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Some of the notation

N set of all nonnegative integers

N∗ set of all positive integers

C set of all complex numbers

P vector space of polynomials with coefficients in C
P ′ dual space of P

(p)(n) n-th derivative of p ∈ P, n ∈ N
p[n] n-th normalized derivative, so that p[n] is monic

〈u, p〉 action of u ∈ P ′ on p ∈ P
MPS Monic Polynomial Sequence {Pn}n>0 such that Pn(x) = xn + pn−1(x),

with deg pn−1 = n − 1

Preliminary results

Derivative and product by a polynomial of a form

〈u′, f 〉 := −〈u, f ′〉 , 〈gu, f 〉 := 〈u, gf 〉, f ∈ P,

The dual sequence {un}n>0 of a monic polynomial sequence (MPS)

{Pn}n>0 is defined by 〈un,Pk〉 = δn,k , n, k > 0.
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Orthogonal polynomial sequences (OPS)

Definition
A MPS {Pn}n>0 is said to be a MOPS with respect to u ∈ P ′ if

〈u,PnPm〉 = Knδn,m, n,m > 0

Kn 6= 0, n > 0 .

In this case, u is called a regular form and it is proportional to u0

Some characterisation properties:

Consider {Pn}n>0 to be a MPS. The statements are equivalent:

(a) {Pn}n>0 is a MOPS with respect to u0

(b)


P1(x) = x − β0; P1(x) = 1
Pn+2(x) = (x − βn+1)Pn+1(x)− γn+1Pn(x)

with βn =
〈u0, xP2

n 〉
〈u0,P2

n 〉
and γn+1 =

〈u0,P
2
n+1〉

〈u0,P2
n 〉
6= 0, n ∈ N.

(c) un =
`
〈u0,P

2
n 〉
´−1

Pn u0, n ∈ N,
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Classical polynomial sequence

Let k ∈ N∗ and {Pn}n>0 be a MPS. The sequence {P
[k]
n }n∈N with

P
[k]
n (x) := 1

n+1

“
P

[k−1]
n+1 (x)

”′
, n ∈ N, (and P

[0]
n := Pn, n > 0), is also a MPS.

Definition
A MOPS {Pn}n∈N is said to be classical when {P [1]

n }n∈N is also orthogonal
(Hahn’s property, [Hahn(1935)]) The associated regular form u0 is called
classical form (Hermite, Laguerre, Bessel and Jacobi ).
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Classical polynomial sequences - characterisation

For any MOPS {Pn}n∈N associated to u0, the statements are equivalent:

(a) {Pn}n∈N is a classical sequence.

(b) ∃k > 1 such that {P [k]
n }n∈N is orthogonal (Hahn’s theorem).

(c) ∃Φ Ψ ∈ P such that the associated regular form u0 satisfies

D
`
Φu0

´
+ Ψu0 = 0 ,

where deg Φ 6 2 (Φ monic) and deg(Ψ) = 1

(d) There exist two polynomials Φ (monic with deg Φ 6 2) and Ψ (with deg Ψ = 1)

and a sequence {χn}n∈N with χ0 = 0 and χn+1 6= 0, n ∈ N, such that

F
`
Pn(x)

´
= χnPn, n > 0, [Bochner (1929)]

where

F = Φ(x) D2 −Ψ(x) D .
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Construction of a generalisation on the Bochner differential equation
fulfilled by classical polynomials

Let k ∈ N∗ and {Pn}n>0 be a MPS.

If {un}n∈N and {u[k]
n }n∈N represent the dual sequences of {Pn}n>0 and

{P [k]
n }n∈N (resp.), then it holds

Dk
“

u[k]
n

”
= (−1)k

kY
µ=1

(n + µ) un+k , n ∈ N

Suppose {Pn}n∈N and {P
[k]
n }n∈N are two MOPS.

Therefore, the elements of the corresponding dual sequences are related by“
P

[k]
n u

[k]
0

”(k)

= λk
n Pn+ku0 , n ∈ N,

with

λk
n = (−1)k

fi
u

[k]
0 ,
“

P
[k]
n

”2
fl

D
u0,P2

n+k

E kY
µ=1

(n + µ) , n ∈ N.
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construction of a generalisation on the Bochner (cont. )

Using Leibniz relation for derivation, it follows
kX
ν=0

 
k

ν

!“
P [k]

n

”(ν) “
u[k]

0

”(k−ν)

= λk
n Pn+k u0, n ∈ N,

Inasmuch as {P
[j]
n }n∈N, 0 6 j 6 k , is also classical

we derive “
u[k]

0

”(k−ν)

= ωk,ν λ
k
0 Φν P

[ν]
k−ν u0 , 0 6 ν 6 k

with ωk,ν =

8<:
`
−Ψ′(0)

´−ν
if 0 6 deg Φ 6 1 ,

1

( k − 1−Ψ′(0) )ν
if deg Φ = 2 ,

thereby...

