Inverse relations between powers of Bochner's operator and differential operators of even order

ana filipa loureiro
ISEC,Coimbra

September, 2008
SLC'61, Curia - Portugal

Introduction
Introduction and preliminary results Orthogonal polynomial sequences Classical polynomial sequences

Generalisations on Bochner's characterisation about classical polynomials Generalised on Bochner's differential equation Extension of Bochner's differential equation Relation between the two generalisations
sums relating powers of a variable and its factorials

Sums relating powers of \mathcal{F} and its "factorials" Hermite case
Laguerre case Bessel case Jacobi case
\mathbb{N} set of all nonnegative integers
\mathbb{N}^{*} set of all positive integers
\mathbb{C} set of all complex numbers
\mathcal{P} vector space of polynomials with coefficients in \mathbb{C}
\mathcal{P}^{\prime} dual space of \mathcal{P}
$(p)^{(n)} n$-th derivative of $p \in \mathcal{P}, n \in \mathbb{N}$
$p^{[n]} n$-th normalized derivative, so that $p^{[n]}$ is monic
$\langle u, p\rangle$ action of $u \in \mathcal{P}^{\prime}$ on $p \in \mathcal{P}$
MPS Monic Polynomial Sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ such that $P_{n}(x)=x^{n}+p_{n-1}(x)$, with $\operatorname{deg} p_{n-1}=n-1$

Derivative and product by a polynomial of a form
\square
\mathbb{N} set of all nonnegative integers
\mathbb{N}^{*} set of all positive integers
\mathbb{C} set of all complex numbers
\mathcal{P} vector space of polynomials with coefficients in \mathbb{C}
\mathcal{P}^{\prime} dual space of \mathcal{P}
$(p)^{(n)} n$-th derivative of $p \in \mathcal{P}, n \in \mathbb{N}$
$p^{[n]} n$-th normalized derivative, so that $p^{[n]}$ is monic
$\langle u, p\rangle$ action of $u \in \mathcal{P}^{\prime}$ on $p \in \mathcal{P}$
MPS Monic Polynomial Sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ such that $P_{n}(x)=x^{n}+p_{n-1}(x)$, with $\operatorname{deg} p_{n-1}=n-1$

Preliminary results
Derivative and product by a polynomial of a form $\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle \quad, \quad\langle g u, f\rangle:=\langle u, g f\rangle, \quad f \in \mathcal{P}$,
\mathbb{N} set of all nonnegative integers
\mathbb{N}^{*} set of all positive integers
\mathbb{C} set of all complex numbers
\mathcal{P} vector space of polynomials with coefficients in \mathbb{C}
\mathcal{P}^{\prime} dual space of \mathcal{P}
$(p)^{(n)} n$-th derivative of $p \in \mathcal{P}, n \in \mathbb{N}$
$p^{[n]} n$-th normalized derivative, so that $p^{[n]}$ is monic
$\langle u, p\rangle$ action of $u \in \mathcal{P}^{\prime}$ on $p \in \mathcal{P}$
MPS Monic Polynomial Sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ such that $P_{n}(x)=x^{n}+p_{n-1}(x)$, with $\operatorname{deg} p_{n-1}=n-1$

Preliminary results
Derivative and product by a polynomial of a form
$\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle \quad, \quad\langle g u, f\rangle:=\langle u, g f\rangle, \quad f \in \mathcal{P}$,
The dual sequence $\left\{u_{n}\right\}_{n \geqslant 0}$ of a monic polynomial sequence (MPS) $\left\{P_{n}\right\}_{n \geqslant 0}$ is defined by $\left\langle u_{n}, P_{k}\right\rangle=\delta_{n, k}, \quad n, k \geqslant 0$.

