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Introduction

Every �nite lattice L with operations ∧ and ∨ has a set representation by
the following construction.

L has two generating systems:

J(L) =set of ∨−irreducibles is a ∨−generating system

M(L) =set of ∧−irreducibles is a ∧−generating system

Every element x ∈ L is represented as

x' (A,B)

with A ⊆ J(L),B ⊆ M(L) and A = {a ∈ J(L) | a ≤ x} = x↓, the down-set of x,
B = {b ∈M(L) | x≤ b}= x↑, the up-set of x.
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Two closure systems:

The system of all down-sets is a closure system on J(L), the system of
all up-sets is a closure system on M(L).

Galois Connection:

A 7→ A′ := {b ∈M(L) |a≤ b for all a ∈ A} for A⊆ J(L)

B 7→ B′ := {a ∈ J(L) |a≤ b for all b ∈ B} for B⊆M(L)

Closure operators: X 7→ X ′′ for X ⊆ J(L), and Y 7→ Y ′′ for Y ⊆M(L).

If x' (A,B), then A and B are closed sets and A = x↓, B = x↑

The order of L is now represented by set inclusion

(A,B)≤ (X ,Y ) ⇐⇒ A⊆ X (⇐⇒ B⊇ Y )

the lattice operations are

(A,B)∧ (X ,Y ) = (A∩X ,(B∪Y )′′) and (A,B)∨ (X ,Y ) = ((A∪X)′′,B∩Y ).
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Application to partition lattices

Πn: Lattice of set partitions of an n−element set [1,n] = {1, . . . ,n} under
re�nement order. Πn is a graded lattice with rank function rk(π) = n−#π,
where #π denotes the number of blocks of π.

Join irreducibles:
partitions with exactly n−1 blocks, (rank = 1)
→ n−2 singleton blocks and one 2−block {k, l} with 1≤ k < l ≤ n
→ are in bijection with 2−subsets of n:
J(Πn)↔

([1,n]
2

)
(write

(n
2
)
for

([1,n]
2

)
)

Meet irreducibles:
partitions π with exactly 2 blocks, (rank = n−2)
→ one of them does not contain the element n (= the proper class)
→ are in bijection with non-empty subsets of {1, . . . ,n−1}:
M(Πn)↔ 2n−1−{ /0} (π = 531,42 ∈M(Π5) has proper class {2,4} ∈ 24)
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The relation ≤ in Πn for irreducibles is

{k, l} ≤ X ⇐⇒ |{k, l}∩X |= 0 mod 2

Galois connection:

A 7→ A′ = {X ∈ 2n−1 | |X ∩{k, l}|= 0 mod 2 for all {k, l} ∈ A} for A⊆ (n
2
)

B 7→ B′ = {{k, l} ∈ (n
2
) | |X ∩{k, l}|= 0 mod 2 for all X ∈ B} for B⊆ 2n−1

Closure operators:

1. For A⊆ (n
2
)
apply the rules

{{k, l},{l,m}} −→ {k,m} if k < l < m
{{k,m},{l,m}} −→ {k,m} if k < l < m
{{k, l},{k,m}} −→ {l,m} if k < l < m

closure under transitivity

if two edges are present, the third
must be present
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2. For B⊆ 2n−1 apply the rules
{X ,Y} −→ X ∪Y
{X ,Y} −→ X \Y

Closed subsets of 2n−1 are boolean algebras contained (as sublattices)
in 2n−1.

In a partition π ' (A,B) the set B is the boolean algebra de�ned by the
proper classes of π (= classes not containing n).
A can be seen as the graph of the equivalence relation de�ned by π.
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Example: π = 42,6531,87 ∈Π8

The graph A has #π connected
components (= blocks of π). A
can be reduced (by transitivity)
until we are left with a spanning
forest Â, and then we have #π =
n−|Â|.
The boolean algebra B can be
reduced (by boolean operations)
until we are left with a minimal
generating system B̂. Every pos-
sible B̂ has cardinality |B̂|= dimB.

π ' (A,B) = ({{1,3},{1,5},{1,6},{3,5},{3,6},{2,4},{5,6},{7,8}},
{ /0,{2,4},{1,3,5,6},{1,2,3,4,5,6}})

The improper class is 87 = {1, . . . ,8}\⋃
B.
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In our case:

({{1,3},{3,5},{5,6},{2,4},{7,8}},{{1,3,5,6},{1,2,3,4,5,6}}) and
({{1,3},{1,5},{1,6},{2,4},{7,8}},{{1,3,5,6},{2,4}}) are possible (Â, B̂).

The atoms of B are the proper classes of the partition π ' (A,B), hence
#π = |B̂|+1 = n−|Â| for every reduced representation (Â, B̂) of (A,B).

