \hat{E} \hat{E} \hat{D} . . .
$$

Rewriting rules: Sketch of proof

Operator point of view:

$$
\hat{D} \hat{E} \hat{D}(\hat{D} \hat{E}) \hat{D} \hat{E} \hat{E}=\hat{D} \hat{E} \hat{D}(q \hat{E} \hat{D}) \hat{D} \hat{E} \hat{E}+\hat{D} \hat{E} \hat{D}(p) \hat{D} \hat{E} \hat{E}
$$

Combinatorial point of view:

Rewriting rules: Sketch of proof

Operator point of view:

$$
\hat{D} \hat{E} \hat{D}(\hat{D} \hat{E}) \hat{D} \hat{E} \hat{E}=\hat{D} \hat{E} \hat{D}(q \hat{E} \hat{D}) \hat{D} \hat{E} \hat{E}+\hat{D} \hat{E} \hat{D}(p) \hat{D} \hat{E} \hat{E}
$$

Combinatorial point of view:

Rewriting rules: Sketch of proof

Operator point of view:

$$
\hat{D} \hat{E} \hat{D}(\hat{D} \hat{E}) \hat{D} \hat{E} \hat{E}=\hat{D} \hat{E} \hat{D}(q \hat{E} \hat{D}) \hat{D} \hat{E} \hat{E}+\hat{D} \hat{E} \hat{D}(p) \hat{D} \hat{E} \hat{E}
$$

Combinatorial point of view:

Rewriting rules: Sketch of proof

Operator point of view:

$$
\hat{D} \hat{E} \hat{D}(\hat{D} \hat{E}) \hat{D} \hat{E} \hat{E}=\hat{D} \hat{E} \hat{D}(q \hat{E} \hat{D}) \hat{D} \hat{E} \hat{E}+\hat{D} \hat{E} \hat{D}(p) \hat{D} \hat{E} \hat{E}
$$

Combinatorial point of view:

Rewriting rules: Sketch of proof

Operator point of view:

$$
\hat{D} \hat{E} \hat{D}(\hat{D} \hat{E}) \hat{D} \hat{E} \hat{E}=\hat{D} \hat{E} \hat{D}(q \hat{E} \hat{D}) \hat{D} \hat{E} \hat{E}+\hat{D} \hat{E} \hat{D}(p) \hat{D} \hat{E} \hat{E}
$$

Combinatorial point of view:

These are identical recurrence relations.

Enumeration of rook placements: Examples

Let $T_{j, k, n}$ be the sum of weights of rook placements of half-perimeter n, with k lines and j lines without rook. We have:

Proposition

$$
T_{k, k, n}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

Proposition

When $p=1$ and $q=0, T_{0, k, n}$ is the number of (left factor of)
$D y c k$ paths of n steps ending at height $n-2 k$. Hence:

$$
T_{0, k, n}=\binom{n}{k}-\binom{n}{k-1} .
$$

This is a consequence of:

Proposition

For any λ there is at most one rook placement of shape λ with no \times and one rook per line, with equality in the case where the NE boudary of λ is a Dyck path.

If the path goes below the diagonal, it is impossible to place one rook per line.

If it is a Dyck path there is only one way to place the rooks:

This is a consequence of:

Proposition

For any λ there is at most one rook placement of shape λ with no \times and one rook per line, with equality in the case where the NE boudary of λ is a Dyck path.

If the path goes below the diagonal, it is impossible to place one rook per line.

If it is a Dyck path there is only one way to place the rooks:

- There is one in each corner,

This is a consequence of:

Proposition

For any λ there is at most one rook placement of shape λ with no \times and one rook per line, with equality in the case where the NE boudary of λ is a Dyck path.

If the path goes below the diagonal, it is impossible to place one rook per line.

If it is a Dyck path there is only one way to place the rooks:

- There is one in each corner,
- One in each corner of the remaining shape, and so on.

This is a consequence of:

Proposition

For any λ there is at most one rook placement of shape λ with no \times and one rook per line, with equality in the case where the NE boudary of λ is a Dyck path.

If the path goes below the diagonal, it is impossible to place one rook per line.

If it is a Dyck path there is only one way to place the rooks:

- There is one in each corner,
- One in each corner of the remaining shape, and so on.

This is a consequence of:

Proposition

For any λ there is at most one rook placement of shape λ with no \times and one rook per line, with equality in the case where the NE boudary of λ is a Dyck path.

If the path goes below the diagonal, it is impossible to place one rook per line.