Orthogonal polynomial sequences (OPS)

Definition A MPS $\left\{P_{n}\right\}_{n \geqslant 0}$ is said to be a MOPS with respect to $u \in \mathcal{P}^{\prime}$ if

$$
\begin{aligned}
& \left\langle u, P_{n} P_{m}\right\rangle=K_{n} \delta_{n, m}, \quad n, m \geqslant 0 \\
& K_{n} \neq 0, \quad n \geqslant 0 .
\end{aligned}
$$

In this case, u is called a regular form and it is proportional to u_{0}

Some characterisation properties:
Consider $\left\{P_{n}\right\}_{n \geqslant 0}$ to be a MPS. The statements are equivalent:
(a) $\left\{P_{n}\right\}_{n \geqslant 0}$ is a MOPS with respect to u_{0}

Orthogonal polynomial sequences (OPS)

Definition
A MPS $\left\{P_{n}\right\}_{n \geqslant 0}$ is said to be a MOPS with respect to $u \in \mathcal{P}^{\prime}$ if

$$
\begin{aligned}
& \left\langle u, P_{n} P_{m}\right\rangle=K_{n} \delta_{n, m}, \quad n, m \geqslant 0 \\
& K_{n} \neq 0, \quad n \geqslant 0 .
\end{aligned}
$$

In this case, u is called a regular form and it is proportional to u_{0}
Some characterisation properties:
Consider $\left\{P_{n}\right\}_{n \geqslant 0}$ to be a MPS. The statements are equivalent:
(a) $\left\{P_{n}\right\}_{n \geqslant 0}$ is a MOPS with respect to u_{0}
(b) $\left\{\begin{array}{l}P_{1}(x)=x-\beta_{0} ; \quad P_{1}(x)=1 \\ P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x)\end{array}\right.$
with $\beta_{n}=\frac{\left\langle u_{0}, x P_{n}^{2}\right\rangle}{\left\langle u_{0}, P_{n}^{2}\right\rangle}$ and $\gamma_{n+1}=\frac{\left\langle u_{0}, P_{n+1}^{2}\right\rangle}{\left\langle u_{0}, P_{n}^{2}\right\rangle} \neq 0, n \in \mathbb{N}$.
(c) $u_{n}=\left(\left\langle u_{0}, P_{n}^{2}\right\rangle\right)^{-1} P_{n} u_{0}, \quad n \in \mathbb{N}$,

Classical polynomial sequence

Let $k \in \mathbb{N}^{*}$ and $\left\{P_{n}\right\}_{n \geqslant 0}$ be a MPS. The sequence $\left\{P_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ with $P_{n}^{[k]}(x):=\frac{1}{n+1}\left(P_{n+1}^{[k-1]}(x)\right)^{\prime}, n \in \mathbb{N}$, (and $P_{n}^{[0]}:=P_{n}, n \geqslant 0$), is also a MPS.

Classical polynomial sequence

Let $k \in \mathbb{N}^{*}$ and $\left\{P_{n}\right\}_{n \geqslant 0}$ be a MPS. The sequence $\left\{P_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ with $P_{n}^{[k]}(x):=\frac{1}{n+1}\left(P_{n+1}^{[k-1]}(x)\right)^{\prime}, n \in \mathbb{N}$, (and $\left.P_{n}^{[0]}:=P_{n}, n \geqslant 0\right)$, is also a MPS.

Definition

A MOPS $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ is said to be classical when $\left\{P_{n}^{[1]}\right\}_{n \in \mathbb{N}}$ is also orthogonal (Hahn's property, [Hahn(1935)]) The associated regular form u_{0} is called classical form (Hermite, Laguerre, Bessel and Jacobi).

Classical polynomial sequences - characterisation

For any MOPS $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ associated to u_{0}, the statements are equivalent:
(a) $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ is a classical sequence.
(b) $\exists k \geqslant 1$ such that $\left\{P_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ is orthogonal (Hahn's theorem).
(c) $\exists \Phi \Psi \in \mathcal{P}$ such that the associated regular form ω_{0} satisfies

$$
D\left(\Phi u_{0}\right)+\Psi u_{0}=0
$$

where $\operatorname{deg} \Phi \leqslant 2$ (Φ monic) and $\operatorname{deg}(\Psi)=1$
(d) There exist two polynomials Φ (monic with $\operatorname{deg} \Phi \leqslant 2$) and ψ (with deg $\psi=1$) and a sequence $\left\{\chi_{n}\right\}_{n \in \mathbb{N}}$ with $\chi_{0}=0$ and $\chi_{n+1} \neq 0, n \in \mathbb{N}$, such that