Consequence:
1. For every reduced representation (Â, B̂) we have |Â|+ |B̂|= n−1
2. rk(A,B) = |Â|
3. For every partition π = (A,B) we have rk(π)+dimB = n−1
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Application to noncrossing partitions

Example: (from Armstrong [1])

A noncrossing partition (nc-partition) and a (crossing) partition

A partition π of {1, . . . ,n} is noncrossing if there is no crossing in the
picture for π.
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Let NC(n) be the set of all nc-partitions on {1, . . . ,n}. The order of NC(n)
is inherited from the lattice Πn. With this order NC(n) is a lattice, but
not a sublattice of the partition lattice:

For example, the join of the nc-partitions 2,31,4 and 1,3,42 in Π4 is 31,42.

NC(n) is not distributive since NC(3) =

321

1,32

uuuuuuuuu

21,3 2,31

IIIIIIIII

1,2,3

vvvvvvvvv

HHHHHHHHH
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To obtain a set-representation of NC(n), we need

Join-irreducibles: Every join-irreducible partition is noncrossing, hence
join-irreducible nc-partitions are in bijection with

(n
2
)
as before.

Meet-irreducibles: A meet-irreducible partition is noncrossing if and only
if its proper class X ⊆ {1, . . . ,n−1} is a nonempty interval:

6 1

5 2

4

<<<<<<<<

<<<<<<<<

3

££££££££

££££££££

The interval [2,5] = {2, . . . ,5} de�nes (together with
its complement) the meet-irreducible nc-partition
5432,61 of {1, . . . ,6}.
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De�ne In−1 := {intervals 6= /0 of {1, . . . ,n− 1}} = {[i, j] |1 ≤ i ≤ j ≤ n− 1} ⊆ 2n−1

and observe:

|In−1|=
(

n
2

)

Every nc-partition is represented by a pair (P,Q) with P⊆ (n
2
)
, Q⊆ In−1 such

that
P = Q′ and Q = P′∩ In−1

and Q′′ = P′. This means:
The boolean algebra P′ is generated by the intervals contained in P′.
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For example, the (crossing) partition 31,42,5 has P = {{1,3},{2,4}} and
de�nes (on {1, . . . ,4}) the boolean algebra P′ = { /0,{1,3},{2,4}, [1,4]} which
is not generated by intervals.

The nc-partition 32,41,5 has P = {{1,4},{2,3}} and generates the boolean
algebra P′ = { /0, [2,3],{1,4}, [1,4]} which has the generating system
Q = P′∩ I4 = {[2,3], [1,4]} ⊆ I4

In other words:

• A partition π ' (A,B) ∈Πn is an nc-partition i� the boolean algebra B
has a generating system Y ⊆ In−1.

Remark: From the system Y a Dyck-word representing (A,B) can be
uniquely constructed, thus showing that the number of nc-partitions on
n points is Cn = 1

n+1
(2n

n
)
.
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The closure operators for nc-partitions

Every π ∈ NC(n) is represented by a pair (P,Q) with P ⊆ (n
2
)
and Q ⊆ In−1

such that

P is closed under transitivity and the �non-crossing rules�
{{i,k},{ j, l}} −→ {i, l} if i < j < k < l.

This results in four groups of rules for 2−subsets

Q is closed under the rules describing the boolean operations ∪,∩,\
restricted to intervals:

This again results in four groups of interval rules.
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Example: Given two nc-partitions on {1, . . . ,8}

π = 21,3,5,6,874 = (P,Q)

= ({{1,2},{4,7},{7,8},{4,8}},{[1,2], [3], [1,3], [5], [6], [5,6]})

ρ = 43,521,876 = (R,S)

= ({{1,2},{1,5},{2,5},{3,4},{6,7},{7,8},{6,8}},{[3,4], [1,5]})

π ∧ρ = (U,V ) ∈ (2(8
2),2I7) with U = P∩R = {{1,2},{7,8}}.

V = closure of Q∪S = {[1,2], [3], [1,3], [5], [6], [5,6], [3,4], [1,5]} under the interval
implications:
Ã V = {[1,2], [3], [1,3], [5], [6], [5,6], [3,4], [1,5], [3,6], [3,5], [4], [1,4], [1,6], [4,5], [4,6]}
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Û = {{1,2},{7,8}} (here it is unique), V̂ reduced for interval implications
can be chosen as {[1,2], [3], [4], [5], [6]} or as {[1,2], [3], [3,4], [3,5], [3,6]} or . . ..

Note that |Û |+ |V̂ |= n−1 = 8−1 = 7.

For the nc-partition π ∨ ρ take intersection in the second component
Q∩S = {[1,2], [3], [1,3], [5], [6], [5,6]}∩{[3,4], [1,5]}= /0, and π∨ρ => (in the lattice
NC(8)) follows.

