Some Remarks on Partition Lattices

Roman König

Informatik 3

Universität Erlangen-Nürnberg

61. Séminaire Lotharingien de Combinatoire

Curia, September 24, 2008

Outline

I. Introduction

Every lattice has a set representation

II. Application to partition lattices

Definition of two closure operators

III. Application to noncrossing partition lattices

The closure operators for noncrossing partitions

IV. Kreweras complement

An explicit representation for Kreweras complement

Introduction

Every finite lattice L with operations \land and \lor has a set representation by the following construction.

L has two generating systems:

J(L) =set of \lor -irreducibles is a \lor -generating system

M(L) = set of \wedge -irreducibles is a \wedge -generating system

Every element $x \in L$ is represented as

 $x \simeq (A, B)$

with $A \subseteq J(L), B \subseteq M(L)$ and $A = \{a \in J(L) \mid a \leq x\} = x^{\downarrow}$, the down-set of x, $B = \{b \in M(L) \mid x \leq b\} = x^{\uparrow}$, the up-set of x.

The general situation

Given a finite lattice L and an element $x \in L$, x is represented by the pair (A,B)

Two closure systems:

The system of all down-sets is a closure system on J(L), the system of all up-sets is a closure system on M(L).

Galois Connection:

$$A \mapsto A' := \{ b \in M(L) \mid a \le b \text{ for all } a \in A \} \text{ for } A \subseteq J(L) \}$$

 $B \mapsto B' := \{a \in J(L) \mid a \le b \text{ for all } b \in B\}$ for $B \subseteq M(L)$

Closure operators: $X \mapsto X''$ for $X \subseteq J(L)$, and $Y \mapsto Y''$ for $Y \subseteq M(L)$.

If $x \simeq (A,B)$, then A and B are closed sets and $A = x^{\downarrow}$, $B = x^{\uparrow}$

The order of *L* is now represented by set inclusion

$$(A,B) \le (X,Y) \iff A \subseteq X \quad (\iff B \supseteq Y)$$

the lattice operations are

 $(A,B) \land (X,Y) = (A \cap X, (B \cup Y)'')$ and $(A,B) \lor (X,Y) = ((A \cup X)'', B \cap Y).$

Application to partition lattices

 Π_n : Lattice of set partitions of an *n*-element set $[1,n] = \{1,...,n\}$ under refinement order. Π_n is a graded lattice with rank function $rk(\pi) = n - \#\pi$, where $\#\pi$ denotes the number of blocks of π .

Join irreducibles:

partitions with exactly n-1 blocks, (rank = 1) $\rightarrow n-2$ singleton blocks and one 2-block $\{k,l\}$ with $1 \le k < l \le n$ \rightarrow are in bijection with 2-subsets of n: $J(\Pi_n) \leftrightarrow {\binom{[1,n]}{2}}$ (write ${\binom{n}{2}}$ for ${\binom{[1,n]}{2}}$)

Meet irreducibles:

partitions π with exactly 2 blocks, (rank = n-2)

→ one of them does not contain the element n (= the proper class) → are in bijection with non-empty subsets of $\{1, ..., n-1\}$: $M(\Pi_n) \leftrightarrow 2^{n-1} - \{\emptyset\}$ ($\pi = \overline{531}, \overline{42} \in M(\Pi_5)$ has proper class $\{2, 4\} \in 2^4$) The relation \leq in Π_n for irreducibles is

$$\{k,l\} \le X \iff |\{k,l\} \cap X| = 0 \bmod 2$$

Galois connection:

$$A\mapsto A'=\{X\in 2^{n-1}\mid |X\cap\{k,l\}|=0 \mod 2 ext{ for all } \{k,l\}\in A\}$$
 for $A\subseteq {n\choose 2}$

 $B \mapsto B' = \{\{k,l\} \in \binom{n}{2} \mid |X \cap \{k,l\}| = 0 \mod 2 \text{ for all } X \in B\} \text{ for } B \subseteq 2^{n-1}$

Closure operators:

closure under transitivity

1. For $A \subseteq {n \choose 2}$ apply the rules $\{\{k,l\},\{l,m\}\} \longrightarrow \{k,m\}$ if k < l < m $\{\{k,m\},\{l,m\}\} \longrightarrow \{k,m\}$ if k < l < m $\{\{k,l\},\{k,m\}\} \longrightarrow \{l,m\}$ if k < l < m

if two edges are present, the third must be present

2. For $B \subseteq 2^{n-1}$ apply the rules

 $\{X, Y\} \longrightarrow X \cup Y \\ \{X, Y\} \longrightarrow X \setminus Y$

Closed subsets of 2^{n-1} are boolean algebras contained (as sublattices) in 2^{n-1} .

