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Motivation

Received query from Joris Van der Jeugt
(working with Stijn Lievens and Neli Stoilova)

Studying representations of the orthosymplectic Lie
superalgebra osp(1|2n) built using parabosons

Identified Fock space modules V (p) for any p ∈ N

Constructed unitary irreducible infinite-dimensional
representations V (p) = V (p)/M(p) where M(p) is the
maximal submodule of V (p), and found that

for p ≥ n irrep V (p) = V (p)

for p < n irrep V (p) = V (p)/M(p)

Also calculated the characters of both V (p) and V (p)
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Van der Jeugt’s conjecture

Proposition [Van der Jeugt, Lievens and Stoilova, 2007]
Let x = (x1, x2, . . . , xn), then

ch V (p) = (x1x2 · · · xn)p/2
∑

λ:ℓ(λ)≤p

sλ(x)

SLC61-2008 – p. 3



Van der Jeugt’s conjecture

Proposition [Van der Jeugt, Lievens and Stoilova, 2007]
Let x = (x1, x2, . . . , xn), then

ch V (p) = (x1x2 · · · xn)p/2
∑

λ:ℓ(λ)≤p

sλ(x)

Conjecture [Van der Jeugt, Lievens and Stoilova, 2007]

∑

λ:ℓ(λ)≤p

sλ(x) =

∑

η (−1)cη sη(x)
∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n (1 − xixj)

with the sum over all partitions η which in Frobenius notation

take the form η =

(

a1

a1 + p

a2

a2 + p

· · ·

· · ·

ar

ar + p

)

with cη = (|η| − rp + r)/2
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Macdonald’s Theorem

Joris Van der Jeugt asked if the result was known

If so where could it be found, if not could I supply a proof?

Angèle Hamel reminded me of:
Theorem [Macdonald 79]

∑

λ:ℓ(λ′)≤p

sλ(x) =

∣

∣xn−j
i − xn+p+j−1

i

∣

∣

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(xj − xk)(1 − xjxk)
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Macdonald’s Theorem

Joris Van der Jeugt asked if the result was known

If so where could it be found, if not could I supply a proof?

Angèle Hamel reminded me of:
Theorem [Macdonald 79]

∑

λ:ℓ(λ′)≤p

sλ(x) =

∣

∣xn−j
i − xn+p+j−1

i

∣

∣

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(xj − xk)(1 − xjxk)

Need to compare this with an immediate Corollary to Van
der Jeugt’s Conjecture

∑

λ:ℓ(λ′)≤p

sλ(x) =

∑

η (−1)cη sη′(x)
∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n (1 − xixj)
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Strategy

Try to recast the numerator of Macdonald’s formula as a
signed sum of Schur functions

Use conjugacy to recover Van der Jeugt’s formula

Try to identify the origin of the row length restriction
ℓ(λ′) ≤ p in Macdonald’s formula

Try to identify the origin of the column length restriction
ℓ(λ) ≤ p in Van der Jeugt’s Conjecture
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Strategy

Try to recast the numerator of Macdonald’s formula as a
signed sum of Schur functions

Use conjugacy to recover Van der Jeugt’s formula

Try to identify the origin of the row length restriction
ℓ(λ′) ≤ p in Macdonald’s formula

Try to identify the origin of the column length restriction
ℓ(λ) ≤ p in Van der Jeugt’s Conjecture

First some preliminaries on

Schur functions and Schur functions series

Partitions, Young diagrams, Frobenius notation

Determinantal identities and modifications
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Schur functions

Let n be a fixed positive integer

Let x = (x1, x2, . . . , xn) be a sequence of indeterminates

Let λ = (λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

be a partition of weight |λ| and length ℓ(λ) ≤ n

Then the Schur function sλ(x) is defined by:

sλ(x) =

∣

∣

∣
x

λj+n−j
i

∣

∣

∣

1≤i,j≤n
∣

∣xn−j
i

∣

∣

1≤i,j≤n

where
∣

∣xn−j
i

∣

∣

1≤i,j≤n
=

∏

1≤i<j≤n (xi − xj)
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Schur functions

Let n be a fixed positive integer

Let x = (x1, x2, . . . , xn) be a sequence of indeterminates

Let λ = (λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

be a partition of weight |λ| and length ℓ(λ) ≤ n

Then the Schur function sλ(x) is defined by:

sλ(x) =

∣

∣

∣
x

λj+n−j
i

∣

∣

∣

1≤i,j≤n
∣

∣xn−j
i

∣

∣

1≤i,j≤n

where
∣

∣xn−j
i

∣

∣

1≤i,j≤n
=

∏

1≤i<j≤n (xi − xj)

These Schur functions form a Z-basis of Λn, the ring of
polynomial symmetric functions of x1, . . . , xn.
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Partitions and Young diagrams

Young diagrams F λ consists of |λ| boxes arranged in
ℓ(λ) rows of lengths λi for i = 1, 2, . . . ℓ(λ)

Conjugate partition λ′ is the partition defined by the ℓ(λ′)

columns of F λ of lengths λ′
j for j = 1, 2 . . . , ℓ(λ′)

Frobenius notation If F λ has r boxes on the main
diagonal, with arm and leg lengths ak and bk for

k = 1, 2, . . . , r, then λ =

(

a1

b1

a2

b2

· · ·

· · ·

ar

br

)

has rank r(λ) = r

with a1 > a2 > · · · > ar ≥ 0 and b1 > b2 > · · · > br ≥ 0
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Partitions and Young diagrams

Young diagrams F λ consists of |λ| boxes arranged in
ℓ(λ) rows of lengths λi for i = 1, 2, . . . ℓ(λ)

Conjugate partition λ′ is the partition defined by the ℓ(λ′)

columns of F λ of lengths λ′
j for j = 1, 2 . . . , ℓ(λ′)

Frobenius notation If F λ has r boxes on the main
diagonal, with arm and leg lengths ak and bk for

k = 1, 2, . . . , r, then λ =

(

a1

b1

a2

b2

· · ·

· · ·

ar

br

)

has rank r(λ) = r

with a1 > a2 > · · · > ar ≥ 0 and b1 > b2 > · · · > br ≥ 0

=

λ1

λ2

λ3

λ4

=

λ′
1 λ′

2 λ′
3 λ′

4 λ′
5

=

a1

b1 a2

b2 a3

b3
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Special families of partitions

Let P be the set of all partitions, including the zero
partition λ = 0 = (0, 0, . . . , 0).

The zero partition is the unique partition of weight, length
and rank zero, ie. |0| = ℓ(0) = r(0) = 0

Then for any integer t let

Pt =







λ =

(

a1

b1

a2

b2

· · ·

· · ·

ar

br

)

∈ P

∣

∣

∣

∣

ak − bk = t
for k = 1, 2, . . . , r

and r = 0, 1, . . .







Note: The zero partition belongs to Pt for all integer t
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Modification rules

For n ∈ N let x = (x1, x2, . . . , xn) and x = x1x2 · · · xn

Let κ = (κ1, κ2, . . . , κn) with κi ∈ Z for i = 1, 2, . . . , n

Let sκ(x) =

∣

∣

∣
x

κj+n−j
i

∣

∣

∣

1≤i,j≤n
∣

∣xn−j
i

∣

∣

1≤i,j≤n

Either sκ(x) = 0 or sκ(x) = ±x
k sλ(x) for some

partition λ and some integer k
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Modification rules

For n ∈ N let x = (x1, x2, . . . , xn) and x = x1x2 · · · xn

Let κ = (κ1, κ2, . . . , κn) with κi ∈ Z for i = 1, 2, . . . , n

Let sκ(x) =

∣

∣

∣
x

κj+n−j
i

∣

∣

∣

1≤i,j≤n
∣

∣xn−j
i

∣

∣

1≤i,j≤n

Either sκ(x) = 0 or sκ(x) = ±x
k sλ(x) for some

partition λ and some integer k

Permuting columns leads to various identities, such as

sκ(x) = −sµ(x) and sκ(x) = (−1)j−1sν(x) with

µ = (κ1, . . . , κj+1−1, κj +1, . . . , κn)

ν = (κj+1−j, κ1+1, . . . , κj +1, κj+2 . . . , κn)
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Example

If n = 4 and κ = (0, 4, 0, 9) then sκ(x) = (−1)3+1 sλ(x)

with λ = (6, 4, 2, 1) since

∣

∣

∣ x3
i x6

i xi x9
i

∣

∣

∣

∣

∣

∣ x3
i x2

i xi 1
∣

∣

∣

=

∣

∣

∣ x9
i x6

i x3
i xi

∣

∣

∣

∣

∣

∣ x3
i x2

i xi 1
∣

∣

∣

where just the ith row of each determinant has been
displayed

Alternatively, one can proceed iteratively using the
previous identities

s0409(x) = − s6151(x) = + s6421(x)
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Diagrammatically

Ex: sκ(x) = s0409(x) = −s6151(x) = +s6421(x) = +sλ(x)

= − = +
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Diagrammatically

Ex: sκ(x) = s0409(x) = −s6151(x) = +s6421(x) = +sλ(x)

= − = +

= + = +
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Diagrammatically

Ex: sκ(x) = s0409(x) = −s6151(x) = +s6421(x) = +sλ(x)

= − = +

= + = +

Note λ = (6421) =

(

5

3

2

1

)
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Frobenius notation and modifications

Let κj = 0 unless j ∈ {b1+1, b2+1, . . . , br+1}

Let b1 > b2 > · · · > br ≥ 0 without loss of generality

Let κ(j) = ak + bk + 1 if j = bk+1 so that

κ = (0br , ar+br+1, 0br−1−br−1, . . . , a2+b2+1, 0b1−b2−1, a1+b1+1)

Then, if a1 > a2 > · · · > ar ≥ 0,

sκ(x) = (−1)b1+b2+···+br sλ(x)

with

λ =

(

a1

b1

a2

b2

· · ·

· · ·

ar

br

)

and r = r(λ)
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Example

For κ = (0, 4, 0, 9) we have κ = 0 unless j ∈ {2, 4}

Hence r = 2, b1 = 3, b2 = 1, with b1 > b2 ≥ 0

Since κ4 = a1 + b1 + 1 = 9 and κ2 = a2 + b2 + 1 = 4 we
have a1 = 5, a2 = 2 with a1 > a2 ≥ 0

Hence we have sκ(x) = s0409(x) = (−1)3+1 s6421(x)

In Frobenius notation λ = (6, 4, 2, 1) =

(

5

3

2

1

)
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Example

For κ = (0, 4, 0, 9) we have κ = 0 unless j ∈ {2, 4}

Hence r = 2, b1 = 3, b2 = 1, with b1 > b2 ≥ 0

Since κ4 = a1 + b1 + 1 = 9 and κ2 = a2 + b2 + 1 = 4 we
have a1 = 5, a2 = 2 with a1 > a2 ≥ 0

Hence we have sκ(x) = s0409(x) = (−1)3+1 s6421(x)

In Frobenius notation λ = (6, 4, 2, 1) =

(

5

3

2

1

)

4

9

= +

5

3 2

1
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Schur function series

Littlewood [1940] For all n ≥ 1 and x = (x1, x2, . . . , xn):
∑

λ

sλ(x) =
∏

1≤i≤n

(1 − xi)
−1

∏

1≤j<k≤n

(1 − xjxk)
−1

∑

λ even

sλ(x) =
∏

1≤j≤k≤n

(1 − xjxk)
−1

∑

λ′ even

sλ(x) =
∏

1≤j<k≤n

(1 − xjxk)
−1
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Schur function series

Littlewood [1940] For all n ≥ 1 and x = (x1, x2, . . . , xn):
∑

λ

sλ(x) =
∏

1≤i≤n

(1 − xi)
−1

∏

1≤j<k≤n

(1 − xjxk)
−1

∑

λ even

sλ(x) =
∏

1≤j≤k≤n

(1 − xjxk)
−1

∑

λ′ even

sλ(x) =
∏

1≤j<k≤n

(1 − xjxk)
−1

A partition is even if all its non-zero parts are even

The infinite sums over λ involve no restriction on
either ℓ(λ) or ℓ(λ′), but sλ(x) = 0 if ℓ(λ) > n.
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Inverse Schur function series

Littlewood [1940] For all n ≥ 1 and x = (x1, x2, . . . , xn)

∑

λ∈P0

(−1)(|λ|+r(λ))/2 sλ(x) =
∏

1≤i≤n

(1 − xi)
∏

1≤j<k≤n

(1 − xjxk)

∑

λ∈P1

(−1)|λ|/2 sλ(x) =
∏

1≤j≤k≤n

(1 − xjxk)

∑

λ∈P−1

(−1)|λ|/2 sλ(x) =
∏

1≤j<k≤n

(1 − xjxk)
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Inverse Schur function series

Littlewood [1940] For all n ≥ 1 and x = (x1, x2, . . . , xn)

∑

λ∈P0

(−1)(|λ|+r(λ))/2 sλ(x) =
∏

1≤i≤n

(1 − xi)
∏

1≤j<k≤n

(1 − xjxk)

∑

λ∈P1

(−1)|λ|/2 sλ(x) =
∏

1≤j≤k≤n

(1 − xjxk)

∑

λ∈P−1

(−1)|λ|/2 sλ(x) =
∏

1≤j<k≤n

(1 − xjxk)

These series are finite for all finite n

For finite n both ℓ(λ) and ℓ(λ′) are restricted,
since for λ ∈ Pt these differ by t
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Determinantal identities
Littlewood [1940] For all n ≥ 1 and x = (x1, x2, . . . , xn)

∣

∣xn−j
i − xn+j−1

i

∣

∣

∣

∣xn−j
i

∣

∣

=
∑

λ∈P0

(−1)[|λ|+r(λ)]/2 sλ(x)

∣

∣xn−j
i − xn+j

i

∣

∣

∣

∣xn−j
i

∣

∣

=
∑

λ∈P1

(−1)|λ|/2 sλ(x)