π = 21,3,5,6,874 and ρ = 43,521,876 have join 521,87643 in Π8.
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Kreweras-complement

For every n de�ne two functions

φn : In−1 →
(

n
2

)
by [i, j] 7→

{
{i−1, j} if i > 1
{ j,n} if i = 1

ψn :
(

n
2

)
→ In−1 by {k, l} 7→ [k, l−1]

φn and ψn are bijections, but not mutually inverses.
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Rather we have φn ◦ψn({k, l}) =

{
{k−1, l−1} if k > 1
{l−1,n} if k = 1

ψn ◦φn([i, j]) =

{
[i−1, j−1] if i > 1
[ j,n−1] if i = 1

are counterclockwise rotations of the circle of length n, compatible with
nc-partitions. When applied to 2−subsets {i, j} or to intervals [i, j] with
i 6= 1 this is obvious. For the rest consider the interval [1,4] on {1, . . . ,6}.
It represents the meet-irreducible partition 4321,65

6 1
<<

<<
<<

<<

<<
<<

<<
<<

5

££££££££

££££££££

2

4 3

££££££££

££££££££

is transformed by ψ6 ◦φ6 to [4,5]:

6 1
<<

<<
<<

<<

<<
<<

<<
<<

5 2

4

<<<<<<<<

<<<<<<<<

3

££££££££

££££££££

which is in fact the appropriate description of the rotated partition.

The same applies to 2−subsets: {1,k}Ã [1,k−1] Ã {k−1,n}.
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φn and ψn de�ne a bijection Kn : In−1]
(n

2
)−→ In−1]

(n
2
)
by the scheme

In−1 φn

""FFFFFFFFFFFFFFFFFFFFFFFF
In−1

Kn :
⊎ ⊎

(n
2
) ψn

<<xxxxxxxxxxxxxxxxxxxxxxxx (n
2
)

with the properties K 2
n = φn ◦ψn∪ψn ◦φn and K 2n

n = id. It is clear that
� (P,Q) ∈ NC(n) ⇐⇒ (Kn(Q),Kn(P)) ∈ NC(n)
� (P,Q)≤ (R,S) ⇐⇒ (Kn(Q),Kn(P))≥ (Kn(S),Kn(R))
� (P,Q) ∈ NC(n) =⇒ Kn(P)∩Q = /0 and P∩Kn(Q) = /0
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Theorem: For every nc-partition (P,Q) ∈ NC(n) the Kreweras-complement
is the nc-partition Kn(P,Q) := (Kn(Q),Kn(P)). This means

1. (P,Q)∧ (Kn(Q),Kn(P)) =⊥
(P,Q)∨ (Kn(Q),Kn(P)) =>

2. The nc-partition (Kn(Q),Kn(P)) is the unique solution of the equation

perm(P,Q)◦ perm(Kn(Q),Kn(P)) = (1, . . . ,n)

perm(P,Q) is the permutation that consists of the cycles de�ned by the
blocks of the partition π = (P,Q) (written in ascending order).

Example: π = 43,521,876 is noncrossing, perm(43,521,876) = (1,2,5)(3,4)(6,7,8)

K8(π) = 1,3,42,6,7,85 with perm(K8(π)) = (2,4)(5,8) and

(1,2,5)(3,4)(6,7,8)◦ (2,4)(5,8) = (1,2,3,4,5,6,7,8)
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Kn is not only a bijection Kn : In−1]
(n

2
)−→ In−1]

(n
2
)
.

Kn transforms the system of interval implications to the system of 2−subset-
implications and vice versa, hence Kn is a transformation of one closure
operator to the other. For example, transitivity goes to

Kn({{k, l},{l,s}}→ {k,s}) = {[k, l−1], [l,s−1]}→ [k,s−1]

It follows that
1. If (P̂, Q̂) is reduced, then (Kn(Q̂),Kn(P̂)) is reduced.
2. rk(Kn(π)) = n−1− rk(π)
3. |Q̂|= #π−1
4. #(π)+#(Kn(π)) = n− rk(π)+n− rk(Kn(π)) = n+1

Hence Kreweras' pictorial, not very transparent construction can be re-
placed by mere application of Kn.
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Further Consequences:

Kn is an anti-automorphism from NC(n) onto itself interchanging level k
and level n−1− k. (rank-inverting)

K 2
n is an isomorphism of NC(n) with the property

type(perm(A,B)) = type(perm(K 2
n (A),K 2

n (B))).

K 2n
n = id =⇒ K n

n is an involution on NC(n). If n is odd, then K n
n is a

rank-inverting involution on NC(n): rk(K n
n (π)) = n−1− rk(π).

G. Kreweras' construction has been modi�ed by several authors for spe-
cial purposes. For example, R. Simion de�ned a rank-inverting anti-
isomorphism of NC(n) (and V. Reiner for type B nc-partitions) for all n.
These pictorial constructions can be described by the operator Kn.

I imagine that people who are more experienced in Coxeter theory, root
systems, Weyl groups . . . than I am may ask questions that can be an-
swered by extending this set representation approach.
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