where

Classical polynomial sequences - characterisation

For any MOPS $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ associated to u_{0}, the statements are equivalent:
(a) $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ is a classical sequence.
(b) $\exists k \geqslant 1$ such that $\left\{P_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ is orthogonal (Hahn's theorem).
(c) $\exists \Phi \Psi \in \mathcal{P}$ such that the associated regular form u_{0} satisfies

$$
D\left(\Phi u_{0}\right)+\Psi u_{0}=0
$$

where $\operatorname{deg} \Phi \leqslant 2$ (Φ monic) and $\operatorname{deg}(\Psi)=1$
(d) There exist two polynomials Φ (monic with $\operatorname{deg} \Phi \leqslant 2$) and $\Psi($ with $\operatorname{deg} \Psi=1)$ and a sequence $\left\{\chi_{n}\right\}_{n \in \mathbb{N}}$ with $\chi_{0}=0$ and $\chi_{n+1} \neq 0, n \in \mathbb{N}$, such that

$$
\mathcal{F}\left(\mathbf{P}_{\mathrm{n}}(x)\right)=\chi_{\mathrm{n}} \mathbf{P}_{\mathrm{n}}, \quad n \geqslant 0,[\text { Bochner }(1929)]
$$

where

Classical polynomial sequences - characterisation

For any MOPS $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ associated to u_{0}, the statements are equivalent:
(a) $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ is a classical sequence.
(b) $\exists k \geqslant 1$ such that $\left\{P_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ is orthogonal (Hahn's theorem).
(c) $\exists \Phi \Psi \in \mathcal{P}$ such that the associated regular form u_{0} satisfies

$$
D\left(\Phi u_{0}\right)+\Psi u_{0}=0
$$

where $\operatorname{deg} \Phi \leqslant 2$ (Φ monic) and $\operatorname{deg}(\Psi)=1$
(d) There exist two polynomials Φ (monic with $\operatorname{deg} \Phi \leqslant 2$) and Ψ (with $\operatorname{deg} \Psi=1$) and a sequence $\left\{\chi_{n}\right\}_{n \in \mathbb{N}}$ with $\chi_{0}=0$ and $\chi_{n+1} \neq 0, n \in \mathbb{N}$, such that

$$
\mathcal{F}\left(\mathbf{P}_{\mathbf{n}}(\mathbf{x})\right)=\chi_{\mathbf{n}} \mathbf{P}_{\mathbf{n}}, \quad n \geqslant 0,[\text { Bochner (1929) }]
$$

where

$$
\mathcal{F}=\boldsymbol{\Phi}(\mathbf{x}) \mathbf{D}^{2}-\boldsymbol{\Psi}(\mathbf{x}) \mathbf{D}
$$

Construction of a generalisation on the Bochner differential equation fulfilled by classical polynomials
Let $k \in \mathbb{N}^{*}$ and $\left\{P_{n}\right\}_{n \geqslant 0}$ be a MPS.
If $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{u_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ represent the dual sequences of $\left\{P_{n}\right\}_{n \geqslant 0}$ and $\left\{P_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ (resp.), then it holds

$$
D^{k}\left(u_{n}^{[k]}\right)=(-1)^{k} \prod_{\mu=1}^{k}(n+\mu) u_{n+k}, n \in \mathbb{N}
$$

Suppose $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{P_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ are two MOPS.
Therefore, the elements of the corresponding dual sequences are related by

with

Construction of a generalisation on the Bochner differential equation fulfilled by classical polynomials
Let $k \in \mathbb{N}^{*}$ and $\left\{P_{n}\right\}_{n \geqslant 0}$ be a MPS.
If $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{u_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ represent the dual sequences of $\left\{P_{n}\right\}_{n \geqslant 0}$ and $\left\{P_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ (resp.), then it holds

$$
D^{k}\left(u_{n}^{[k]}\right)=(-1)^{k} \prod_{\mu=1}^{k}(n+\mu) u_{n+k}, n \in \mathbb{N}
$$