If it is a Dyck path there is only one way to place the rooks:

- There is one in each corner,
- One in each corner of the remaining shape, and so on.

This is a consequence of:

Proposition

For any λ there is at most one rook placement of shape λ with no \times and one rook per line, with equality in the case where the NE boudary of λ is a Dyck path.

If the path goes below the diagonal, it is impossible to place one rook per line.

If it is a Dyck path there is only one way to place the rooks:

- There is one in each corner,
- One in each corner of the remaining shape, and so on.

This is a consequence of:

Proposition

For any λ there is at most one rook placement of shape λ with no \times and one rook per line, with equality in the case where the NE boudary of λ is a Dyck path.

If the path goes below the diagonal, it is impossible to place one rook per line.

If it is a Dyck path there is only one way to place the rooks:

- There is one in each corner,
- One in each corner of the remaining shape, and so on.

Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

1	2	3	4		
		\bigcirc	\times	5	
O	\times		\times		
			\bigcirc	\times	\times
	*			X	-
					\bigcirc

Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

This is not a bijection because fixed points may correspond either to empty lines or empty columns.

Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

This is not a bijection because fixed points may correspond either to empty lines or empty columns.

To keep track of empty lines or columns, we also define:

$$
\lambda=\vec{\square}
$$

We have a bijection between rook placements of half-perimeter n, and couples (I, λ) where:

- I is an involution on $\{1, \ldots, n\}$,
- λ is a Young diagram of half-perimeter \#Fix (I).

Proposition

With respect to this decomposition $R \mapsto(I, \lambda)$, the parameter "number of crosses" is additive:

$$
\# \operatorname{crosses}(R)=|\lambda|+\mu(I)
$$

We have a bijection between rook placements of half-perimeter n, and couples (I, λ) where:

- I is an involution on $\{1, \ldots, n\}$,
- λ is a Young diagram of half-perimeter \#Fix (I).

Proposition

With respect to this decomposition $R \mapsto(I, \lambda)$, the parameter "number of crosses" is additive:

$$
\# \operatorname{crosses}(R)=|\lambda|+\mu(I)
$$

It is possible to describe μ precisely:

$$
\mu(I)=\# \operatorname{crossings}(I)+\sum_{x \in \operatorname{Fix}(I)} \operatorname{height}(x)
$$

- $|\lambda|$ counts the number of \times with no rook in the same line, no rook in the same column.
- \#crossings counts the number of \times with one rook in the same line, one rook in the same column.
- \sum height (x) counts all remaining \times.

$$
|\lambda|=3, \quad \# \text { crossings }=2
$$

$$
\sum \operatorname{height}(x)=1+1+2+0=4
$$

$$
\lambda=\text { 里 }
$$

- $|\lambda|$ counts the number of \times with no rook in the same line, no rook in the same column.
- \#crossings counts the number of \times with one rook in the same line, one rook in the same column.
- \sum height (x) counts all remaining \times.

$$
|\lambda|=3, \quad \# \text { crossings }=2
$$

$$
\sum \operatorname{height}(x)=1+1+2+0=4
$$

- $|\lambda|$ counts the number of \times with no rook in the same line, no rook in the same column.
- \#crossings counts the number of \times with one rook in the same line, one rook in the same column.
- \sum height (x) counts all remaining \times.

$$
|\lambda|=3, \quad \# \text { crossings }=2
$$

$$
\sum \operatorname{height}(x)=1+1+2+0=4
$$

- $|\lambda|$ counts the number of \times with no rook in the same line, no rook in the same column.
- \#crossings counts the number of \times with one rook in the same line, one rook in the same column.
- \sum height (x) counts all remaining \times.

$$
\begin{gathered}
|\lambda|=3, \quad \# \text { crossings }=2, \\
\sum \operatorname{height}(x)=1+1+2+0=4
\end{gathered}
$$

- $|\lambda|$ counts the number of \times with no rook in the same line, no rook in the same column.
- \#crossings counts the number of \times with one rook in the same line, one rook in the same column.
- \sum height (x) counts all remaining \times.

$$
\begin{gathered}
|\lambda|=3, \quad \# \text { crossings }=2 \\
\sum \operatorname{height}(x)=1+1+2+0=4
\end{gathered}
$$

- $|\lambda|$ counts the number of \times with no rook in the same line, no rook in the same column.
- \#crossings counts the number of \times with one rook in the same line, one rook in the same column.
- \sum height (x) counts all remaining \times.