In a partition $\pi \simeq (A,B)$ the set *B* is the boolean algebra defined by the proper classes of π (= classes not containing *n*).

A can be seen as the graph of the equivalence relation defined by π .

Example: $\pi = \overline{42}, \overline{6531}, \overline{87} \in \Pi_8$

The graph A has $\#\pi$ connected components (= blocks of π). Acan be reduced (by transitivity) until we are left with a spanning forest \hat{A} , and then we have $\#\pi =$ $n - |\hat{A}|$.

The boolean algebra B can be reduced (by boolean operations) until we are left with a minimal generating system \hat{B} . Every possible \hat{B} has cardinality $|\hat{B}| = \dim B$.

 $\pi \simeq (A,B) = (\{\{1,3\},\{1,5\},\{1,6\},\{3,5\},\{3,6\},\{2,4\},\{5,6\},\{7,8\}\}, \{\emptyset,\{2,4\},\{1,3,5,6\},\{1,2,3,4,5,6\}\})$

The improper class is $\overline{87} = \{1, \ldots, 8\} \setminus \bigcup B$.

In our case:

 $(\{\{1,3\},\{3,5\},\{5,6\},\{2,4\},\{7,8\}\},\{\{1,3,5,6\},\{1,2,3,4,5,6\}\})$ and $(\{\{1,3\},\{1,5\},\{1,6\},\{2,4\},\{7,8\}\},\{\{1,3,5,6\},\{2,4\}\})$ are possible (\hat{A},\hat{B}) .

The atoms of *B* are the proper classes of the partition $\pi \simeq (A,B)$, hence $\#\pi = |\hat{B}| + 1 = n - |\hat{A}|$ for every reduced representation (\hat{A}, \hat{B}) of (A, B).

Consequence:

- 1. For every reduced representation (\hat{A}, \hat{B}) we have $|\hat{A}| + |\hat{B}| = n 1$
- 2. $rk(A,B) = |\hat{A}|$
- 3. For every partition $\pi = (A, B)$ we have $rk(\pi) + \dim B = n 1$

Application to noncrossing partitions

Example: (from Armstrong [1])

A noncrossing partition (nc-partition) and a (crossing) partition

A partition π of $\{1, \ldots, n\}$ is noncrossing if there is no crossing in the picture for π .

Let NC(n) be the set of all nc-partitions on $\{1, ..., n\}$. The order of NC(n) is inherited from the lattice Π_n . With this order NC(n) is a lattice, but not a sublattice of the partition lattice:

For example, the join of the nc-partitions $\overline{2}, \overline{31}, \overline{4}$ and $\overline{1}, \overline{3}, \overline{42}$ in Π_4 is $\overline{31}, \overline{42}$.

To obtain a set-representation of NC(n), we need

Join-irreducibles: Every join-irreducible partition is noncrossing, hence join-irreducible nc-partitions are in bijection with $\binom{n}{2}$ as before.

Meet-irreducibles: A meet-irreducible partition is noncrossing if and only if its proper class $X \subseteq \{1, ..., n-1\}$ is a nonempty interval:

The interval $[2,5] = \{2,...,5\}$ defines (together with its complement) the meet-irreducible nc-partition $\overline{5432},\overline{61}$ of $\{1,...,6\}$.

Define $I_{n-1} := \{ \text{intervals} \neq \emptyset \text{ of } \{1, ..., n-1\} \} = \{ [i, j] | 1 \le i \le j \le n-1 \} \subseteq 2^{n-1}$ and observe:

$$|I_{n-1}| = \binom{n}{2}$$

Every nc-partition is represented by a pair (P,Q) with $P \subseteq {n \choose 2}$, $Q \subseteq I_{n-1}$ such that

$$P=Q'$$
 and $Q=P'\cap I_{n-1}$

and Q'' = P'. This means: The boolean algebra P' is generated by the intervals contained in P'. For example, the (crossing) partition $\overline{31}, \overline{42}, \overline{5}$ has $P = \{\{1,3\}, \{2,4\}\}$ and defines (on $\{1, \ldots, 4\}$) the boolean algebra $P' = \{\emptyset, \{1,3\}, \{2,4\}, [1,4]\}$ which is not generated by intervals.

The nc-partition $\overline{32}, \overline{41}, \overline{5}$ has $P = \{\{1,4\}, \{2,3\}\}$ and generates the boolean algebra $P' = \{\emptyset, [2,3], \{1,4\}, [1,4]\}$ which has the generating system $Q = P' \cap I_4 = \{[2,3], [1,4]\} \subseteq I_4$

In other words:

• A partition $\pi \simeq (A,B) \in \Pi_n$ is an nc-partition iff the boolean algebra *B* has a generating system $Y \subseteq I_{n-1}$.