Suppose $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{P_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ are two MOPS.
Therefore, the elements of the corresponding dual sequences are related by

$$
\left(P_{n}^{[k]} u_{0}^{[k]}\right)^{(k)}=\lambda_{n}^{k} P_{n+k} u_{0}, \quad n \in \mathbb{N},
$$

with

$$
\lambda_{n}^{k}=(-1)^{k} \frac{\left\langle u_{0}^{[k]},\left(P_{n}^{[k]}\right)^{2}\right\rangle}{\left\langle u_{0}, P_{n+k}^{2}\right\rangle} \prod_{\mu=1}^{k}(n+\mu), \quad n \in \mathbb{N} .
$$

construction of a generalisation on the Bochner (cont.)
Using Leibniz relation for derivation, it follows
$\sum_{\nu=0}^{k}\binom{k}{\nu}\left(P_{n}^{[k]}\right)^{(\nu)}\left(\mathbf{u}_{0}^{[k]}\right)^{(k-\nu)}=\lambda_{n}^{k} P_{n+k} \mathbf{u}_{0}, \quad n \in \mathbb{N}$,
Inasmuch as $\left\{P_{n}^{[j]}\right\}_{n \in \mathbb{N}}, 0 \leqslant j \leqslant k$, is also classical
we derive

with

thereby.

By virtue of the regularity of u_{0}, this last equality permits to deduce
construction of a generalisation on the Bochner (cont.)
Using Leibniz relation for derivation, it follows
$\sum_{\nu=0}^{k}\binom{k}{\nu}\left(P_{n}^{[k]}\right)^{(\nu)}\left(\mathbf{u}_{0}^{[k]}\right)^{(k-\nu)}=\lambda_{n}^{k} P_{n+k} \mathbf{u}_{0}, \quad n \in \mathbb{N}$,
Inasmuch as $\left\{P_{n}^{[j]}\right\}_{n \in \mathbb{N}}, 0 \leqslant j \leqslant k$, is also classical we derive

$$
\left(\mathbf{u}_{0}^{[k]}\right)^{(k-\nu)}=\omega_{k, \nu} \lambda_{0}^{k} \Phi^{\nu} P_{k-\nu}^{[\nu]} \mathbf{u}_{0}, \quad 0 \leqslant \nu \leqslant k
$$

with $\quad \omega_{k, \nu}=\left\{\begin{array}{cll}\left(-\Psi^{\prime}(0)\right)^{-\nu} & \text { if } 0 \leqslant \operatorname{deg} \Phi \leqslant 1, \\ \frac{1}{\left(k-1-\Psi^{\prime}(0)\right)_{\nu}} & \text { if } & \operatorname{deg} \Phi=2,\end{array}\right.$
thereby.

construction of a generalisation on the Bochner (cont.)
Using Leibniz relation for derivation, it follows
$\sum_{\nu=0}^{k}\binom{k}{\nu}\left(P_{n}^{[k]}\right)^{(\nu)}\left(\mathbf{u}_{0}^{[k]}\right)^{(k-\nu)}=\lambda_{n}^{k} P_{n+k} \mathbf{u}_{0}, \quad n \in \mathbb{N}$,
Inasmuch as $\left\{P_{n}^{[j]}\right\}_{n \in \mathbb{N}}, 0 \leqslant j \leqslant k$, is also classical we derive

$$
\left(\mathbf{u}_{0}^{[k]}\right)^{(k-\nu)}=\omega_{k, \nu} \lambda_{0}^{k} \Phi^{\nu} P_{k-\nu}^{[\nu]} \mathbf{u}_{0}, \quad 0 \leqslant \nu \leqslant k
$$

with $\quad \omega_{k, \nu}=\left\{\begin{array}{lll}\left(-\Psi^{\prime}(0)\right)^{-\nu} & \text { if } \quad 0 \leqslant \operatorname{deg} \Phi \leqslant 1, \\ \frac{1}{\left(k-1-\Psi^{\prime}(0)\right)_{\nu}} & \text { if } \quad \operatorname{deg} \Phi=2,\end{array}\right.$
thereby...

$$
\sum_{\nu=0}^{k}\binom{k}{\nu} \omega_{k, \nu} \lambda_{0}^{k} \Phi^{\nu} P_{k-\nu}^{[\nu]}\left(P_{n}^{[k]}\right)^{(\nu)} \mathbf{u}_{0}=\lambda_{n}^{k} P_{n+k} \mathbf{u}_{0}, \quad n \in \mathbb{N},
$$

By virtue of the regularity of u_{0}, this last equality permits to deduce ...