$$
\begin{gathered}
|\lambda|=3, \quad \# \text { crossings }=2 \\
\sum \operatorname{height}(x)=1+1+2+0=4
\end{gathered}
$$

- $|\lambda|$ counts the number of \times with no rook in the same line, no rook in the same column.
- \#crossings counts the number of \times with one rook in the same line, one rook in the same column.
- \sum height (x) counts all remaining \times.

$$
\begin{gathered}
|\lambda|=3, \quad \# \text { crossings }=2 \\
\sum \operatorname{height}(x)=1+1+2+0=4
\end{gathered}
$$

- $|\lambda|$ counts the number of \times with no rook in the same line, no rook in the same column.
- \#crossings counts the number of \times with one rook in the same line, one rook in the same column.
- \sum height (x) counts all remaining \times.

$$
|\lambda|=3, \quad \# \text { crossings }=2
$$

$$
\sum \operatorname{height}(x)=1+1+2+0=4
$$

Consequence: Remember that $T_{j, k, n}$ is the sum of weights of rook placements of half-perimeter n, with k lines, j lines without rook.

Then we have a factorization:

$$
\left.\begin{array}{c}
T_{j, k, n}=\left[\begin{array}{c}
n-2 k+2 j \\
j
\end{array}\right]_{q} T_{0, k-j, n} \\
\sum_{R} w(R) \\
\sum_{\lambda} q^{|\lambda|}
\end{array}\right\rangle_{p^{k-j} \sum_{l} q^{\mu(l)}}
$$

Besides this factorization property, we have a recurrence relation:

$$
T_{0, k, n}=T_{0, k, n-1}+p T_{1, k, n-1}
$$

Case 1:

The first column contains no rook.

Case 2:
The first column contains a rook.

Hence:

$$
T_{0, k, n}=T_{0, k, n-1}+p[n+1-2 k]_{q} T_{0, k-1, n-1}
$$

Proposition

This recurrence is solved by:

$$
T_{0, k, n}=\left(\frac{p}{1-q}\right)^{k} \sum_{i=0}^{k}(-1)^{i} q^{\frac{i(i+1)}{2}}\left[\begin{array}{c}
n-2 k+i \\
i
\end{array}\right]_{q}\left(\binom{n}{k-i}-\binom{n}{k-i-1}\right)
$$

It remains to compute:

$$
<(\hat{D}+\hat{E})^{n}>=\sum_{j, k} T_{j, k, n}=\sum_{j, k}\left[\begin{array}{c}
n-2 k+2 j \\
j
\end{array}\right]_{q} T_{0, k-j, n} .
$$

In the PASEP case, ie. $p=\frac{1-q}{q^{2}}$, we can simplify this sum with q-binomial identities. We obtain:
Proposition

$$
<(\hat{D}+\hat{E})^{n}>=\frac{2 F(n)-F(n+1)}{q^{n}(1-q)}
$$

where

$$
F(n)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\binom{n}{k}-\binom{n}{k-1}\right) \sum_{j=0}^{n-2 k} q^{j(n+1-2 k-j)}
$$

Remember that $(\hat{D}+\hat{E})^{n}$ and $(D+E)^{n}$ are linked by inversion formulas. We get a new proof of:
Theorem

$$
\begin{aligned}
&<(D+E)^{n-1}>=\frac{1}{(1-q)^{n}} \sum_{k=0}^{n}(-1)^{k}\left(\binom{2 n}{n-k}-\binom{2 n}{n-k-1}\right) \\
& \times\left(\sum_{j=0}^{k} q^{j(k+1-j)}-\sum_{j=0}^{k-1} q^{j(k-j)}\right) .
\end{aligned}
$$

(Conjecture of Corteel-Rubey, March 2008. Proof T. Prellberg, May 2008. Alternative proof, J-V, August 2008)

Conclusion

$<(D+E)^{n}>$ is the one-parameter function partition of the PASEP, but also:

- The q-enumeration of permutations wrt the number of 13-2 patterns (or equivalently, the number of crossings)
- The q-enumeration of permutation tableaux wrt the number of non-topmost 1's.
- The momentum of simple q-Laguerre polynomials.

These results also give an expression for the 3-parameter partition function of the PASEP, although it seems there is no nice simplification.

A generalization to $(\alpha D+E)^{n}$ and $(\alpha \hat{D}+\hat{E})^{n}$ would give the momentum of (non-simple) q-Laguerre polynomials.