∣

∣xn−j
i + χ

j>1
xn+j−2

i

∣

∣

∣

∣xn−j
i

∣

∣

=
∑

λ∈P−1

(−1)|λ|/2 sλ(x)

the determinants are all n × n with i, j = 1, 2, . . . , n

and, for any proposition P , χ
P

=

{

1 if P is true

0 if P is false
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General determinantal identity

Lemma K [2008] For all n ≥ 1 and x = (x1, x2, . . . , xn)

∣

∣xn−j
i + q χ

j>−t
xn+t+j−1

i

∣

∣

∣

∣xn−j
i

∣

∣

=
∑

λ∈Pt

(−1)[|λ|−r(λ)(t+1)]/2 qr(λ) sλ(x)

where t is any integer, and q is arbitrary

and the determinants are all n × n

so that i, j = 1, 2, . . . , n
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General determinantal identity

Lemma K [2008] For all n ≥ 1 and x = (x1, x2, . . . , xn)

∣

∣xn−j
i + q χ

j>−t
xn+t+j−1

i

∣

∣

∣

∣xn−j
i

∣

∣

=
∑

λ∈Pt

(−1)[|λ|−r(λ)(t+1)]/2 qr(λ) sλ(x)

where t is any integer, and q is arbitrary

and the determinants are all n × n

so that i, j = 1, 2, . . . , n

The special cases:
q = −1, t = 0; q = −1, t = 1; q = 1, t = −1,

correspond to Littlewood’s previous formulae
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Algebraic proof
∣

∣ xn−j
i + q χ

j>−t
xn+t+j−1

i

∣

∣

∣

∣xn−j
i

∣

∣

=

∣

∣xn−j
i + q χ

j>−t
x2j−1+t+n−j

i

∣

∣

∣

∣xn−j
i

∣

∣

=
n

∑

r=0

∑

κ

qr sκ(x) =
∑

λ∈Pt

(−1)(jr−1)+···+(j2−1)+(j1−1) qr sλ(x)
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Algebraic proof
∣

∣ xn−j
i + q χ

j>−t
xn+t+j−1

i

∣

∣

∣

∣xn−j
i

∣

∣

=

∣

∣xn−j
i + q χ

j>−t
x2j−1+t+n−j

i

∣

∣

∣

∣xn−j
i

∣

∣

=
n

∑

r=0

∑

κ

qr sκ(x) =
∑

λ∈Pt

(−1)(jr−1)+···+(j2−1)+(j1−1) qr sλ(x)

κj = 2j−1+t for j ∈ {j1, j2, . . . , jr} and κj = 0 otherwise

with n ≥ j1 > j2 > · · · > jr ≥ 1 − χt<0t

λ =

(

j1 − 1 + t j2 − 1 + t · · · jr − 1 + t

j1 − 1 j2 − 1 · · · jr − 1

)

∈ Pt

r = r(λ)

|λ| = 2((j1−1) + (j2−1) + · · · + (jr−1)) + r(t + 1)
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Example with n = 4 and t = 2
∣

∣x4−j
i + q χ

j>−2
x5+j

i

∣

∣

∣

∣x4−j
i

∣

∣

=

∣

∣

∣ x3
i + q x6

i x2
i + q x7

i xi + q x8
i 1 + q x9

i

∣

∣

∣

∣

∣

∣ x3
i x2

i xi 1
∣

∣

∣

= s0000 + q (s3000 + s0500 + s0070 + s0009)

+q2 (s3500 + s3070 + s0570 + s3009 + s0509 + s0079)

+q3 (s3570 + s3509 + s3079 + s0579) + q4 s3579

= 1 + q (s3 − s41 + s511 − s6111)

+q2 (−s44 + s541 − s552 − s6411 + s6521 − s6622)

+q3 (−s555 + s6551 − s6652 + s6663) + q4 s6666
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Example with n = 4 and t = 2 contd.

In Frobenius notation sλ(x) =

(

a1 a2 · · · ar

b1 b2 · · · br

)

, we have

1 + q

[(

2

0

)

−

(

3

1

)

+

(

4

2

)

−

(

5

3

)]

+q2

[

−

(

32

10

)

+

(

42

20

)

−

(

43

21

)

−

(

52

30

)

+

(

53

31

)

−

(

54

32

)]

+q3

[

−

(

432

210

)

+

(

532

310

)

−

(

542

320

)

+

(

543

321

)]

+q4

(

5432

3210

)
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Example with n = 4 and t = −2
∣

∣ x4−j
i + q χ

j>2
x1+j

i

∣

∣

∣

∣x4−j
i

∣

∣

=

∣

∣

∣ x3
i x2

i xi + q x4
i 1 + q x5

i

∣

∣

∣

∣

∣

∣ x3
i x2

i xi 1
∣

∣

∣

= s0000 + q (s0030 + s0005) + q2 s0035

= 1 + q (s111 − s2111) − q2 s2222

= 1 + q

(

0

2

)

− q

(

1

3

)

− q2

(

1 0

3 2

)
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Row length restricted Schur function series

∑

λ:ℓ(λ′)≤p

sλ(x) with x = (x1, x2, . . . , xn), n ≥ 1, p ≥ 0

=

∣

∣xn−j
i − xn+p+j−1

i

∣

∣

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(xj − xk)(1 − xjxk)
Macdonald

=

∣

∣xn−j
i − xn+p+j−1

i

∣

∣

/ ∣

∣xn−j
i

∣

∣

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(1 − xjxk)
Vandermonde

=

∑

µ∈Pp
(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(1 − xjxk)
Lemma: q=-1,t=p

=

∑

µ∈Pp
(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∑

ν∈P0
(−1)[|ν|+r(ν)]/2 sν(x)

Littlewood
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Column length restricted Schur function series

Using the conjugacy involution ω : sλ(x) 7→ sλ′(x) for all λ

and noting that λ ∈ Pt =⇒ λ′ ∈ P−t for all t, we have
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Column length restricted Schur function series

Using the conjugacy involution ω : sλ(x) 7→ sλ′(x) for all λ

and noting that λ ∈ Pt =⇒ λ′ ∈ P−t for all t, we have
∑

λ:ℓ(λ)≤p

sλ(x) with x = (x1, x2, . . . , xn), n ≥ 1, p ≥ 0

=

∑

µ∈P−p
(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∑

ν∈P0
(−1)[|ν|+r(ν)]/2 sν(x)

Conjugacy

=

∑

µ∈P−p
(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(1 − xjxk)
Van der Jeugt

=

∣

∣xn−j
i − (−1)pχ

j>p
xn−p+j−1

i

∣

∣

/ ∣

∣xn−j
i

∣

∣

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(1 − xjxk)
Lemma q = −(−1)p

t = −p
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So far

We have recast the numerator of Macdonald’s formula as
a signed sum of Schur functions

We have then used conjugacy to prove Van der Jeugt’s
conjecture
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So far

We have recast the numerator of Macdonald’s formula as
a signed sum of Schur functions

We have then used conjugacy to prove Van der Jeugt’s
conjecture

We have not exploited all of Littlewood’s series

We have only used two special cases of the
Lemma: q = −1, t = p and q = −(−1)p, t = −p

But there exist further row (and as we shall see column)
restricted Schur function series
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Row length restricted Schur function series

Theorem [Macdonald 79; Désarménien 87, Stembridge 90,
Proctor 90; Bressoud 98, Okada 98]
For all n ≥ 1, x = (x1, x2, . . . , xn) and p ≥ 0:

∑

λ:ℓ(λ′)≤p

sλ(x) =

∣

∣xn−j
i − xn+p+j−1

i

∣

∣

∣

∣xn−j
i

∣

∣

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(1 − xjxk)

∑

λ even :ℓ(λ′)≤2p

sλ(x) =

∣

∣xn−j
i − xn+2p+j

i

∣

∣

∣

∣xn−j
i

∣

∣

∏

1≤j≤k≤n(1 − xjxk)

∑

λ′ even :ℓ(λ′)≤p

sλ(x) =
1
2

∣

∣xn−j
i − xn+p+j−2

i

∣

∣ + 1
2

∣

∣xn−j
i + xn+p+j−2

i

∣

∣

∣

∣xn−j
i

∣

∣

∏

1≤j<k≤n(1 − xjxk)
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Row length restricted Schur function series

Using the Lemma for given q and t as indicated, we find

Corollary For all x = (x1, x2, . . .)

q = −1, t = p
∑

λ:ℓ(λ′)≤p

sλ(x) =

∑

µ∈Pp
(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(1 − xjxk)

q = −1, t = 2p + 1
∑

λ even :ℓ(λ′)≤2p

sλ(x) =

∑

µ∈P2p+1
(−1)[|µ|−r(µ)(2p)]/2 sµ(x)

∏

1≤j≤k≤n(1 − xjxk)

q = ±1, t = p − 1
∑

λ′ even :ℓ(λ′)≤p

sλ(x) =

∑

µ∈Pp−1:r(µ) even (−1)[|µ|−r(µ)p]/2 sµ(x)
∏

1≤j<k≤n(1 − xjxk)
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Row length restricted Schur function series

Littlewood’s inverse Schur function series formulae then give:
Corollary For all x = (x1, x2, . . .)

q = −1, t = p
∑

λ:ℓ(λ′)≤p

sλ(x) =

∑

µ∈Pp
(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∑

ν∈P0
(−1)[|ν|+r(ν)]/2 sν(x)

q = −1, t = 2p + 1
∑

λ even :ℓ(λ′)≤2p

sλ(x) =

∑

µ∈P2p+1
(−1)[|µ|−r(µ)(2p)]/2 sµ(x)

∑

ν∈P1
(−1)|ν|/2 sν(x)

q = ±1, t = p − 1
∑

λ′ even :ℓ(λ′)≤p

sλ(x) =

∑

µ∈Pp−1:r(µ) even (−1)[|µ|−r(µ)p]/2 sµ(x)
∑

ν∈P−1
(−1)|ν|/2 sν(x)
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Column length restricted Schur function series

Using the involution ω : sλ(x) 7→ sλ′(x) for all λ

and noting that λ ∈ Pt =⇒ λ′ ∈ P−t for all t, we have

Corollary For all x = (x1, x2, . . .)

∑

λ:ℓ(λ)≤p

sλ(x) =

∑

µ∈P−p
(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∑

ν∈P0
(−1)[|ν|+r(ν)]/2 sν(x)

∑

λ′ even :ℓ(λ)≤2p

sλ(x) =

∑

µ∈P−2p−1
(−1)[|µ|−r(µ)(2p)]/2 sµ(x)

∑

ν∈P−1
(−1)|ν|/2 sν(x)

∑

λ even :ℓ(λ)≤p

sλ(x) =

∑

µ∈P−p+1:r(µ) even (−1)[|µ|−r(µ)p]/2 sµ(x)
∑

ν∈P1
(−1)|ν|/2 sν(x)
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Column length restricted Schur function series

Littlewood’s inverse Schur function series formulae then give:
Corollary For all x = (x1, x2, . . .)

∑

λ:ℓ(λ)≤p

sλ(x) =

∑

µ∈P−p
(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(1 − xjxk)

∑

λ′ even :ℓ(λ)≤2p

sλ(x) =

∑

µ∈P−2p−1
(−1)[|µ|−r(µ)(2p)]/2 sµ(x)

∏

1≤j<k≤n(1 − xjxk)

∑

λ even :ℓ(λ)≤p

sλ(x) =

∑

µ∈P−p+1:r(µ) even (−1)[|µ|−r(µ)p]/2 sµ(x)
∏

1≤j≤k≤n(1 − xjxk)

Note: The first of these was Van der Jeugt’s Conjecture
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Column length restricted Schur function series

Using (q, t) = (−(−1)p,−p), (±1,−p + 1) and (1,−2p− 1) in
our Lemma, we find

Theorem For all n ≥ 1, x = (x1, x2, . . . , xn) and p ≥ 0:

∑

λ:ℓ(λ)≤p

sλ(x) =

∣

∣xn−j
i − (−1)pχ

j>p
xn−p+j−1

i

∣

∣

∣

∣xn−j
i

∣

∣

∏

1≤i≤n(1 − xi)
∏

1≤j<k≤n(1 − xjxk)

∑

λ even :ℓ(λ)≤p

sλ(x) =
1
2

∣

∣xn−j
i − χ

j≥p
xn−p+j

i

∣

∣ + 1
2

∣

∣xn−j
i + χ

j≥p
xn−p+j

i

∣

∣

∣

∣xn−j
i

∣

∣

∏

1≤j≤k≤n(1 − xjxk)

∑

λ′ even :ℓ(λ)≤2p

sλ(x) =

∣

∣xn−j
i + χ

j>2p+1
xn−2p+j−2

i

∣

∣

∣

∣xn−j
i

∣

∣

∏

1≤j<k≤n(1 − xjxk)
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Row length restricted Schur function series

Alternative universal expressions giving each restricted series
as a product of an unrestricted series and a correction factor
for all x = (x1, x2, . . . ) take the form

∑

λ:ℓ(λ′)≤p

sλ(x) =
∑

λ

sλ(x) ·
∑

µ∈Pp

(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∑

λ even :ℓ(λ′)≤2p

sλ(x) =
∑

λ even

sλ(x) ·
∑

µ∈P2p+1

(−1)[|µ|−r(µ)(2p)]/2 sµ(x)

∑

λ′ even :ℓ(λ′)≤p

sλ(x) =
∑

λ′ even

sλ(x) ·
∑

µ∈Pp−1:r(µ) even

(−1)[|µ|−r(µ)p]/2 sµ(x)
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Column length restricted Schur function series

Alternative universal expressions giving each restricted series
as a product of an unrestricted series and a correction factor
for all x = (x1, x2, . . . ) take the form

∑

λ:ℓ(λ)≤p

sλ(x) =
∑

λ

sλ(x) ·
∑

µ∈P−p

(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∑

λ′ even :ℓ(λ)≤2p

sλ(x) =
∑

λ′ even

sλ(x) ·
∑

µ∈P−2p−1

(−1)[|µ|−r(µ)(2p)]/2 sµ(x)