Remark: From the system *Y* a Dyck-word representing (A,B) can be uniquely constructed, thus showing that the number of nc-partitions on *n* points is $C_n = \frac{1}{n+1} {2n \choose n}$.

The closure operators for nc-partitions

Every $\pi \in NC(n)$ is represented by a pair (P,Q) with $P \subseteq {n \choose 2}$ and $Q \subseteq I_{n-1}$ such that

P is closed under transitivity and the "non-crossing rules" $\{\{i,k\},\{j,l\}\} \longrightarrow \{i,l\}$ if i < j < k < l. This results in four groups of rules for 2-subsets

Q is closed under the rules describing the boolean operations \cup, \cap, \setminus restricted to intervals:

This again results in four groups of interval rules.

Example: Given two nc-partitions on $\{1, \ldots, 8\}$

$$\pi = \overline{21}, \overline{3}, \overline{5}, \overline{6}, \overline{874} = (P, Q)$$

= ({{1,2}, {4,7}, {7,8}, {4,8}}, {[1,2], [3], [1,3], [5], [6], [5,6]})

$$\rho = \overline{43}, \overline{521}, \overline{876} = (R, S)$$

= ({{1,2}, {1,5}, {2,5}, {3,4}, {6,7}, {7,8}, {6,8}}, {[3,4], [1,5]}

$$\pi \wedge \rho = (U, V) \in (2^{\binom{8}{2}}, 2^{I_7})$$
 with $U = P \cap R = \{\{1, 2\}, \{7, 8\}\}.$

 $V = \text{closure of } Q \cup S = \{[1,2],[3],[1,3],[5],[6],[5,6],[3,4],[1,5]\}$ under the interval implications:

 $\rightsquigarrow V = \{[1,2], [3], [1,3], [5], [6], [5,6], [3,4], [1,5], [3,6], [3,5], [4], [1,4], [1,6], [4,5], [4,6]\}$

 $\hat{U} = \{\{1,2\},\{7,8\}\}\$ (here it is unique), \hat{V} reduced for interval implications can be chosen as $\{[1,2],[3],[4],[5],[6]\}\$ or as $\{[1,2],[3],[3,4],[3,5],[3,6]\}\$ or

Note that $|\hat{U}| + |\hat{V}| = n - 1 = 8 - 1 = 7$.

For the nc-partition $\pi \lor \rho$ take intersection in the second component $Q \cap S = \{[1,2],[3],[1,3],[5],[6],[5,6]\} \cap \{[3,4],[1,5]\} = \emptyset$, and $\pi \lor \rho = \top$ (in the lattice NC(8)) follows.

 $\pi = \overline{21}, \overline{3}, \overline{5}, \overline{6}, \overline{874}$ and $\rho = \overline{43}, \overline{521}, \overline{876}$ have join $\overline{521}, \overline{87643}$ in Π_8 .

Kreweras-complement

For every n define two functions

$$\phi_n: I_{n-1} \to \binom{n}{2} \text{ by } [i,j] \mapsto \begin{cases} \{i-1,j\} & \text{ if } i>1\\ \{j,n\} & \text{ if } i=1 \end{cases}$$
$$\psi_n: \binom{n}{2} \to I_{n-1} \text{ by } \{k,l\} \mapsto [k,l-1]$$

 ϕ_n and ψ_n are bijections, but not mutually inverses.

Rather we have

$$\phi_n \circ \psi_n(\{k, l\}) = \begin{cases} \{k-1, l-1\} & \text{if } k > 1\\ \{l-1, n\} & \text{if } k = 1 \end{cases}$$

$$\psi_n \circ \phi_n([i, j]) = \begin{cases} [i-1, j-1] & \text{if } i > 1\\ [j, n-1] & \text{if } i = 1 \end{cases}$$

are counterclockwise rotations of the circle of length *n*, compatible with nc-partitions. When applied to 2-subsets $\{i, j\}$ or to intervals [i, j] with $i \neq 1$ this is obvious. For the rest consider the interval [1,4] on $\{1,\ldots,6\}$. It represents the meet-irreducible partition $\overline{4321}, \overline{65}$

which is in fact the appropriate description of the rotated partition.

The same applies to 2-subsets: $\{1,k\} \rightsquigarrow [1,k-1] \rightsquigarrow \{k-1,n\}$.