Generalisation of Bochner's differential equation

Theorem
Let $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ be a MOPS. Suppose there is an integer $k \geqslant 1$ such that $\left\{P_{n}^{[k]}\right\}_{n \in \mathbb{N}}$ is a MOPS. Then any polynomial P_{n+k} fulfils the following differential equation of order $2 k$:

$$
\sum_{\nu=0}^{\mathbf{k}} \boldsymbol{\Lambda}_{\nu}(\mathbf{k} ; \mathbf{x}) \mathbf{D}^{\mathbf{k}+\nu} \mathbf{P}_{\mathbf{n}+\mathbf{k}}(\mathbf{x})=\mathbf{\Xi}_{\mathbf{n}}(\mathbf{k}) \mathbf{P}_{\mathbf{n}+\mathbf{k}}(\mathbf{x}), n \in \mathbb{N}
$$

where

$$
\begin{aligned}
& \Lambda_{\nu}(k ; x)=\frac{\lambda_{0}^{k} \omega_{k, \nu}}{\nu!} \Phi^{\nu}(x)\left(P_{k}(x)\right)^{(\nu)}, \quad 0 \leqslant \nu \leqslant k, \\
& \Xi_{n}(k)=\lambda_{n}^{k}\{n+k\}_{(\mathbf{k})}, \quad n \in \mathbb{N} ; \\
& \lambda_{n}^{k}=(-1)^{k} \frac{\left\langle v_{0}, Q_{n}^{2}\right\rangle}{\left\langle u_{0}, P_{n+k}^{2}\right\rangle}(n+1)_{k}, \quad n \in \mathbb{N} ;
\end{aligned}
$$

with D representing the differential operator and $\{x\}_{(\mathbf{k})}:=x(x-1) \ldots(x-k+1), k \in \mathbb{N}$.

Extension of Bochner's differential equation

Corollary

Let $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ be a classical MOPS and k a positive integer. Consider the differential operator $\mathcal{F}=\Phi(x) D^{2}-\Psi(x) D$ where Φ is a monic polynomial with $\operatorname{deg} \Phi \leqslant 2$, and Ψ a polynomial such that $\operatorname{deg} \Psi=1$.
Then, for any set $\left\{c_{k, \mu}: 0 \leqslant \mu \leqslant k\right\}$ of complex numbers not depending on n, each element of $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ fulfils the differential equation given by

$$
\sum_{\mu=0}^{k} c_{k, \mu} \mathcal{F}^{\mu} P_{n}(x)=\sum_{\mu=0}^{k} c_{k, \mu}\left(\chi_{n}\right)^{\mu} P_{n}(x), \quad n \in \mathbb{N},
$$

where $\left\{\chi_{n}\right\}_{n \geqslant 1}$ represents a sequence of nonzero complex numbers and \mathcal{F}^{k} is recursively defined through $\mathcal{F}^{k}[y](x)=\mathcal{F}\left(\mathcal{F}^{k-1}[y](x)\right)$, for $k \in \mathbb{N}^{*}$ with \mathcal{F}^{0} denote the identity operator.

Relation between the two generalisations

Corollary

Let $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ be a classical sequence and k a positive integer. If there exist coefficients $d_{k, \mu}$ and $\widetilde{d}_{k, \mu} 0 \leqslant \mu \leqslant k$, not depending on n, such that

$$
\begin{aligned}
& \bar{\Xi}_{n-k}(k)=\sum_{\tau=0}^{k} d_{k, \tau}\left(\chi_{n}\right)^{\tau}, \quad n \geqslant 0, \\
& \left(\chi_{n}\right)^{k}=\sum_{\tau=0}^{k} \widetilde{d}_{k, \tau} \Xi_{n-\tau}(\tau), \quad n \geqslant 0,
\end{aligned}
$$