∑

λ even :ℓ(λ)≤p

sλ(x) =
∑

λ even

sλ(x) ·
∑

µ∈P−p+1:r(µ) even

(−1)[|µ|−r(µ)p]/2 sµ(x)
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Row length restricted Schur function series

Alternative universal expressions giving each restricted series
as a product of an unrestricted series and a correction factor
for all x = (x1, x2, . . . ) take the form

∑

λ:ℓ(λ′)≤p

sλ(x) =
∑

λ

sλ(x) ·
∑

µ∈Pp

(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

∑

λ even :ℓ(λ′)≤2p

sλ(x) =
∑

λ even

sλ(x) ·
∑

µ∈P2p+1

(−1)[|µ|−r(µ)(2p)]/2 sµ(x)

∑

λ′ even :ℓ(λ′)≤p

sλ(x) =
∑

λ′ even

sλ(x) ·
∑

µ∈Pp−1:r(µ) even

(−1)[|µ|−r(µ)p]/2 sµ(x)
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Rank restricted Schur function series

The row length restricted series takes the form
∑

λ:ℓ(λ′)≤p

sλ(x) =
∑

λ

sλ(x) ·
∑

µ∈Pp

(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

The column length restricted series takes the form
∑

λ:ℓ(λ)≤p

sλ(x) =
∑

λ

sλ(x) ·
∑

µ∈P−p

(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)
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Rank restricted Schur function series

The row length restricted series takes the form
∑

λ:ℓ(λ′)≤p

sλ(x) =
∑

λ

sλ(x) ·
∑

µ∈Pp

(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

The column length restricted series takes the form
∑

λ:ℓ(λ)≤p

sλ(x) =
∑

λ

sλ(x) ·
∑

µ∈P−p

(−1)[|µ|−r(µ)(p−1)]/2 sµ(x)

Conjecture The rank restricted series takes the form
∑

λ:r(λ)≤p

sλ(x) =
∑

λ

sλ(x) ·
∑

µ∈P0:r(µ)=p+1

(−1)[|µ|+r(µ)]/2 sµ(x)
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So far

We have obtained three determinantal formulae for
column length restricted partitions analogous to those for
row length restricted partitions
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So far

We have obtained three determinantal formulae for
column length restricted partitions analogous to those for
row length restricted partitions

We have not explained why the various determinants lead
to row or column length restrictions

To do this we need to exploit the fact that they define
characters of particular representations of classical
groups as emphasized by Okada

Then we may look for an alternative way of evalauting
these characters through the use of Howe dual pairs of
groups
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Classical groups and their characters

Let x = (x1, x2, . . . , xn) and x = (x1, x2, . . . , xn)

with xi = eǫi and xi = x−1
i = e−ǫi for i = 1, 2, . . . , n

ch V λ
GL(n) =

∣

∣

∣
x

λj+n−j
i

∣

∣

∣

∣

∣xn−j
i

∣

∣

ch V λ
SO(2n+1) =

∣

∣

∣
x

λj+n−j+ 1
2

i − x
λj+n−j+ 1

2
i

∣

∣

∣

∣

∣

∣
x

n−j+ 1
2

i − x
n−j+ 1

2
i

∣

∣

∣

ch V λ
Sp(2n) =

∣

∣

∣
x

λj+n−j+1
i − x

λj+n−j+1
i

∣

∣

∣

∣

∣xn−j+1
i − xn−j+1

i

∣

∣

ch V λ
SO(2n) =

∣

∣

∣
x

λj+n−j
i + x

λj+n−j
i

∣

∣

∣
+

∣

∣

∣
x

λj+n−j
i − x

λj+n−j
i

∣

∣

∣

∣

∣xn−j
i + xn−j

i

∣

∣
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Characters expressed in terms of Schur functions

ch V λ
GL(n) = sλ(x)

ch V λ
SO(2n+1) =

∑

µ∈P0

(−1)(|µ|−r(µ))/2 sλ/µ(x, x)

ch V
λ+ 1

2

p

SO(2n+1) = ch V ∆
SO(2n)

∑

µ∈P−1

(−1)|µ|/2 sλ/µ(x, x)

ch V λ
Sp(2n) =

∑

µ∈P−1

(−1)|µ|/2 sλ/µ(x, x)

ch V λ
SO(2n) =

∑

µ∈P1

(−1)|µ|/2 sλ/µ(x, x)

ch V
λ+ 1

2

p

SO(2n) = ch V ∆
SO(2n)

∑

µ∈P0

(−1)(|µ|+r(µ))/2 sλ/µ(x, x)
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Row length restricted series and characters

Theorem [Macdonald, Désarménien, Stembridge, Proctor,
Bressoud, Okada]

∑

λ:ℓ(λ′)≤p

sλ(x) =

∣

∣xn−j
i − xn+p+j−1

i

∣

∣

∣

∣xn−j
i − xn+j−1

i

∣

∣

= x
p/2 ch V

(p/2)n

SO(2n+1)(x, x, 1)

∑

λ even :ℓ(λ′)≤2p

sλ(x) =

∣

∣xn−j
i − xn+2p+j

i

∣

∣

∣

∣xn−j
i − xn+j

i

∣

∣

= x
p ch V pn

Sp(2n)(x, x)

∑

λ′ even :ℓ(λ′)≤p

sλ(x) =

∣

∣xn−j
i − xn+p+j−2

i

∣

∣ +
∣

∣xn−j
i + xn+p+j−2

i

∣

∣

∣

∣xn−j
i + xn+j−2

i

∣

∣

= x
p/2 ch V

(p/2)n−1,(−)n(p/2)
SO(2n) (x, x)

where x = x1x2 · · · xn = ch V 1n

GL(n(x)
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Proof of formulae in terms of characters

Start from the original determinantal formulae

In each determinant permute columns under
j → n−j+1

Extract factors (−1)n by changing signs
of all terms of the form xa

i − xb
i

Extract factors

x
n− 1

2
+ p

2
i and x

n− 1
2

i

xn+p
i and xn

i

x
n−1+ p

2
i and xn−1

i

from each row of numerator and denominator
determinants
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Howe dual pairs of groups

Definition [Howe 85]

Let groups G and H act on a linear vector space V

Let their actions mutually commute

As a representation of G × H, let

V = ⊕k∈K V
λ(k)
G ⊗ V

µ(k)
H

k varies over some index set K

V
λ(k)
G and V

µ(k)
H are irreps of G and H

V
λ(k)
G and V

µ(k)
H vary without repetition

In such a case we say that G and H form a (Howe)
dual pair with respect to V .
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Howe dual pairs of classical groups

In some cases V is an irrep of a group F ⊇ G × H

On restriction to the subgroup G × H

ch V F
G×H =

∑

k∈K

ch V
λ(k)
G ch V

µ(k)
H
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Howe dual pairs of classical groups

In some cases V is an irrep of a group F ⊇ G × H

On restriction to the subgroup G × H

ch V F
G×H =

∑

k∈K

ch V
λ(k)
G ch V

µ(k)
H

Ex: [Howe 89, Hasegawa 89] For V the spin irrep of an
othogonal group with character ch V ∆, dual pairs are defined
through each of the following restrictions:

O(4np) ⊇ SO(2n) × O(2p)

O(4np + 2p) ⊇ SO(2n + 1) × O(2p)

O(4np + 2n) ⊇ SO(2n) × O(2p + 1)

O(4np + 2n + 2p + 1) ⊇ SO(2n + 1) × O(2p + 1)

O(4np) ⊇ Sp(2n) × Sp(2p)
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Notation for pn-complements

For any partition λ ⊆ np we have λ′ ⊆ pn

In such a case, let λ† = (p − λ′
n, . . . , p − λ′

2, p − λ′
1)

Then λ† is also a partition
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Notation for pn-complements

For any partition λ ⊆ np we have λ′ ⊆ pn

In such a case, let λ† = (p − λ′
n, . . . , p − λ′

2, p − λ′
1)

Then λ† is also a partition
Ex: If p = 4, n = 5 and λ = (4, 3, 1)

then λ′ = (3, 2, 2, 1) and λ† = (4, 3, 2, 2, 1)

F λ = F λ′

= F λ†

=
∗

∗ ∗

∗ ∗

∗ ∗ ∗

Note: 0† = pn = (p, p, . . . , p)
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The spin module and Howe dual pairs

Theorem [Morris 58,60; Hasegawa 89; Terada 93; Bump
and Gamburd 05] On restriction to the appropriate subgroup:

ch V ∆
O(4np) =

∑

λ⊆np

ch V λ†

SO(2n) ch V λ
O(2p)

ch V ∆
O(4np+2p) =

∑

λ⊆np

ch V λ†

SO(2n+1) ch V ∆;λ
O(2p)

ch V ∆
O(4np+2n) =

∑

λ⊆np

ch V ∆;λ†

SO(2n) ch V λ
O(2p+1)

ch V ∆
O(4np+2n+2p+1) =

∑

λ⊆np

ch V ∆;λ†

SO(2n+1) ch V ∆;λ
O(2p+1)

ch V ∆
O(4np) =

∑

λ⊆np

ch V λ†

Sp(2n) ch V λ
Sp(2p)
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Exploitation of Howe duality

Let (G,H) be a Howe dual pair with F ⊇ G × H such
that ch V F

G×H =
∑

k∈K ch V
λ(k)
G ch V

µ(k)
H

The character ch V
λ(k)
G is just the coefficient of ch V

µ(k)
H

in any formula we can devise for ch V F
G×H
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Exploitation of Howe duality

Let (G,H) be a Howe dual pair with F ⊇ G × H such
that ch V F

G×H =
∑

k∈K ch V
λ(k)
G ch V

µ(k)
H

The character ch V
λ(k)
G is just the coefficient of ch V

µ(k)
H

in any formula we can devise for ch V F
G×H

In the case of the spin character identities all that is
needed are:

dual Cauchy formula

expressions for classical group characters in terms of
Schur functions [Littlewood 1940]

some modification rules [Newell 1951]
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Spin characters and their decomposition

In terms of appropriate parameters

ch V ∆
O(2n)(x, x) =

n
∏

i=1

(x
1
2
i + x

− 1
2

i ) = x
− 1

2

n
∏

i=1

(1 + xi)

ch V ∆
O(4np)(xy, xy, xy, xy)

=

n
∏

i=1

p
∏

j=1

(x
1
2
i y

1
2
j + x

− 1
2

i y
− 1

2
j )(x

1
2
i y

− 1
2

j + x
− 1

2
i y

1
2
j )

=

n
∏

i=1

p
∏

j=1

(xi + xi + yj + yj)

= x
−p

n
∏

i=1

p
∏

j=1

(1 + xiyj)(1 + xiyj) = x
−p

∑

ζ⊆n2p

sζ′(x) sζ(y, y)
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Application to Howe dual pair contd.

= x
−p

∑

ζ⊆n2p

sζ′(x) sζ(y, y) = x
−p

∑

ζ⊆n2p

sζ′(x) ch V ζ
GL(2p)(y, y)

= x
−p

∑

ζ⊆n2p

sζ′(x)
∑

β:β′even

ch V
ζ/β
Sp(2p)(y, y)

= x
−p

∑

η⊆n2p

W2p

(

∑

β:β′even

sη′(x) sβ′(x)

)

ch V η
Sp(2p)(y, y)

= x
−p

∑

η⊆n2p

W2p

(

∑

δ even

sη′(x) sδ(x)

)

ch V η
Sp(2p)(y, y)

=
∑

λ⊆np

ch V λ†

Sp(2n)(x, x) ch V λ
Sp(2p)(y, y) dual pair Theorem

where W2p restricts any sum of Schur functions sν(x) to
those having ν1 = ℓ(ν ′) ≤ 2p
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Character formula
It follows that

ch V λ†

Sp(2n)(x, x) = x
−p

∑

η⊆n2p

εη,λ W2p

(

∑

δ even

sη′(x) sδ(x)

)

where the modification rules for Sp(2p) characters are such
that

εη,λ =

{

±1 if ch V η
Sp(2p)(y, y) = ± ch V λ

Sp(2p)(y, y)

0 otherwise
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Character formula
It follows that

ch V λ†

Sp(2n)(x, x) = x
−p

∑

η⊆n2p

εη,λ W2p

(

∑

δ even

sη′(x) sδ(x)

)

where the modification rules for Sp(2p) characters are such
that

εη,λ =

{

±1 if ch V η
Sp(2p)(y, y) = ± ch V λ

Sp(2p)(y, y)

0 otherwise

To be more precise [K and Wybourne 00]

chV λ†

Sp(2n)(x, x) = x
−p

∑

α∈P−1

∑

δ even

(−1)|α|/2 W2p

(

s(λ,α)′(x) sδ(x)

)
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Character formula
Here (λ, α) = (λ1, . . . , λp, α1 . . . , αp)

Standardisation is necessary if λp < α1

For given λ only a finite number of terms α ∈ P−1 give
non-zero contributions
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Character formula
Here (λ, α) = (λ1, . . . , λp, α1 . . . , αp)

Standardisation is necessary if λp < α1

For given λ only a finite number of terms α ∈ P−1 give
non-zero contributions

Example

If λ = 0 then only the case α = 0 survives. In this
case λ† = (pn) and

ch V pn

Sp(2n)(x, x) = x
−p W2p

(

∑

δ even

sδ(x)

)

= x
−p

∑

δ even:ℓ(δ′)≤2p

sδ(x) as before

SLC61-2008 – p. 48



Character formula
Howe duality thus leads directly to a formula for one of
the row length restricted Schur function series

It involves a character of rectangular shape, since λ† = pn
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Character formula
Howe duality thus leads directly to a formula for one of
the row length restricted Schur function series

It involves a character of rectangular shape, since λ† = pn

If λ = m then only the case α = 0 survives. In this
case λ† = pn/1m = (pn−m, (p − 1)m) and

ch V
pn−m,(p−1)m

Sp(2n) (x, x) = x
−p W2p

(

∑

δ even

s1m(x) sδ(x)

)

= x
−p

∑

µ∈(2p)n:oddrows(µ)=p

sµ(x)