kX
ν=0

 
k

ν

!
ωk,ν λ

k
0 Φν P

[ν]
k−ν

“
P [k]

n

”(ν)

u0 = λk
n Pn+k u0, n ∈ N,

By virtue of the regularity of u0, this last equality permits to deduce ...
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Generalisation of Bochner’s differential equation

Theorem
Let {Pn}n∈N be a MOPS. Suppose there is an integer k > 1 such that

{P [k]
n }n∈N is a MOPS. Then any polynomial Pn+k fulfils the following

differential equation of order 2k:

kP
ν=0

Λν (k; x) Dk+νPn+k (x) = Ξn (k) Pn+k (x) , n ∈ N,

where
Λν(k; x) =

λk
0 ωk,ν

ν!
Φν(x)

“
Pk(x)

”(ν)

, 0 6 ν 6 k,

Ξn (k) = λk
n {n + k}(k) , n ∈ N;

λk
n = (−1)k

˙
v0,Qn

2
¸˙

u0,P2
n+k

¸ (n + 1)k , n ∈ N;

with D representing the differential operator and
{x}(k) := x(x − 1) . . . (x − k + 1), k ∈ N.
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Extension of Bochner’s differential equation

Corollary

Let {Pn}n∈N be a classical MOPS and k a positive integer. Consider the
differential operator F = Φ(x)D2 −Ψ(x)D where Φ is a monic polynomial with
deg Φ 6 2, and Ψ a polynomial such that deg Ψ = 1.
Then, for any set {ck,µ : 0 6 µ 6 k} of complex numbers not depending on n,
each element of {Pn}n∈N fulfils the differential equation given by

kX
µ=0

ck,µ FµPn(x) =
kX
µ=0

ck,µ (χn)µ Pn(x) , n ∈ N,

where {χn}n>1 represents a sequence of nonzero complex numbers and Fk is
recursively defined through Fk [y ](x) = F

`
Fk−1[y ](x)

´
, for k ∈ N∗ with F0

denote the identity operator.
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Relation between the two generalisations

Corollary

Let {Pn}n∈N be a classical sequence and k a positive integer. If there exist

coefficients dk,µ and edk,µ 0 6 µ 6 k, not depending on n, such that

Ξn−k(k) =
Pk
τ=0 dk,τ (χn)τ , n > 0,

(χn)k =
Pk
τ=0
edk,τ Ξn−τ (τ) , n > 0,

then the two following equalities hold:

kX
ν=0

Λk(k; x)Dk+ν =
kX
τ=0

dk,τ Fτ

Fk =
kX
τ=0

edk,τ

(
τX
ν=0

Λν(τ ; x)Dτ+ν

)
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canonical elements for each one of the classical families

Hermite Laguerre Bessel Jacobi

n ∈ N α 6= −(n + 1) α 6= − n
2

α, β 6= −(n + 1)
α + β 6= −(n + 2)

Φ(x) 1 x x2 x2 − 1

Ψ(x) 2x x − α− 1 −2 (αx + 1) −(α + β + 2) x + (α− β)`
χn

´k (−2)k nk (−1)k nk nk (n + 2α− 1)k nk (n + α + β + 1)k

Ξn−k (k) (−2)k{n}(k)

(−1)k

(α + 1)k

{n}(k) C k
α(2α− 1 + n)k{n}(k) C k

α,β(α + β + 1 + n)k{n}(k)

where C k
α = 4−k (2α)2k C k

α,β =
(−4)−k (α+β+2)2k

(α+1)k (β+1)k
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Stirling numbers
Representing by s(k, ν) and S(k, ν), with k, ν ∈ N, the Stirling numbers of
first and second kind, respectively, the following equalities hold:

{x}(k) =
kX
ν=0

s(k, ν) xν .

and

xk =
kX
ν=0

S(k, ν) {x}(ν) ,

where {x}(k) = x(x − 1) . . . (x − k + 1) represent the falling factorial of x
Such numbers fulfil a ”triangular” recurrence relation, more precisely...8<:

s(k + 1, ν + 1) = s(k, ν)− k s(k, ν + 1)
s(k, 0) = s(0, k) = δk,0
s(k, ν) = 0 , ν > k + 1

and 8<:
S(k + 1, ν + 1) = S(k, ν) + (ν + 1) S(k, ν + 1)
S(k, 0) = S(0, k) = δk,0
S(k, ν) = 0 , ν > k + 1
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A-modified factorial of a number

Definition
Let A be a number (possibly complex) and k ∈ N. For any number x we define

{x}(k;A) :=

8><>:
1 if k = 0,

k−1Y
ν=0

(x − ν(ν + A)) if k ∈ N∗,
(1)

to be the A-modified falling factorial (of order k).