 ϕ_n and ψ_n define a bijection $\mathscr{K}_n: I_{n-1} \uplus \binom{n}{2} \longrightarrow I_{n-1} \uplus \binom{n}{2}$ by the scheme

with the properties $\mathscr{K}_n^2 = \phi_n \circ \psi_n \cup \psi_n \circ \phi_n$ and $\mathscr{K}_n^{2n} = id$. It is clear that $-(P,Q) \in NC(n) \iff (\mathscr{K}_n(Q), \mathscr{K}_n(P)) \in NC(n)$ $-(P,Q) \leq (R,S) \iff (\mathscr{K}_n(Q), \mathscr{K}_n(P)) \geq (\mathscr{K}_n(S), \mathscr{K}_n(R))$ $-(P,Q) \in NC(n) \implies \mathscr{K}_n(P) \cap Q = \emptyset$ and $P \cap \mathscr{K}_n(Q) = \emptyset$ Theorem: For every nc-partition $(P,Q) \in NC(n)$ the Kreweras-complement is the nc-partition $\mathscr{K}_n(P,Q) := (\mathscr{K}_n(Q), \mathscr{K}_n(P))$. This means

1. $(P,Q) \land (\mathscr{K}_n(Q), \mathscr{K}_n(P)) = \bot$

 $(P,Q) \lor (\mathscr{K}_n(Q), \mathscr{K}_n(P)) = \top$

2. The nc-partition $(\mathscr{K}_n(Q), \mathscr{K}_n(P))$ is the unique solution of the equation

 $perm(P,Q) \circ perm(\mathscr{K}_n(Q),\mathscr{K}_n(P)) = (1,\ldots,n)$

perm(P,Q) is the permutation that consists of the cycles defined by the blocks of the partition $\pi = (P,Q)$ (written in ascending order).

Example: $\pi = \overline{43}, \overline{521}, \overline{876}$ is noncrossing, $perm(\overline{43}, \overline{521}, \overline{876}) = (1, 2, 5)(3, 4)(6, 7, 8)$

 $\mathscr{K}_8(\pi) = \overline{1}, \overline{3}, \overline{42}, \overline{6}, \overline{7}, \overline{85}$ with $perm(\mathscr{K}_8(\pi)) = (2,4)(5,8)$ and

 $(1,2,5)(3,4)(6,7,8) \circ (2,4)(5,8) = (1,2,3,4,5,6,7,8)$

 \mathscr{K}_n is not only a bijection $\mathscr{K}_n: I_{n-1} \uplus \binom{n}{2} \longrightarrow I_{n-1} \uplus \binom{n}{2}$.

 \mathscr{K}_n transforms the system of interval implications to the system of 2-subsetimplications and vice versa, hence \mathscr{K}_n is a transformation of one closure operator to the other. For example, transitivity goes to

$$\mathscr{K}_n(\{\{k,l\},\{l,s\}\}) \to \{k,s\}) = \{[k,l-1],[l,s-1]\} \to [k,s-1]$$

It follows that

1. If (\hat{P}, \hat{Q}) is reduced, then $(\mathscr{K}_n(\hat{Q}), \mathscr{K}_n(\hat{P}))$ is reduced.

2.
$$rk(\mathscr{K}_n(\pi)) = n - 1 - rk(\pi)$$

3.
$$|\hat{Q}| = \#\pi - 1$$

4. $\#(\pi) + \#(\mathscr{K}_n(\pi)) = n - rk(\pi) + n - rk(\mathscr{K}_n(\pi)) = n + 1$

Hence Kreweras' pictorial, not very transparent construction can be replaced by mere application of \mathcal{K}_n .

Further Consequences:

 \mathscr{K}_n is an anti-automorphism from NC(n) onto itself interchanging level k and level n-1-k. (rank-inverting)

 \mathscr{K}_n^2 is an isomorphism of NC(n) with the property $type(perm(A,B)) = type(perm(\mathscr{K}_n^2(A),\mathscr{K}_n^2(B))).$

 $\mathscr{K}_n^{2n} = id \implies \mathscr{K}_n^n$ is an involution on NC(n). If *n* is odd, then \mathscr{K}_n^n is a rank-inverting involution on NC(n): $rk(\mathscr{K}_n^n(\pi)) = n - 1 - rk(\pi)$.

G. Kreweras' construction has been modified by several authors for special purposes. For example, R. Simion defined a rank-inverting antiisomorphism of NC(n) (and V. Reiner for type *B* nc-partitions) for all *n*. These pictorial constructions can be described by the operator \mathcal{K}_n .

I imagine that people who are more experienced in Coxeter theory, root systems, Weyl groups ... than I am may ask questions that can be answered by extending this set representation approach.

References

- [1] D. Armstrong: Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups. math.CO/0611106.
- [2] B. Ganter, R. Wille: Formale Begriffsanalyse: Mathematische Grundlagen. Springer Verlag, 1996, ISBN 3-540-60868-0
- [3] G. Kreweras, Sur les partitions non croisées d'un cycle. Discrete Math. 1 (1972) no. 4, 333-350.
- [4] R. Simion: Noncrossing partitions. Discrete Math. 217 (2000) no. 1-3, 367-409.