This is a formula for a character of near rectangular
shape, previously derived by Krattenthaler [98]
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Character formula
If λ = 1m then two terms survive. In this
case λ† = pn/m = (pn−1, p − m) and

ch V pn−1,p−m
Sp(2n) (x, x)

= x
−p W2p

(

∑

δ even

(sm(x) − s2p+2−m(x)) sδ(x)

)

This gives another character of near rectangular shape

Some care is required to effect the cancellations
necessary to express the character as a sum of wholly
positive terms, see [Krattenthaler 98]

Further examples can easily be generated, but they
involve more complicated cancellations
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Character formula
If λ = 1m then two terms survive. In this
case λ† = pn/m = (pn−1, p − m) and

ch V pn−1,p−m
Sp(2n) (x, x)

= x
−p W2p

(

∑

δ even

(sm(x) − s2p+2−m(x)) sδ(x)

)

This gives another character of near rectangular shape

Some care is required to effect the cancellations
necessary to express the character as a sum of wholly
positive terms, see [Krattenthaler 98]

Further examples can easily be generated, but they
involve more complicated cancellations
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The spin module and Howe dual pairs

Thus we have recovered the formula for the symplectic
group characters as a sum of row length restricted Schur
functions specified by even partitions

Similar formulae for orthogonal group characters may be
recovered in the same way using Howe dual pairs

In each case the row length restriction owes its origin to
the bijective correspondence between irreps of the dual
groups specified by λ† and λ
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The spin module and Howe dual pairs

Thus we have recovered the formula for the symplectic
group characters as a sum of row length restricted Schur
functions specified by even partitions

Similar formulae for orthogonal group characters may be
recovered in the same way using Howe dual pairs

In each case the row length restriction owes its origin to
the bijective correspondence between irreps of the dual
groups specified by λ† and λ

We would like to identify other Howe dual pairs that might
lead to characters expressible as our sums of column
length restricted Schur functions

Such characters are necessarily infinite dimensional
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The metaplectic module and Howe dual pairs

We need an infinite-dimensional analogue of the spin
representation of the orthogonal group

This is provided by the metaplectic representation of the
symplectic group
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The metaplectic module and Howe dual pairs

We need an infinite-dimensional analogue of the spin
representation of the orthogonal group

This is provided by the metaplectic representation of the
symplectic group

Ex: [Howe 89] For V the metaplectic irrep of a symplectic
group with character ch V ∆̃, dual pairs are defined through
each of the following restrictions:

Sp(4np) ⊇ Sp(2n) × O(2p)

Sp(4np + 2p) ⊇ Sp(2n) × O(2p + 1)

Sp(4np) ⊇ SO(2n) × Sp(2p)
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Metaplectic dual pair character formula

Theorem [Moshinsky and Quesne 71, Kashiwara and Vergne
78, Howe 85, K and Wybourne 85]
On restriction to the appropriate subgroup:

ch V ∆̃
Sp(4np) =

∑

λ:λ′
1+λ′

2≤2p, λ′
1≤n

ch V
p(λ)
Sp(2n) ch V λ

O(2p)

ch V ∆̃
Sp(4np+2n) =

∑

λ:λ′
1+λ′

2≤2p+1, λ′
1≤n

ch V
p+ 1

2
(λ)

Sp(2n) ch V λ
O(2p+1)

ch V ∆̃
Sp(4np) =

∑

λ:λ′
1≤min(p,n)

ch V
p(λ)
SO(2n) ch V λ

Sp(2p)
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Metaplectic characters and their decomposition

In terms of appropriate parameters

ch V ∆̃
Sp(2n)(x, x) =

n
∏

i=1

(x
− 1

2
i − x

1
2
i )−1 = x

1
2

n
∏

i=1

(1 − xi)
−1

ch V ∆̃
Sp(4np)(xy, xy, xy, xy)

=

n
∏

i=1

p
∏

j=1

(x
− 1

2
i y

− 1
2

j − x
1
2
i y

1
2
j )−1(x

− 1
2

i y
1
2
j − x

1
2
i y

− 1
2

j )−1

= x
p

n
∏

i=1

p
∏

j=1

(1 − xiyj)
−1(1 − xiyj)

−1

= x
p

∑

ζ:ℓ(ζ)≤min(n,2p)

sζ(x) sζ(y, y)
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Application to Howe dual pair contd.

= x
p

∑

ζ:ℓ(ζ)≤min(n,2p)

sζ(x) sζ(y, y)

= x
p

∑

ζ:ℓ(ζ)≤min(n,2p)

sζ(x) ch V ζ
GL(2p)(y, y)

= x
p

∑

ζ:ℓ(ζ)≤min(n,2p)

sζ(x)
∑

δ even

ch V
ζ/δ
O(2p)(y, y)

= x
p

∑

η:ℓ(η)≤min(n,2p)

L2p

(

∑

δ even

sη(x) sδ(x)

)

ch V η
O(2p)(y, y)

=
∑

λ:λ′
1+λ′

2≤2p, λ′
1≤n

ch V
p(λ)
Sp(2n)(x, x) ch V λ

O(2p)(y, y) dual pair

where L2p restricts any sum of Schur functions sν(x) to
those having ν ′

1 = ℓ(ν) ≤ 2p
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Character formula
It follows that

ch V
p(λ)
Sp(2n)(x, x) = x

p
∑

η:ℓ(ζ)≤min(n,2p)

εη,λ L2p

(

∑

δ even

sη(x) sδ(x)

)

where the modification rules for O(2p) characters are such
that

εη,λ =

{

±1 if ch V η
O(2p)(y, y) = ± ch V λ

O(2p)(y, y)

0 otherwise
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Character formula
It follows that

ch V
p(λ)
Sp(2n)(x, x) = x

p
∑

η:ℓ(ζ)≤min(n,2p)

εη,λ L2p

(

∑

δ even

sη(x) sδ(x)

)

where the modification rules for O(2p) characters are such
that

εη,λ =

{

±1 if ch V η
O(2p)(y, y) = ± ch V λ

O(2p)(y, y)

0 otherwise

In the special case λ = 0 this gives

ch V
p(0)
Sp(2n)(x, x) = x

p L2p

(

∑

δ even

sδ(x)

)

= x
p

∑

δ even:ℓ(δ)≤2p

sδ(x)
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The metaplectic module and Howe dual pairs

Thus we have obtained a formula for a particular
symplectic group character as a sum of column length
restricted Schur functions specified by even partitions

Our other column length restricted Schur function formula
may be also be identifed with characters in the same way

In each case the column length restriction owes its origin
to the bijective correspondence between irreps of the
dual groups specified by p(λ) and λ
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Dual pairs in spin modules

The spin modules ∆ of O(N) give rise to the following
dual pairs of subgroups G × H:

O(4np) ⊇ SO(2n) × O(2p)

O(4np + 2p) ⊇ SO(2n + 1) × O(2p)

O(4np + 2n) ⊇ SO(2n) × O(2p + 1)

O(4np + 2n + 2p + 1) ⊇ SO(2n + 1) × O(2p + 1)

O(4np) ⊇ Sp(2n) × Sp(2p)
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Dual pairs in spin modules

The spin modules ∆ of O(N) give rise to the following
dual pairs of subgroups G × H:

O(4np) ⊇ SO(2n) × O(2p)

O(4np + 2p) ⊇ SO(2n + 1) × O(2p)

O(4np + 2n) ⊇ SO(2n) × O(2p + 1)

O(4np + 2n + 2p + 1) ⊇ SO(2n + 1) × O(2p + 1)

O(4np) ⊇ Sp(2n) × Sp(2p)

The dual pairs may be found by

verifying that the actions of G and H mutually
centralize one another

determining multiplicity free common highest weight
vectors of G and H [Hasegawa 89]
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Dual pairs in spin modules

Each dual pair gives rise to an identity of characters of
the form ch V ∆

O(N) =
∑

k∈K ch V
λ(k)
G ch V

µ(k)
H

Such identities have been derived by

Using the Laplace expansion of ch V ∆
O(N)

• orthogonal subgroup case [Morris 58, 61]
• symplectic subgroup case [Bump and Gamburd 05]

Using a Robinson-Schensted-Knuth-Berele procedure
in the symplectic subgroup case [Terada 91]
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Dual pairs in spin modules

Each dual pair gives rise to an identity of characters of
the form ch V ∆

O(N) =
∑

k∈K ch V
λ(k)
G ch V

µ(k)
H

Such identities have been derived by

Using the Laplace expansion of ch V ∆
O(N)

• orthogonal subgroup case [Morris 58, 61]
• symplectic subgroup case [Bump and Gamburd 05]

Using a Robinson-Schensted-Knuth-Berele procedure
in the symplectic subgroup case [Terada 91]

Here, in the symplectic subgroup case, we offer an
alternative derivation based on a jeu-de-taquin procedure
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Semistandard Young tableaux

Let T λ(n) be the set of gl(n)-tableaux T obtained by
filling the boxes of F λ with entries
from {1 < 2 < . . . < n} such that they

T1 weakly increase across each row from left to right;

T2 strictly increase down each column from top to bottom;
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Semistandard Young tableaux

Let T λ(n) be the set of gl(n)-tableaux T obtained by
filling the boxes of F λ with entries
from {1 < 2 < . . . < n} such that they

T1 weakly increase across each row from left to right;

T2 strictly increase down each column from top to bottom;

Ex: For n = 6, λ = (3, 3, 2) we have

T =

1 2 3

3 4 4

4 5

∈ T 332(6)
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Schur functions and tableaux

For x = (x1, x2, . . . , xn) and
any κ = (κ1, κ2, . . . , κn) let xκ = xκ1

1 xκ2
2 · · · xκn

n

Then

ch V λ
GL(n) = sλ(x) =

∑

T∈T λ(n)

xwgt (T )

where wgt (T )k = #k ∈ T for k = 1, 2, . . . , n
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Schur functions and tableaux

For x = (x1, x2, . . . , xn) and
any κ = (κ1, κ2, . . . , κn) let xκ = xκ1

1 xκ2
2 · · · xκn

n

Then

ch V λ
GL(n) = sλ(x) =

∑

T∈T λ(n)

xwgt (T )

where wgt (T )k = #k ∈ T for k = 1, 2, . . . , n

Ex: For n = 6, λ = (3, 3, 2)

T =

1 2 3

3 4 4

4 5

xwgt (T ) = x1 x2 x2
3 x3

4 x5
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Symplectic tableaux

Let SpT λ(n) be the set of sp(2n)-tableaux T obtained
by filling the boxes of F λ with entries
from {1 < 1 < 2 < 2 < · · · < n < n} such that they

S1 weakly increase across each row from left to right;

S2 strictly increase down each column from top to bottom;

S3 k and k appear no lower than the kth row.
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Symplectic tableaux

Let SpT λ(n) be the set of sp(2n)-tableaux T obtained
by filling the boxes of F λ with entries
from {1 < 1 < 2 < 2 < · · · < n < n} such that they

S1 weakly increase across each row from left to right;

S2 strictly increase down each column from top to bottom;

S3 k and k appear no lower than the kth row.

Ex: For n = 4, λ = (3, 3, 2, 1)

T =

1 2 3

2 3 3

3 4

4

∈ SpT 3321(4)
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Symplectic characters and tableaux

Let x = (x1, x2, . . . , xn) and x = (x1, x2, . . . , xn)

with xk = x−1
k for k = 1, 2, . . . , n

Then

ch V λ
Sp(2n) = spλ(x, x) =

∑

T∈SpTλ(n)

xwgt (T )

where wgt (T )k = #k ∈ T −#k ∈ T for k = 1, 2, . . . , n
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Symplectic characters and tableaux

Let x = (x1, x2, . . . , xn) and x = (x1, x2, . . . , xn)

with xk = x−1
k for k = 1, 2, . . . , n

Then

ch V λ
Sp(2n) = spλ(x, x) =

∑

T∈SpTλ(n)

xwgt (T )

where wgt (T )k = #k ∈ T − #k ∈ T for k = 1, 2, . . . , n

Ex: For n = 4, λ = (3, 3, 2, 1)

T =

1 2 3

2 3 3

3 4

4

wgt (T ) = x0−1
1 x1−1

2 x2−2
3 x2−0

4 = x−1
1 x2

4
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Dual pair identity

The identity to be proved takes the form

ch V ∆
O(4np) =

∑

λ⊆np

ch V λ†

Sp(2n) ch V λ
Sp(2p) =

∑

λ⊆pn

ch V λ
Sp(2n) ch V λ†

Sp(2p)
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Dual pair identity

The identity to be proved takes the form

ch V ∆
O(4np) =

∑

λ⊆np

ch V λ†

Sp(2n) ch V λ
Sp(2p) =

∑

λ⊆pn

ch V λ
Sp(2n) ch V λ†

Sp(2p)

where ch V λ
Sp(2n) ch V λ†

Sp(2p) = spλ(x, x) spλ†(y, y)

and

ch V ∆
O(4np)(xy, xy, xy, xy)

=
n

∏

i=1

p
∏

j=1

(x
1
2
i y

1
2
j + x

− 1
2

i y
− 1

2
j )(x

1
2
i y

− 1
2

j + x
− 1

2
i y

1
2
j )

=
n

∏

i=1

p
∏

j=1

(xi + xi + yj + yj)
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Pairs of symplectic tableau

Let R(n, p) be the set of tableaux R = (TS†)

composed, for some λ ⊆ (pn), of T ∈ SpT λ(n)

and S ∈ SpT λ†

(p) reoriented so as to constitute a
rectangular tableaux of shape F (pn)

Ex: n = 4, p = 5, λ = (3, 3, 2, 1), λ† = (4, 4, 2, 1, 0)

T =

1 2 3

2 3 3

3 4

4

S =

1
′

1′ 1′ 2′

2
′

4
′

4
′

4′

4
′

4′

5′

R =

1 2 3 4′ 2′

2 3 3 4
′

1′

3 4 4′ 4
′

1′

4 5′ 4
′

2
′

1
′
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Observation

∑

λ⊆pn

spλ(x, x) spλ†(y, y)

=
∑

λ⊆pn

∑

T∈SpTλ(n)

xwgt (T )
∑

S∈SpTλ†
(n)

ywgt (S)

=
∑

R∈R(n,p)

(x y)wgt (R)
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Observation

∑

λ⊆pn

spλ(x, x) spλ†(y, y)

=
∑

λ⊆pn

∑

T∈SpTλ(n)

xwgt (T )
∑

S∈SpTλ†
(n)

ywgt (S)

=
∑

R∈R(n,p)

(x y)wgt (R)

Ex: n = 4, p = 5, λ = (3, 3, 2, 1), λ† = (4, 4, 2, 1, 0)

R =

1 2 3 4′ 2′

2 3 3 4
′

1′

3 4 4′ 4
′

1′

4 5′ 4
′

2
′

1
′

(x y)wgt (R) = x−1
1 x2

4 y1 y−1
4 y5
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New rectangular tableaux

Let D(n, p) be the set of tableaux D obtained by filling
the boxes of F (pn) with entries from
{1 < 1 < 2 < · · · < n < n < 1

′
< 1′ < 2

′
< · · · < p′ < p′}

in such a way that:

D1 each unprimed entry k or k lies in the kth row

counted from top to bottom;

D2 each primed entry k′ or k
′

lies in the kth column

counted from right to left.
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New rectangular tableaux

Let D(n, p) be the set of tableaux D obtained by filling
the boxes of F (pn) with entries from
{1 < 1 < 2 < · · · < n < n < 1

′
< 1′ < 2

′
< · · · < p′ < p′}

in such a way that:

D1 each unprimed entry k or k lies in the kth row

counted from top to bottom;

D2 each primed entry k′ or k
′

lies in the kth column

counted from right to left.