As a result, there exist two unique sequences of numbers {bsA(k, ν)}k,ν∈N

and {bSA(k, ν)}k,ν∈N such that

{x}(k;A) =
kX
ν=0

bsA(k, ν) xν , k ∈ N

xk =
kX
ν=0

bSA(k, ν) {x}(ν;A) , k ∈ N,
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A-modified Stirling numbers

Proposition

The set of numbers {bsA(k, ν)}ν,k>0 satisfy the following “triangular” recurrence
relation

bsA(k + 1, ν + 1) = bsA(k, ν)− k(k + A) bsA(k, ν + 1) ,bsA(k, 0) = bsA(0, k) = δk,0 ,bsA(k, ν) = 0 , ν > k + 1 ,

whereas the set of numbers {bSA(k, ν)}ν,k>0 satisfy the “triangular” relation

bSA(k + 1, ν + 1) = bSA(k, ν) + (ν + 1)(ν + 1 + A)bSA(k, ν + 1) ,bSA(k, 0) = bSA(0, k) = δk,0 ,bSA(k, ν) = 0 , ν > k + 1 ,

for k, ν ∈ N.
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A-modified Stirling numbers: some properties

• bSA(k, ν) =
1

ν!

νX
σ=1

 
ν

σ

!
(−1)ν+σ (A + 2σ) Γ(A + σ)

Γ(A + σ + ν + 1)

„
σ(σ + A)

«k

,

for k, ν ∈ N and 1 6 ν 6 k .

• When x = n(n + A) for n ∈ N and A ∈ C, its A-modified factorial (of
order k) is given by:

{n(n + A)}(k;A) =
k−1Y
ν=0

„
n(n + A)− ν(ν + A)

«
=

k−1Y
ν=0

„
(n− ν)(n + A + ν)

«
which, in accordance with the definition of falling or rising factorial, may
be expressed like

{n(n + A)}(k;A) = {n}(k) (n + A)k . (2)
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list of the first A-modified Stirling numbers of
first kind: bsA(k, ν)

ν 1 2 3 4 5
k

1 1 0 0 0 0

2 −(1 + A) 1 0 0 0

3 2 (1 + A)2 −5− 3A 1 0 0

4 −6 (1 + A)3 49 + A(48 + 11A) −2(7 + 3A) 1 0

5 24 (1 + A)4
−2(410 + 515 A)
−2 A2(202 + 25A)

273 + 5A(40 + 7A) −10(3 + A) 1

second kind: bSA(k, ν)

ν 1 2 3 4 5
k

1 1 0 0 0 0
2 1 + A 1 0 0 0
3 (1 + A)2 5 + 3A 1 0 0
4 (1 + A)3 21 + A(24 + 7A) 14 + 6A 1 0
5 (1 + A)4 (5 + 3A)(17 + A(18 + 5A)) 147 + 5A(24 + 5A) 10(3 + A) 1
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Hermite Case

we have

F = D2 − 2xD

Λν(k; x) =

 
k

ν

!
(−2)k−ν Pk−ν(x) , 0 6 ν 6 k,

therefore ... 8>>>>><>>>>>:

kX
ν=0

Λν (k; x) Dk+ν =
kX
τ=0

(−2)k−τ s(k, τ) Fτ

Fk =
kX
τ=0

(−2)k−τ S(k, τ)
τX
ν=0

Λν (τ ; x) Dτ+ν

,
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Laguerre Case

we have

F = x D2 − (x − α− 1)D

Λν(k; x) =

 
k

ν

!
(−1)k−ν

(α + 1)k

xν Pk−ν(x ;α + ν)

therefore ...8>>>>><>>>>>:

kX
ν=0

Λν (k; x) Dk+ν =
kX
τ=0

(−1)k−τ

(α + 1)k

s(k, τ) Fτ

Fk =
kX
τ=0

(−1)k−τ (α + 1)τ S(k, τ)
τX
ν=0

Λν (τ ; x) Dτ+ν

,
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Bessel Case

we have

F = x2 D2 + 2(αx + 1)D

Λν(k; x) =

 
k

ν

!
C k
α (2α− 1 + k + ν)k−ν x2ν Pk−ν(x ;α + ν), 0 6 ν 6 k,

therefore ... 8>>>>><>>>>>:

kX
ν=0

Λν (k; x) Dk+ν =
kX
τ=0

C k
α bs2α−1(k, ν) Fτ

Fk =
kX
τ=0

`
C τ
α

´−1 bS2α−1(k, τ)
τX
ν=0

Λν (τ ; x) Dτ+ν
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Jacobi Case

we have

F = (x2 − 1)D +
“

(α + β + 2) x − (α− β)
”

D

Λν(k; x) =

 
k

ν

!
C k
α,β (α + β + 1 + k + ν)k−ν (x2 − 1)ν Pk−ν(x ;α + ν, β + ν)

therefore ...8>>>>><>>>>>:

kX
ν=0

Λν (k; x) Dk+ν =
kX
τ=0

C k
α,β bsα+β+1(k, τ) Fτ

Fk =
kX
τ=0

`
C τ
α,β

´−1 bSα+β+1(k, τ)
τX
ν=0

Λν (τ ; x) Dτ+ν

,
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