Typically D =

1 1 1 2′ 1′

5′ 4′ 2 2
′

2

3 4
′

3 2′ 1′

4 4
′

4 2
′

1
′

∈ D(4, 5)
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Metaplectic character
n

∏

i=1

p
∏

j=1

(xi + xi + yj + yj) =
∑

D∈D(n,p)

(x y)wgt (D)

(x, y) = (x1, x2, . . . , xn, y1, y2, . . . , yp)

wgt (D)i = #k − #k for i = k with k = 1, 2, . . . , n

wgt (D)i = #k′ − #k
′

for i = n + k with k = 1, 2, . . . , p
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Metaplectic character
n

∏

i=1

p
∏

j=1

(xi + xi + yj + yj) =
∑

D∈D(n,p)

(x y)wgt (D)

(x, y) = (x1, x2, . . . , xn, y1, y2, . . . , yp)

wgt (D)i = #k − #k for i = k with k = 1, 2, . . . , n

wgt (D)i = #k′ − #k
′

for i = n + k with k = 1, 2, . . . , p

Ex: D =

1 1 1 2′ 1′ −1

5′ 4′ 2 2
′

2 0

3 4
′

3 2′ 1′ 0

4 4
′

4 2
′

1
′

2

1 −1 0 0 1

⇒
(x, y)wgt (D)

= x−1
1 x2

4 y1 y−1
4 y5

Note: Entry in the (i, j)th box is any one of {i, i
′
, j ′, j

′
}
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Lemma
Lemma For all n, p ∈ N

∑

R∈R(n,p)

(x y)wgt (R) =
∑

D∈D(n,p)

(x y)wgt (D)
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Lemma
Lemma For all n, p ∈ N

∑

R∈R(n,p)

(x y)wgt (R) =
∑

D∈D(n,p)

(x y)wgt (D)

Construct a weight preserving bijection
between R(n, p) and D(n, p)

Use jeu de taquin to map each R ∈ R(n, p) to
corresponding D ∈ D(n, p)

Move each primed entry k′ or k′ north-west to its own
column, the kth, and then north while moving each
unprimed entry i or i to its own row, the ith.

To right of kth column maintain S1-S3 and S1†-S3†
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Legitimate moves fork′

k′ in position (i, j) with i > 1 and j < k

b

a k′
⇔















































k′

a b
if a ≤ b

b

k′ a
if a > b
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Legitimate moves fork′

k′ in position (i, j) with i > 1 and j < k

b

a k′
⇔















































k′

a b
if a ≤ b

b

k′ a
if a > b

k′ in position (1, j) with j < k

a k′ ⇔ k′ a
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Legitimate moves fork′

k′ in position (i, k) with i > 1

b

k′
⇔

k′

b
if b ≤ i

SLC61-2008 – p. 71



Legitimate moves fork′

k′ in position (i, k) with i > 1

b

k′
⇔

k′

b
if b ≤ i

Note

k′

k′
allowed by S1†

k′ k′ forbidden by S2†
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Legitimate moves fork
′

k
′

in position (i, j) with i > 1 and j < k

b

a k
′

⇔















































k
′

a b
if a ≤ b

b

k
′

a
if a > b
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Legitimate moves fork
′

k
′

in position (i, j) with i > 1 and j < k

b

a k
′

⇔















































k
′

a b
if a ≤ b

b

k
′

a
if a > b

k
′

in position (1, j) with j < k

a k
′ ⇔ k

′
a
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Legitimate moves fork
′

k
′

in position (i, k) with i > 1

b

k
′

⇔
k
′

b
if b ≤ i
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Legitimate moves fork
′

k
′

in position (i, k) with i > 1

b

k
′

⇔
k
′

b
if b ≤ i

Note

k
′

k
′

allowed by S1†
k
′
k
′ forbidden by S2†
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No transformations necessary

Note

i i and i i allowed by S1
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No transformations necessary

Note

i i and i i allowed by S1

Note

i

i
and

i

i
forbidden by S2
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Weight preserving transformations

k′ in position (i, k) so that k′ is in kth column,
but blocks k

′
from moving to kth column

k′ k
′ ⇔ i i
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Weight preserving transformations

k′ in position (i, k) so that k′ is in kth column,
but blocks k

′
from moving to kth column

k′ k
′ ⇔ i i

i in position (i, k) so that i is in ith row,
but blocks i from moving to ith row

i

i
⇔

k
′

k′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 2 3 4′ 2′

2 3 3 4
′

1′

3 4 4′ 4
′

1′

4 5′ 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 2 3 4′ 2′

2 3 3 4
′

1′

3 4 4′ 4
′

1′

4 5′ 4
′

2
′

1
′

SLC61-2008 – p. 76



Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 2 3 4′ 2′

2 3 3 4
′

1′

3 5′ 4′ 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 2 3 4′ 2′

2 5′ 3 4
′

1′

3 3 4′ 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 2 3 4′ 2′

5′ 2 3 4
′

1′

3 3 4′ 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 2 3 4′ 2′

5′ 2 3 4
′

1′

3 3 4′ 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 2 4′ 3 2′

5′ 2 3 4
′

1′

3 3 4′ 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 4′ 2 3 2′

5′ 2 3 4
′

1′

3 3 4′ 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 4′ 2 3 2′

5′ 2 3 4
′

1′

3 3 4′ 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 4′ 2 3 2′

5′ 2 4′ 4
′

1′

3 3 3 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 4′ 2 3 2′

5′ 4′ 2 4
′

1′

3 3 3 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 4′ 2 3 2′

5′ 4′ 2 4
′

1′

3 3 3 4
′

1′

4 4 4
′

2
′

1
′

SLC61-2008 – p. 76



Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 4′ 2 4
′

2′

5′ 4′ 2 3 1′

3 3 3 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 4′ 4
′

2 2′

5′ 4′ 2 3 1′

3 3 3 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 4′ 4
′

2 2′

5′ 4′ 2 3 1′

3 3 3 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2 2′

5′ 4′ 2 3 1′

3 3 3 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2 2′

5′ 4′ 2 3 1′

3 3 3 4
′

1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2 2′

5′ 4′ 2 3 1′

3 3 4
′

3 1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2 2′

5′ 4′ 2 3 1′

3 4
′

3 3 1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2 2′

5′ 4′ 2 3 1′

3 4
′

3 3 1′

4 4 4
′

2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2 2′

5′ 4′ 2 3 1′

3 4
′

3 3 1′

4 4
′

4 2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2 2′

5′ 4′ 2 3 1′

3 4
′

3 3 1′

4 4
′

4 2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2′ 2

5′ 4′ 2 3 1′

3 4
′

3 3 1′

4 4
′

4 2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2′ 2

5′ 4′ 2 3 1′

3 4
′

3 3 1′

4 4
′

4 2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2′ 2

5′ 4′ 2 3 1′

3 4
′

3 3 1′

4 4
′

4 2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2′ 2

5′ 4′ 2 2
′

1′

3 4
′

3 2 1′

4 4
′

4 2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2′ 2

5′ 4′ 2 2
′

1′

3 4
′

3 2′ 1′

4 4
′

4 2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2′ 1′

5′ 4′ 2 2
′

2

3 4
′

3 2′ 1′

4 4
′

4 2
′

1
′
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Map from R ∈ R(n, p) to D ∈ D(n, p)

Identify largest primed entries. Move topmost such entry,
k′ or k

′
, North-West by a sequence of interchanges with

nearest neighbours until it reaches kth column and then
North as far as possible in this column, while moving
unprimed entries, i or i, South to the ith row and
changing any vertical pair i i to k

′
k′.

1 1 1 2′ 1′

5′ 4′ 2 2
′

2

3 4
′

3 2′ 1′

4 4
′

4 2
′

1
′
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Bijection

Thus we have a map from R ∈ R(n, p) to D ∈ D(n, p)

illustrated by:

R =

1 2 3 4′ 2′

2 3 3 4
′

1′

3 4 4′ 4
′

1′

4 5′ 4
′

2
′

1
′

⇔

1 1 1 2′ 1′

5′ 4′ 2 2
′

2

3 4
′

3 2′ 1′

4 4
′

4 2
′

1
′

= D
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Bijection

Thus we have a map from R ∈ R(n, p) to D ∈ D(n, p)

illustrated by:

R =

1 2 3 4′ 2′

2 3 3 4
′

1′

3 4 4′ 4
′

1′

4 5′ 4
′

2
′

1
′

⇔

1 1 1 2′ 1′

5′ 4′ 2 2
′

2

3 4
′

3 2′ 1′

4 4
′

4 2
′

1
′

= D

Every step is reversible - the map is bijective

The map is weight preserving

Hence our dual pair character identity is proven

SLC61-2008 – p. 77



Skew Young diagrams

Given partitions λ and µ such that all boxes of F µ are
contained in F λ we write µ ⊆ λ.

Removing the boxes of F µ from F λ leaves the skew
Young diagram F λ/µ

Ex: λ = (5, 4, 2), µ = (3, 1), F λ/µ =
∗ ∗ ∗
∗
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Skew Young diagrams

Given partitions λ and µ such that all boxes of F µ are
contained in F λ we write µ ⊆ λ.

Removing the boxes of F µ from F λ leaves the skew
Young diagram F λ/µ

Ex: λ = (5, 4, 2), µ = (3, 1), F λ/µ =
∗ ∗ ∗
∗

Let T λ/µ(n) be the set of gl(n)-tableaux T obtained by
filling the boxes of F λ/µ with entries
from {1 < 2 < . . . < n} such that they

T1 weakly increase across each row from left to right

T2 strictly increase down each column from top to bottom
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Skew Schur function

For x = (x1, x2, . . . , xn) with n ∈ N

sλ/µ(x) =
∑

T∈T λ/µ(n)

xwgt (T )

where wgt (T )k = #k ∈ T for k = 1, 2, . . . , n
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Skew Schur function

For x = (x1, x2, . . . , xn) with n ∈ N

sλ/µ(x) =
∑

T∈T λ/µ(n)

xwgt (T )

where wgt (T )k = #k ∈ T for k = 1, 2, . . . , n

Ex: n = 6, λ = (5, 4, 2), µ = (3, 1)

T λ/µ =

∗ ∗ ∗ 2 3

∗ 1 4 4

1 5

xwgt (T ) = x2
1 x2 x3 x2

4 x5
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Schur function expansion

For x = (x1, x2, . . . , xm), y = (y1, y2, . . . , yn) with m,n ∈ N

sλ(x, y) =
∑

µ

sµ(x) sλ/µ(y)
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Schur function expansion

For x = (x1, x2, . . . , xm), y = (y1, y2, . . . , yn) with m,n ∈ N

sλ(x, y) =
∑

µ

sµ(x) sλ/µ(y)

Ex: m = 4, n = 6, λ = (5, 4, 2), µ = (3, 1)

1 3 3 2 3

4 1 4 4

1 5

(x y)wgt (T ) = x1 x2
3 x4 y2

1 y2 y3 y2
4 y5
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Cauchy formula and its inverse

Let m,n be positive integers

Then for all x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn)

∑

λ

sλ(x) sλ(y) =
m
∏

i=1

n
∏

j=1

(1 − xi yj)
−1

∑

λ

(−1)|λ| sλ(x) sλ′(y) =
m
∏

i=1

n
∏

j=1

(1 − xi yj)
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Cauchy formula and its inverse

Let m,n be positive integers

Then for all x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn)

∑

λ

sλ(x) sλ(y) =
m
∏

i=1

n
∏

j=1

(1 − xi yj)
−1

∑

λ

(−1)|λ| sλ(x) sλ′(y) =
m
∏

i=1

n
∏

j=1

(1 − xi yj)

The first sum over λ is infinite with non-zero terms
arising for all ℓ(λ) ≤ min{m,n}, and no restriction on ℓ(λ′)

The second sum over λ is finite, with λ ⊆ nm, since
sλ(x) = 0 if ℓ(λ) > m and sλ′(y) = 0 if ℓ(λ′) > n
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Determinantal identity

For x = (x1, x2, . . . , xm), y = (y1, y2, . . . , yn) with m,n ∈ N

∑

λ

(−1)|λ| sλ(x) sλ′(y) =

m
∏

i=1

n
∏

j=1

(1 − xi yj)

=
1

∣

∣xm−j
i

∣

∣ |yn−b
a |

·

∣

∣

∣

∣

∣

∣

∣

∣

yj−1
n+1−i

· · ·

xm+n−j
i−n

∣

∣

∣

∣

∣

∣

∣

∣

The (m+n) × (m+n) determinant is partitioned after the
nth row
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Determinantal identity

For x = (x1, x2, . . . , xm), y = (y1, y2, . . . , yn) with m,n ∈ N

∑

λ

(−1)|λ| sλ(x) sλ′(y) =

m
∏

i=1

n
∏

j=1

(1 − xi yj)

=
1

∣

∣xm−j
i

∣

∣ |yn−b
a |

·

∣

∣

∣

∣

∣

∣

∣

∣

yj−1
n+1−i

· · ·

xm+n−j
i−n

∣

∣

∣

∣

∣

∣

∣

∣

The (m+n) × (m+n) determinant is partitioned after the
nth row

Proof Use either Laplace expansion to obtain Schur
functions directly, or three Vandermonde identities to
obtain product form
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Row length restricted Cauchy formula

Theorem [Kwon 08, Hamel and K. 08]
Let x = (x1, . . . , xm), y = (y1, . . . , yn) with m,n ≥ 1.
Then for all p ≥ 0 we have

∑

λ:ℓ(λ′)≤p

sλ(x) sλ(y) = (y1 y2 · · · yn)p spn(x, y)

=
1

∣

∣xm−j
i

∣

∣ |yn−b
a |

∏m
i=1

∏n
a=1 (1 − xiya)

·

∣

∣

∣

∣

∣

∣

∣

∣

y
j−1+χ j>np

n+1−i

· · ·

x
m+n−j+χ

j≤n
p

i−n

∣

∣

∣

∣

∣

∣

∣

∣

=
1

∏m
i=1

∏n
a=1 (1 − xiya)

·
∑

ζ⊆nm

(−1)|ζ| sσ(x) sτ (y)

where σ = (ζ + pr) and τ = (ζ ′ + pr) with r = r(ζ)
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Proof

For x = (x1, x2, . . . , xm), y = (y1, y2, . . . , yn) and p ∈ N

spn(x, y) =
∑

ζ⊆pn

sζ(x) spn/ζ(y) =
∑

T∈T pn
(m+n)

(x y)wgt (T )
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Proof

For x = (x1, x2, . . . , xm), y = (y1, y2, . . . , yn) and p ∈ N

spn(x, y) =
∑

ζ⊆pn

sζ(x) spn/ζ(y) =
∑

T∈T pn
(m+n)

(x y)wgt (T )

Ex: Typically, for m = 6, n = 4, p = 5, and order
1 < 2 < 3 < 4 < 5 < 6 < 4 < 3 < 2 < 1 we have

T =

1 2 3 5 4

2 4 4 4 3

5 4 4 2 2

3 2 1 1 1
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Proof

However, separating the blue entries from the red entries
and taking the complement of each column of the latter
with respect to 1 2 3 4 gives

1 2 3 5 4

2 4 4 4 3

5 4 4 2 2

3 2 1 1 1

⇔

1 2 3 5

2 4 4

5

·

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

·

1 1 2 3

2 3 3

4
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Proof

However, separating the blue entries from the red entries
and taking the complement of each column of the latter
with respect to 1 2 3 4 gives

1 2 3 5 4

2 4 4 4 3

5 4 4 2 2

3 2 1 1 1

⇔

1 2 3 5

2 4 4

5

·

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

·

1 1 2 3

2 3 3

4

Hence, setting y = y1y2 · · · yn we have

spn(x, y) = y
−p

∑

ζ⊆pn

sζ(x) sζ(y)
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Proof
It follows that

∑

ζ:ℓ(ζ′)≤p

sζ(x) sζ(y) = y
p spn(x, y)

= y
p

∣

∣

∣

∣

∣

∣

∣

∣

∣

ym+n−j+p
n+1−i

... ym+n−j
n+1−i

· · · · · · · · ·

xm+n−j+p
i−n

... xm+n−j
i−n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ym+n−j
n+1−i

... ym+n−j
n+1−i

· · · · · · · · ·

xm+n−j
i−n

... xm+n−j
i−n

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

yj−1
n+1−i

... yj−1+p
n+1−i

· · · · · · · · ·

xm+n−j+p
i−n

... xm+n−j
i−n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

yj−1
n+1−i

· · ·

xm+n−j
i−n

∣

∣

∣

∣

∣

∣

∣

∣

=
1

∣

∣xm−j
i

∣

∣ |yn−b
a |

∏m
i=1

∏n
a=1 (1 − xiya)

·

∣

∣

∣

∣

∣

∣

∣

∣

y
j−1+χ j>np

n+1−i

· · ·

x
m+n−j+χ

j≤n
p

i−n

∣

∣

∣

∣

∣

∣

∣

∣
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Lemma [K. 2008]

Let x = (x1, . . . , xm) and y = (y1, . . . , yn)

Then for each pair of integers p and q we have

1
∣

∣xm−j
i

∣

∣

∣

∣yn−j
i

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

yj−1
n+1−i

... χ
j>n−q

yj−1+q
n+1−i

· · · · · ·

χ
j≤n+p

xm+n−j+p
i−n

... xm+n−j
i−n

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

ζ⊆nm

(−1)|ζ| sζ+pr(ζ)(x) sζ′+qr(ζ)(y)

where the large determinant is (m + n) × (m + n), and is
partitioned after the nth row and nth column
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Lemma contd.

If ζ =

(

a1 a2 · · · ar

b1 b2 · · · br

)

∈ (nm)

with a1 < n, b1 < m and r = r(ζ), then

ζ + pr =

(

a1+p a2+p · · · ar+p

b1 b2 · · · br

)

ζ ′ + pr =

(

b1+q b2+q · · · br+q

a1 a2 · · · ar

)

with ar ≥ max{0,−p} and br ≥ max{0,−q}
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Lemma contd.

If ζ =

(

a1 a2 · · · ar

b1 b2 · · · br

)

∈ (nm)

with a1 < n, b1 < m and r = r(ζ), then

ζ + pr =

(

a1+p a2+p · · · ar+p

b1 b2 · · · br

)

ζ ′ + pr =

(

b1+q b2+q · · · br+q

a1 a2 · · · ar

)

with ar ≥ max{0,−p} and br ≥ max{0,−q}

Proof: By Laplace expansion
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Examples of key determinant

m = 3, n = 4, p = 2, q = 1
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Examples of key determinant

m = 3, n = 4, p = 2, q = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y4 y2
4 y3

4

... y5
4 y6

4 y7
4

1 y3 y2
3 y3

3

... y5
3 y6

3 y7
3

1 y2 y2
2 y3

2

... y5
2 y6

2 y7
2

1 y1 y2
1 y3

1

... y5
1 y6

1 y7
1

· · · · · · · · · · · · · · · · · · · · ·

x8
1 x7

1 x6
1 x5

1

... x2
1 x1 1

x8
2 x7

2 x6
2 x5

2

... x2
2 x2 1

x8
3 x7

3 x6
3 x5

3

... x2
3 x3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Examples of key determinant

m = 3, n = 4, p = −2, q = 1
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Examples of key determinant

m = 3, n = 4, p = −2, q = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y4 y2
4 y3

4

... y5
4 y6

4 y7
4

1 y3 y2
3 y3

3

... y5
3 y6

3 y7
3

1 y2 y2
2 y3

2

... y5
2 y6

2 y7
2

1 y1 y2
1 y3

1

... y5
1 y6

1 y7
1

· · · · · · · · · · · · · · · · · · · · ·

x4
1 x3

1 − −
... x2

1 x1 1

x4
2 x3

2 − −
... x2

2 x2 1

x4
3 x3

3 − −
... x2

3 x3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Examples of key determinant

m = 3, n = 4, p = 2, q = −1
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Examples of key determinant

m = 3, n = 4, p = 2, q = −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y4 y2
4 y3

4

... − y4
4 y5

4

1 y3 y2
3 y3

3

... − y4
3 y5

3

1 y2 y2
2 y3

2

... − y4
2 y5

2

1 y1 y2
1 y3

1

... − y4
1 y5

1

· · · · · · · · · · · · · · · · · · · · ·

x8
1 x7

1 x6
1 x5

1

... x2
1 x1 1

x8
2 x7

2 x6
2 x5

2

... x2
2 x2 1

x8
3 x7

3 x6
3 x5

3

... x2
3 x3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Examples of key determinant

m = 3, n = 4, p = −2, q = −1
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Examples of key determinant

m = 3, n = 4, p = −2, q = −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y4 y2
4 y3

4

... − y4
4 y5

4

1 y3 y2
3 y3

3

... − y4
3 y5

3

1 y2 y2
2 y3

2

... − y4
2 y5

2

1 y1 y2
1 y3

1

... − y4
1 y5

1

· · · · · · · · · · · · · · · · · · · · ·

x4
1 x3

1 − −
... x2

1 x1 1

x4
2 x3

2 − −
... x2

2 x2 1

x4
3 x3

3 − −
... x2

3 x3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Ex 1: m = 3, n = 4, p = 2, q = 1

Ex. π =

(

1 2 3 4 5 6 7

2 3 5 7 1 4 6

)
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Ex 1: m = 3, n = 4, p = 2, q = 1

Ex. π =

(

1 2 3 4 5 6 7

2 3 5 7 1 4 6

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y4 y2
4 y3

4

... y5
4 y6

4 y7
4

1 y3 y2
3 y3

3

... y5
3 y6

3 y7
3

1 y2 y2
2 y3

2

... y5
2 y6

2 y7
2

1 y1 y2
1 y3

1

... y5
1 y6

1 y7
1

· · · · · · ·

x8
1 x7

1 x6
1 x5

1

... x2
1 x1 1

x8
2 x7

2 x6
2 x5

2

... x2
2 x2 1

x8
3 x7

3 x6
3 x5

3

... x2
3 x3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∼ −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y4 y2
4 y5

4 y7
4

y3 y2
3 y5

3 y7
3

y2 y2
2 y5

2 y7
2

y1 y2
1 y5

1 y7
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

x8
1 x5

1 x1

x8
2 x5

2 x2

x8
3 x5

3 x3

∣

∣

∣

∣

∣

∣

∣

∣

= − s4311(y)
∣

∣y4−b
a

∣

∣ · s641(x)
∣

∣x3−j
i

∣

∣
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Ex 1: m = 3, n = 4, p = 2, q = 1

Ex. π =

(

1 2 3 4 5 6 7

2 3 5 7 1 4 6

)

(−1)π = (−1)|ζ| = −1

ζ = (4, 2, 1) =

(

3 0

2 0

)

∗ ∗

∗ ∗ σ =

(

3+2 0 + 2

2 0

)

=

(

5 2

2 0

)

= (6, 4, 1)

ζ ′ = (3, 2, 1, 1) =

(

2 0

3 0

)

∗

∗ τ =

(

2+1 0+1

3 0

)

=

(

3 1

3 0

)

= (4, 3, 1, 1)
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Ex 2: m = 3, n = 4, p = −2, q = −1

Ex. π =

(

1 2 3 4 5 6 7

3 4 6 7 1 2 5

)
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Ex 2: m = 3, n = 4, p = −2, q = −1

Ex. π =

(

1 2 3 4 5 6 7

3 4 6 7 1 2 5

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y4 y2
4 y3

4

... − y4
4 y5

4

1 y3 y2
3 y3

3

... − y4
3 y5

3

1 y2 y2
2 y3

2

... − y4
2 y5

2

1 y1 y2
1 y3

1

... − y4
1 y5

1

· · · · · · ·

x4
1 x3

1 − −
... x2

1 x1 1

x4
2 x3

2 − −
... x2

2 x2 1

x4
3 x3

3 − −
... x2

3 x3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∼ −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y4
2 y3

4 y4
4 y5

4

y2
3 y3

3 y4
3 y5

3

y2
2 y3

2 y4
2 y5

2

y2
1 y3

1 y4
1 y5

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

x4
1 x3

1 x2
1

x4
2 x3

2 x2
2

x4
3 x3

3 x2
3

∣

∣

∣

∣

∣

∣

∣

∣

= − s2222(y)
∣

∣y4−b
a

∣

∣ · s222(x)
∣

∣x3−j
i

∣

∣
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Ex 2: m = 3, n = 4, p = −2, q = −1

Ex. π =

(

1 2 3 4 5 6 7

3 4 6 7 1 2 5

)

(−1)π = (−1)|ζ| = +1

ζ = (4, 4, 2) =

(

3 2

2 1

)

∗ ∗

∗ ∗ σ =

(

3−2 2−2

2 1

)

=

(

1 0

2 1

)

= (2, 2, 2)

ζ ′ = (3, 3, 2, 2) =

(

2 1

3 2

)

∗

∗ τ =

(

2−1 1−1

3 2

)

=

(

1 0

3 2

)

= (2, 2, 2, 2)
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Proof of second part of Theorem

Just note that for p ≥ 0

∣

∣

∣

∣

∣

∣

∣

∣

y
j−1+χ j>np

n+1−i

· · ·

x
m+n−j+χ

j≤n
p

i−n

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

yj−1
n+1−i

... yj−1+p
n+1−i

· · · · · ·

xm+n−j+p
i−n

... xm+n−j
i−n

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

yj−1
n+1−i

... χ
j>n−p

yj−1+p
n+1−i

· · · · · ·

χ
j≤n+p

xm+n−j+p
i−n

... xm+n−j
i−n

∣

∣

∣

∣

∣

∣

∣

∣

∣

Then use the Lemma with p = q ≥ 0
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Row length restricted Cauchy formula

For all x = (x1, x2, . . . ), y = (y1, y2, . . . ) and p ≥ 0

∑

λ:ℓ(λ′)≤p

sλ(x) sλ(y)

=
1

∏m
i=1

∏n
a=1 (1 − xiya)

·
∑

ζ

(−1)|ζ| sζ+pr(x) sζ′+pr(y)

=
∑

λ

sλ(x) sλ(y) ·
∑

ζ

(−1)|ζ| sζ+pr(x) sζ′+pr(y)

SLC61-2008 – p. 98



Row length restricted Cauchy formula

For all x = (x1, x2, . . . ), y = (y1, y2, . . . ) and p ≥ 0

∑

λ:ℓ(λ′)≤p

sλ(x) sλ(y)

=
1

∏m
i=1

∏n
a=1 (1 − xiya)

·
∑

ζ

(−1)|ζ| sζ+pr(x) sζ′+pr(y)

=
∑

λ

sλ(x) sλ(y) ·
∑

ζ

(−1)|ζ| sζ+pr(x) sζ′+pr(y)

This expresses the row length restricted series as a
product of the unrestricted series times a correction factor
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Column length restricted Cauchy formula

Using the involutions ωx : sλ(x) 7→ sλ′(x) and
ωy : sλ(y) 7→ sλ′(y) for all λ, either separately or

together, we obtain three more restricted formula.
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Column length restricted Cauchy formula

Using the involutions ωx : sλ(x) 7→ sλ′(x) and
ωy : sλ(y) 7→ sλ′(y) for all λ, either separately or

together, we obtain three more restricted formula.

Using ωxωy we find that for all x, y and for all p ≥ 0
∑

λ:ℓ(λ)≤p

sλ(x) sλ(y)

=
∑

λ

sλ(x) sλ(y) ·
∑

ζ

(−1)|ζ| s(ζ+pr)′(x) s(ζ′+pr)′(y)

=
∑

λ

sλ(x) sλ(y) ·
∑

η

(−1)|η| sη−pr(x) sη′−pr(y)

where the sum over η is restricted to those η such that
both η − pr and η′ − pr are partitions
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Column length restricted Cauchy formula

Using our Lemma with both p and q set equal to −p, with
p ≥ 0 gives

Theorem Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn)

with m,n ≥ 1. Then for all p ≥ 0 we have

∑

λ:ℓ(λ)≤p

sλ(x) sλ(y) =
1

∣

∣xm−j
i

∣

∣ |yn−b
a |

∏m
i=1

∏n
a=1 (1 − xiya)

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

yj−1
n+1−i

... χ
j>n+p

yj−1−p
n+1−i

· · · · · ·

χ
j≤n−p

xm+n−j−p
i−n

... xm+n−j
i−n

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Generalisation to the supersymmetric case

All our restricted row and column length formula involving
symmetric functions may be generalised to the case of
supersymmetric functions
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Generalisation to the supersymmetric case

All our restricted row and column length formula involving
symmetric functions may be generalised to the case of
supersymmetric functions

Characters of Lie groups and algebras may be expressed
in terms of symmetric Schur functions

Characters of Lie supergroups and superalgebras may be
expressed in terms of supersymmetric Schur functions
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Supersymmetric functions

Let m, n be fixed positive integers

Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn)

A function f(x/y) is said to be supersymmetric if it is

symmetric under permutations of the xi

symmetric under permutations of the yj

independent of t if xi = t = −yj for any i and j
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Supersymmetric functions

Let m, n be fixed positive integers

Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn)

A function f(x/y) is said to be supersymmetric if it is

symmetric under permutations of the xi

symmetric under permutations of the yj

independent of t if xi = t = −yj for any i and j

For each partition λ the supersymmetric Schur function
sλ(x/y) may be defined by

sλ(x/y) =
∑

µ

sµ(x) sλ′/µ′(y)
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Semistandard supertableaux

Let T λ(m/n) be the set of gl(m/n)-tableaux T obtained
by filling the boxes of F λ with entries
from {1 < 2 < . . . < n < 1′ < 2′ < . . . < n′} such that
unprimed entries

T1 weakly increase across each row from left to right

T2 stricly increase down each column from top to bottom
and primed entries

T’1 strictly increase across each row from left to right

T’2 weakly increase down each column from top to bottom
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Semistandard supertableaux

Let T λ(m/n) be the set of gl(m/n)-tableaux T obtained
by filling the boxes of F λ with entries
from {1 < 2 < . . . < n < 1′ < 2′ < . . . < n′} such that
unprimed entries

T1 weakly increase across each row from left to right

T2 stricly increase down each column from top to bottom
and primed entries

T’1 strictly increase across each row from left to right

T’2 weakly increase down each column from top to bottom

Ex: m = 4, n = 6, λ = (5, 4, 2),
1 3 3 3′ 4′

4 1′ 2′ 3′

1′ 5′
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Supersymmetric Schur function

Since sλ(x/y) =
∑

µ

sµ(x) sλ′/µ′(y)

with sµ(x) =
∑

T∈T µ(m)

xwgt (T )

and sλ′/µ′(y) =
∑

T∈T λ′/µ′
(n)

ywgt (T )

we have sλ(x/y) =
∑

T∈T λ(m/n)

(x y)wgt (T )
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Supersymmetric Schur function

Since sλ(x/y) =
∑

µ

sµ(x) sλ′/µ′(y)

with sµ(x) =
∑

T∈T µ(m)

xwgt (T )

and sλ′/µ′(y) =
∑

T∈T λ′/µ′
(n)

ywgt (T )

we have sλ(x/y) =
∑

T∈T λ(m/n)

(x y)wgt (T )

Ex: m = 4, n = 6, λ = (5, 4, 2)

1 3 3 3′ 4′

4 1′ 2′ 3′

1′ 5′

(x y)wgt (T ) = x1 x2
3 x4 y′

1
2
y′

2 y′
3
2
y′

4 y′
5
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Littlewood-Richardson coefficients

Let x = (x1, . . . , xm) with m ∈ N

In Λm the ring of symmetric polynomial functions
sλ(x) sµ(x) =

∑

ν

cν
λµ sν(x)

where the coefficients cν
λµ are non-negative integers –

the Littlewood-Richardson coefficients
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Littlewood-Richardson coefficients

Let x = (x1, . . . , xm) with m ∈ N

In Λm the ring of symmetric polynomial functions
sλ(x) sµ(x) =

∑

ν

cν
λµ sν(x)

where the coefficients cν
λµ are non-negative integers –

the Littlewood-Richardson coefficients

Let x = (x1, . . . , xm), y = (y1, . . . , yn) with m,n ∈ N

In Λ(m/n) the ring of supersymmetric polynomial
functions

sλ(x/y) sµ(x/y) =
∑

ν

cν
λµ sν(x/y)

where the same Littlewood-Richardson coefficients occur.
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Constraints on supersymmetric Schur functions

Notice that sν(x) = sν(x1, . . . , xm) = 0 if λ′
1 > m while

sν(x/y) = sν(x1, . . . , xm/y1, . . . , yn) = 0 if λ′
n+1 > m
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Constraints on supersymmetric Schur functions

Notice that sν(x) = sν(x1, . . . , xm) = 0 if λ′
1 > m while

sν(x/y) = sν(x1, . . . , xm/y1, . . . , yn) = 0 if λ′
n+1 > m

that is sν(x) 6= 0 iff F ν lies within a horizontal strip of
depth m

Ex: m = 4 F ν =

and sν(x/y) 6= 0 iff F ν lies within a hook with arm
width m and leg width n

Ex: m = 2, n = 3 F ν =
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Supersymmetric row and column restricted identities

With respect to the bases sλ(x) and sλ(x/y) the
rings Λn and Λ(m/n) coincide modulo the horizontal
strip and hook shape restrictions on λ

It follows that any identity expressed in terms of Schur
functions sλ(x) takes exactly the same form in terms of
supersymmetric Schur functions sλ(x/y)

However, the generating functions for Schur function
series require amendment for the corresponding
supersymmetric Schur function series
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Supersymmetric Schur function series
∑

λ

sλ(x/y)

=

∏

i

∏

a (1 + xiya)
∏

i(1 − xi)
∏

j<k(1 − xj xk)
∏

a(1 − ya)
∏

b<c(1 − yb yc)

∑

λ:ℓ(λ′)≤p

sλ(x/y)

=

∏

i

∏

a (1 + xiya)
∑

µ∈Pp
(−1)[|µ|−r(µ)(p−1)]/2 sµ(x/y)

∏

i(1 − xi)
∏

j<k(1 − xj xk)
∏

a(1 − ya)
∏

b<c(1 − yb yc)

∑

λ:ℓ(λ)≤p

sλ(x/y)

=

∏

i

∏

a (1 + xiya)
∑

µ∈P−p
(−1)[|µ|−r(µ)(p−1)]/2 sµ(x/y)

∏

i(1 − xi)
∏

j<k(1 − xj xk)
∏

a(1 − ya)
∏

b<c(1 − yb yc)
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Supersymmetric Schur function series

∑

λ even

sλ(x/y) =

∏

i

∏

a (1 + xiya)
∏

j≤k(1 − xj xk)
∏

b<c(1 − yb yc)

∑

λ even :ℓ(λ′)≤2p

sλ(x/y)

=

∏

i

∏

a (1 + xiya)
∑

µ∈P2p+1
(−1)[|µ|−r(µ)(2p)]/2 sµ(x/y)

∏

j≤k(1 − xj xk)
∏

b<c(1 − yb yc)

∑

λ′ even :ℓ(λ)≤2p

sλ(x/y)

=

∏

i

∏

a (1 + xiya)
∑

µ∈P−2p−1
(−1)[|µ|−r(µ)(2p)]/2 sµ(x/y)

∏

j<k(1 − xj xk)
∏

b≤c(1 − yb yc)
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Supersymmetric Schur function series

∑

λ′ even

sλ(x/y) =

∏

i

∏

a (1 + xiya)
∏

j<k(1 − xj xk)
∏

b≤c(1 − yb yc)

∑

λ′ even :ℓ(λ′)≤p

sλ(x/y)

=

∏

i

∏

a (1 + xiya)
∑

µ∈Pp−1:r(µ)even (−1)[|µ|−r(µ)p]/2 sµ(x/y)
∏

j<k(1 − xj xk)
∏

b≤c(1 − yb yc)

∑

λ even :ℓ(λ)≤p

sλ(x/y)

=

∏

i

∏

a (1 + xiya)
∑

µ∈P−p+1:r(µ)even (−1)[|µ|−r(µ)p]/2 sµ(x/y)
∏

j≤k(1 − xj xk)
∏

b<c(1 − yb yc)
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Supersymmetric form of the Cauchy identities

Let x = (x1, . . . , xm), y = (y1, . . . , yn), z = (z1, . . . , zd),
w = (w1, . . . , we) with m,n, d, e ∈ N, then

∑

λ

sλ(x/y) sλ(z/w) =

∏

j,l (1 + xi wl)
∏

j,k (1 + yj zk)
∏

i,k (1 − xi zk)
∏

j,l (1 − yj wl)
∑

λ:ℓ(λ′)≤p

sλ(x/y) sλ(z/w) =
∑

λ

sλ(x/y) sλ(z/w) ·

∑

ζ

(−1)|ζ| sζ+pr(x/y) sζ′+pr(z/w)

∑

λ:ℓ(λ)≤p

sλ(x/y) sλ(z/w) =
∑

λ

sλ(x/y) sλ(z/w) ·

∑

η

(−1)|η| sη−pr(x/y) sη′−pr(z/w)
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Dual pairs of Lie supergroups

Howe’s original work on dual pairs encompassed Lie
supergroups, such as GL(m/n) and OSp(m/n)

Thus all our supersymmetric identities should be placed
within this context

They may be derived from the following dual pairs [Cheng
and Zhang 04, Kwon 08]

SLC61-2008 – p. 112



Dual pairs of Lie supergroups

Howe’s original work on dual pairs encompassed Lie
supergroups, such as GL(m/n) and OSp(m/n)

Thus all our supersymmetric identities should be placed
within this context

They may be derived from the following dual pairs [Cheng
and Zhang 04, Kwon 08]

Ex: Dual pairs supercentralising one another in the given
module

S(Cm/n ⊗ C
d/e) : GL(m/n) × GL(d/e)

Λ(Cm/n ⊗ C
d/e) : GL(m/n) × GL(d/e)

S(Cm/n ⊗ C
d) : OSp(m/n) × O(d)

S(Cm/n ⊗ C
d) : OSp(m/n) × Sp(d)
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Jacobi-Trudi identities

So far we have discussed infinite series of Schur
functions, including their expression in determinantal form

These have been used to provide generalisations of
formulae of both Littlewood and Cauchy

All the formulae have arisen from the expression of a
Schur function as ratio of two alternants

It is natural to ask if similar results can be obtained from
the expression of a Schur function in Jacobi-Trudi form
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Jacobi-Trudi identities

For partitions λ and µ, we write µ ⊆ λ if µi ≤ λi for all i.

If µ ⊆ λ then the skew Young diagram F λ/µ is defined to
be F λ\F µ.

Ex: F 5443/431 =
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Jacobi-Trudi identities

For partitions λ and µ, we write µ ⊆ λ if µi ≤ λi for all i.

If µ ⊆ λ then the skew Young diagram F λ/µ is defined to
be F λ\F µ.

Ex: F 5443/431 =

Schur functions:

sλ(x) = |hλi−i+j(x) | = | sλi−i+j(x) | ,
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Jacobi-Trudi identities

For partitions λ and µ, we write µ ⊆ λ if µi ≤ λi for all i.

If µ ⊆ λ then the skew Young diagram F λ/µ is defined to
be F λ\F µ.

Ex: F 5443/431 =

Schur functions:

sλ(x) = |hλi−i+j(x) | = | sλi−i+j(x) | ,

Skew Schur functions:

sλ/µ(x) =
∣

∣hλi−µj−i+j(x)
∣

∣ =
∣

∣ sλi−µj−i+j(x)
∣

∣ ,
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Bressoud-Wei identities

Bressoud and Wei [1992] For all integers t ≥ −1:

2(t−|t|)/2
∣

∣ hλi−i+j(x) + (−1)(t+|t|)/2 hλi−i−j+1−t(x)
∣

∣

=
∑

σ∈Pt

(−1)[|σ|+r(σ)(|t|−1)]/2 sλ/σ(x)
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Bressoud-Wei identities

Bressoud and Wei [1992] For all integers t ≥ −1:

2(t−|t|)/2
∣

∣ hλi−i+j(x) + (−1)(t+|t|)/2 hλi−i−j+1−t(x)
∣

∣

=
∑

σ∈Pt

(−1)[|σ|+r(σ)(|t|−1)]/2 sλ/σ(x)

Hamel and K [2008] For all integers t and all q:

|hλi−i+j(x) + q χj>−t hλi−i−j+1−t(x) |

=
∑

σ∈Pt

(−1)[|σ|−r(σ)(t+1)]/2 qr(σ) sλ/σ(x)
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Algebraic proof

|hλi−i+j(x) + q χj>−t hλi−i−j+1−t(x) |

=
n

∑

r=0

∑

κ

qr
∣

∣ hλi−i+j−κj
(x)

∣

∣

=
∑

σ∈Pt

(−1)(jr−1)+···+(j2−1)+(j1−1) qr
∣

∣ hλi−i+j−σj
(x)

∣

∣
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Algebraic proof

|hλi−i+j(x) + q χj>−t hλi−i−j+1−t(x) |

=
n

∑

r=0

∑

κ

qr
∣

∣ hλi−i+j−κj
(x)

∣

∣

=
∑

σ∈Pt

(−1)(jr−1)+···+(j2−1)+(j1−1) qr
∣

∣ hλi−i+j−σj
(x)

∣

∣

κj = 2j−1+t for j ∈ {j1, j2, . . . , jr} and κj = 0 otherwise

with n ≥ j1 > j2 > · · · > jr ≥ 1 − χt<0t

σ =

(

j1 − 1 + t j2 − 1 + t · · · jr − 1 + t

j1 − 1 j2 − 1 · · · jr − 1

)

∈ Pt

r = r(σ)
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Combinatorial proof

Lattice path interpretation of determinant

|hλi−i+j(x) + q χj>−t hλi−i−j+1−t(x) |

=
∑

π∈Sn

(−1)π

n
∏

i=1

(

hλi−i+π(i)(x) + q χπ(i)>−t hλi−i−π(i)+1−t(x)
)
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Combinatorial proof

Lattice path interpretation of determinant

|hλi−i+j(x) + q χj>−t hλi−i−j+1−t(x) |

=
∑

π∈Sn

(−1)π

n
∏

i=1

(

hλi−i+π(i)(x) + q χπ(i)>−t hλi−i−π(i)+1−t(x)
)

Each π defines a set of n-tuples of north-east paths

For i = 1, 2, . . . , n the ith path goes

from Pπ(i) = (n + 1− π(i), 1) or P ′
π(i) = (n + t + π(i), 1)

to Qi = (n + 1 + λi − i, n)

each step east at height k carries weight xk

each path from P ′
π(i) (rather than Pπ(i)) carries weight q
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An n-tuple of lattice paths

Ex.1
n = 4, t = 2

λ = (6, 4, 4, 2)
π =

(

1 2 3 4

3′ 1′ 2 4

)

Contribution (−1)2+0 q2 (x2) (1) (x1x
2
3) (x3x4)
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An n-tuple of lattice paths

Ex.1
n = 4, t = 2

λ = (6, 4, 4, 2)
π =

(

1 2 3 4

3′ 1′ 2 4

)

Contribution (−1)2+0 q2 (x2) (1) (x1x
2
3) (x3x4)

P1

1 2 3 4 5 6 8 9 10 1170

Q4

x1

x3

x4

x3x3

x2

Q3 Q2 Q1

P ′
1 P ′

2 P ′
3 P ′

4P3P4 P2
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Combinatorial proof contd.

∑

π∈Sn

(−1)π

n
∏

i=1

(

hλi−i+π(i)(x) + q χπ(i)>−t hλi−i−π(i)+1−t(x)
)
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Combinatorial proof contd.

∑

π∈Sn

(−1)π

n
∏

i=1

(

hλi−i+π(i)(x) + q χπ(i)>−t hλi−i−π(i)+1−t(x)
)

Path from Pπ(i) to Qi contributes to hλi−i+π(i)(x)

Path from P ′
π(i) to Qi contributes to hλi−i−π(i)+1−t(x)

Sign changing involution removes contributions from
intersecting paths

All paths in n-tuple non-intersecting implies π =
(

1 2 · · · r r + 1 r + 2 · · · n

π(1) π(2) · · · π(r) π(r + 1) π(r + 2) · · · π(n)

)

with π(1) > π(2) > · · · > π(r) for P ′
π(i)Qi paths

and π(r + 1) < π(r + 2) < · · · < π(n) for Pπ(i)Qi paths
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Combinatorial proof contd.

Eastward distance Pi to Qi = λi for i = 1, . . . , n

Let distance Pi to P ′
π(i) = σi for i = 1, . . . , r

Let distance Pi to Pπ(i) = σi for i = r + 1, . . . , n

Then, in Frobenius notation

σ =

(

π(1) − 1 + t π(2) − 2 + t · · · π(r) − r + t

π(1) − 1 π(2) − 2 · · · π(r) − r

)
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Combinatorial proof contd.

Eastward distance Pi to Qi = λi for i = 1, . . . , n

Let distance Pi to P ′
π(i) = σi for i = 1, . . . , r

Let distance Pi to Pπ(i) = σi for i = r + 1, . . . , n

Then, in Frobenius notation

σ =

(

π(1) − 1 + t π(2) − 2 + t · · · π(r) − r + t

π(1) − 1 π(2) − 2 · · · π(r) − r

)

Now re-interpret ith path monomial as contribution
to ith row of an sλ/σ(x) semistandard tableau, so that
our determinant reduces to
∑

σ∈Pt
(−1)(π(r)−1)+···+(π(2)−1)+(π(1)−1) qr

∣

∣hλi−i+j−σj
(x)

∣

∣

as required
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Semistandard skew tableaux
Each n-tuple of non-intersecting paths defines a
semistandard skew tableaux

Ex.1
n = 4, t = 2,

λ = (6, 4, 4, 2)
π =

(

1 2 3 4

3′ 1′ 2 4

)

1

2

333

4

P4 P3 P2 P1 P ′
1 P ′

2 P ′
3 P ′

4

Q1Q2Q3Q4

0 0 0 0 0 2
0 0 0 0
0 1 3 3
3 4
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Semistandard skew tableaux
Each n-tuple of non-intersecting paths defines a
semistandard skew tableaux

Ex.1
n = 4, t = 2,

λ = (6, 4, 4, 2)
π =

(

1 2 3 4

3′ 1′ 2 4

)

1

2

333

4

P4 P3 P2 P1 P ′
1 P ′

2 P ′
3 P ′

4

Q1Q2Q3Q4

0 0 0 0 0 2
0 0 0 0
0 1 3 3
3 4

µ = (5, 4, 1) =

(

4 2

2 0

)

∈ P2
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An n-tuple of lattice paths

Ex.2
n = 4, t = −2

λ = (5, 4, 4, 3, 3, 2)
π =

(

1 2 3 4 5 6

5′ 3′ 1 2 4 6

)

Contribution (−1)4+2 q2 (x1x6) (x1x2) (x2
3) (x4) (x3x6) (x1x5)
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An n-tuple of lattice paths

Ex.2
n = 4, t = −2

λ = (5, 4, 4, 3, 3, 2)
π =

(

1 2 3 4 5 6

5′ 3′ 1 2 4 6

)

Contribution (−1)4+2 q2 (x1x6) (x1x2) (x2
3) (x4) (x3x6) (x1x5)

1 2 3 4 5 6 8 9 10 1170

Q1Q2Q3Q4Q5Q6

P ′
6P ′

5P ′
4P ′

3P1P2P3P4P5P6

x3 x3x3

x2

x1x1

x4

x1

x5

x6 x6
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Semistandard skew tableaux

Ex.2
n = 4, t = −2,

λ = (5, 4, 4, 3, 3, 2)
π =

(

1 2 3 4 5 6

5′ 3′ 1 2 4 6

)

Q1Q2Q3Q4Q5Q6

P ′
6P ′

5P ′
4P ′

3P1P2P3P4P5P6

3 33

2

11

4

1

5

6 6

0 0 0 1 6
0 0 1 2
0 0 3 3
0 0 4
0 3 6
1 5
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Semistandard skew tableaux

Ex.2
n = 4, t = −2,

λ = (5, 4, 4, 3, 3, 2)
π =

(

1 2 3 4 5 6

5′ 3′ 1 2 4 6

)

Q1Q2Q3Q4Q5Q6

P ′
6P ′

5P ′
4P ′

3P1P2P3P4P5P6

3 33

2

11

4

1

5

6 6

0 0 0 1 6
0 0 1 2
0 0 3 3
0 0 4
0 3 6
1 5

µ = (3, 2, 2, 2, 1) =

(

2 0

4 2

)

∈ P−2
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Cauchy-type Jacobi-Trudi expansion

Theorem [Hamel and K, 2008]

Let x = (x1, . . . , xm) and y = (y1, . . . , yn)

Let λ and µ have lengths ℓ(λ) ≤ m and ℓ(µ) ≤ n

Then for each pair of integers p and q we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

hµn+1−i+i−j(y)
... χ

j>n−q
hµn+1−i+i−j−q(y)

· · · · · ·

χ
j≤n+p

hλi−n−i+j−p(x)
... hλi−n−i+j(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

ζ⊆nm

(−1)|ζ| sλ/(ζ+pr(ζ))(x) sµ/(ζ′+qr(ζ))(y)
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Cauchy-type extension

where the determinant is (m + n) × (m + n), and is
partitioned after the nth row and nth column

and if ζ =

(

a1 a2 · · · ar

b1 b2 · · · br

)

∈ (nm)

with a1 < n, b1 < m and r = r(ζ), then

ζ + pr =

(

a1+p a2+p · · · ar+p

b1 b2 · · · br

)

ζ ′ + qr =

(

b1+q b2+q · · · br+q

a1 a2 · · · ar

)

with ar ≥ max{0,−p} and br ≥ max{0,−q}
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Example

m = 3, n = 4, p = −2, q = −1 λ = (5, 3, 2), µ = (4, 3, 2, 2)

Let {k} = hk(x) and {k} = hk(y) for all integers k
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Example

m = 3, n = 4, p = −2, q = −1 λ = (5, 3, 2), µ = (4, 3, 2, 2)

Let {k} = hk(x) and {k} = hk(y) for all integers k
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∣

∣

{2} {1} {0} −
... − − −

{3} {2} {1} {0}
... − − −

{5} {4} {3} {2}
... − {1} {0}

{7} {6} {5} {4}
... − {3} {2}

· · · · · · · · · · · · · · · · · · · · ·

{3} {4} − −
... {5} {6} {7}

{0} {1} − −
... {2} {3} {4}

− − − −
... {0} {1} {2}
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∣
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∣

∣

∣

∣
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∣
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SLC61-2008 – p. 126



Typical term in Laplace expansion

π =

(

1 2 3 4 5 6 7

1 3 4 6 2 5 7

)

(−1)π = (−1)0+1+1+2 = +1
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Typical term in Laplace expansion

π =

(

1 2 3 4 5 6 7

1 3 4 6 2 5 7

)

(−1)π = (−1)0+1+1+2 = +1
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∣

∣
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{2} {0} − −

{3} {1} {0} −

{5} {3} {2} {1}

{7} {5} {4} {3}
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∣

×

∣

∣

∣

∣

∣

∣

∣

∣

{4} {5} {7}

{1} {2} {4}

− {0} {2}
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∣

∣

∣

∣

∣

∣
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Typical term in Laplace expansion

π =

(

1 2 3 4 5 6 7

1 3 4 6 2 5 7

)

(−1)π = (−1)0+1+1+2 = +1
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{2} {0} − −

{3} {1} {0} −

{5} {3} {2} {1}

{7} {5} {4} {3}
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∣
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×

∣
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∣
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∣

∣
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{4} {5} {7}

{1} {2} {4}

− {0} {2}

∣

∣

∣

∣

∣

∣

∣

∣

(ζ ′
n, . . . , ζ ′

1 | ζ1, . . . , ζm) =

(1−1, 3−2, 4−3, 6−4 | 5−2, 6−5, 7−7) = (0, 1, 1, 2 | 3, 1, 0)

ζ = (3, 1, 0) =

(

5 − 2 − 1

6 − 4 − 1

)

=

(

2

1

)

= (−1)|ζ| = +1

r(ζ) = 1
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Determination of ζ + pr and ζ ′ + qr

ζ = (310) =

(

2

1

)

r = r(ζ) = 1 p = −2 ∗ ∗

=⇒ ζ + pr = (310) − (200) = (110) =

(

0

1

)

ζ ′ = (2110) =

(

1

2

)

r = r(ζ) = 1 q = −1
∗

=⇒ ζ ′ + qr = (2110) − (1000) = (1110) =

(

0

2

)
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Identification of constituent determinants

Recall that λ = (532) and µ = (4322)

while ζ + pr = (110) and ζ ′ + qr) = (1110)

∣

∣

∣

∣

∣

∣

∣

∣

{4} {5} {7}

{1} {2} {4}

− {0} {2}

∣

∣

∣

∣

∣

∣

∣

∣

= s532/110(x)
∗
∗
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Identification of constituent determinants

Recall that λ = (532) and µ = (4322)

while ζ + pr = (110) and ζ ′ + qr) = (1110)
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= s4322/1110(y)

∗
∗
∗
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Conclusions

Both the classical Schur function series of Littlewood and
the Cauchy identity may be restricted with respect to row
lengths or column lengths through determinantal formulae

In each case the correction factors to the original
multiplicative formulae may be expressed as a signed
sum of Schur functions or pairs of Schur functions
specified by partitions having a particularly simple form in
Frobenius notation

Each row or column restricted Schur function series is
nothing other than the character of some (rather simple)
finite or infinite-dimensional irrep of a classical group
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Conclusions
To evaluate these characters (and thereby derive the
restricted Schur function series) use may be made of
Howe dual pairs with respect to spin and metaplectic
representations of (the covering groups) of the orthogonal
and symplectic groups

All the Schur function identities may be extended to the
case of supersymmetric Schur functions

The dual pair approach enables many other characters to
be evaluated, although in doing so it is usually necessary
to invoke classical group modification rules
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