then the two following equalities hold:

$$
\begin{aligned}
& \sum_{\nu=0}^{k} \Lambda_{k}(k ; x) D^{k+\nu}=\sum_{\tau=0}^{k} d_{k, \tau} \mathcal{F}^{\tau} \\
& \mathcal{F}^{k}=\sum_{\tau=0}^{k} \tilde{d}_{k, \tau}\left\{\sum_{\nu=0}^{\tau} \Lambda_{\nu}(\tau ; x) D^{\tau+\nu}\right\}
\end{aligned}
$$

canonical elements for each one of the classical families

$n \in \mathbb{N}$	Hermite	Laguerre $\alpha \neq-(n+1)$	Bessel $\alpha \neq-\frac{n}{2}$	Jacobi $\alpha, \beta \neq-(n+1)$ $\alpha+\beta \neq-(n+2)$
$\Phi(x)$	1	x	x^{2}	$x^{2}-1$
$\Psi(x)$	$2 x$	$x-\alpha-1$	$n^{k}(n+2 \alpha-1)^{k}$	$n^{k}(n+\alpha+\beta+1)$
$\left(\chi_{n}\right)^{k}$	$(-2)^{k} n^{k}$	$(-1)^{k} n^{k}$	$\frac{(-1)^{k}}{(\alpha+1)_{k}}\{n\}_{(\mathbf{k})}$	$C_{\alpha}^{k}(2 \alpha-1+n)_{k}\{n\}_{(\mathbf{k})}$
$\equiv_{n-k}(k)$	$(-2)^{k}\{n\}_{(\mathbf{k})}$	$C_{\alpha, \beta}^{k}(\alpha+\beta+1+n)_{k}\{n\}_{(\mathbf{k})}$		
where			$C_{\alpha}^{k}=4^{-k}(2 \alpha)_{2 k}$	$C_{\alpha, \beta}^{k}=\frac{(-4)^{-k}(\alpha+\beta+2)_{2 k}}{(\alpha+1)_{k}(\beta+1)_{k}}$

Stirling numbers

Representing by $s(k, \nu)$ and $S(k, \nu)$, with $k, \nu \in \mathbb{N}$, the Stirling numbers of first and second kind, respectively, the following equalities hold:

$$
\{x\}_{(\mathbf{k})}=\sum_{\nu=0}^{k} s(k, \nu) x^{\nu}
$$

and

$$
x^{k}=\sum_{\nu=0}^{k} S(k, \nu)\{x\}_{(\nu)}
$$

where $\{x\}_{(\mathbf{k})}=x(x-1) \ldots(x-k+1)$ represent the falling factorial of x Such numbers fulfil a "triangular" recurrence relation, more precisely...

$$
\left\{\begin{array}{l}
s(k+1, \nu+1)=s(k, \nu)-k s(k, \nu+1) \\
s(k, 0)=s(0, k)=\delta_{k, 0} \\
s(k, \nu)=0, \quad \nu \geqslant k+1
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
S(k+1, \nu+1)=S(k, \nu)+(\nu+1) S(k, \nu+1) \\
S(k, 0)=S(0, k)=\delta_{k, 0} \\
S(k, \nu)=0, \quad \nu \geqslant k+1
\end{array}\right.
$$

A-modified factorial of a number

Definition
Let A be a number (possibly complex) and $k \in \mathbb{N}$. For any number x we define
to be the A-modified falling factorial (of order k).
As a result, there exist two unique sequences of numbers $\left\{\widehat{s}_{A}(k, \nu)\right\}_{k, \nu \in \mathbb{N}}$ and $\left\{\widehat{S}_{A}(k, \nu)\right\}_{k, \nu \in \mathbb{N}}$ such that

A-modified factorial of a number

Definition

Let A be a number (possibly complex) and $k \in \mathbb{N}$. For any number x we define

$$
\{x\}_{(\mathrm{k} ; \mathbf{A})}:=\left\{\begin{array}{ccc}
1 & \text { if } & k=0, \tag{1}\\
\prod_{\nu=0}^{k-1}(x-\nu(\nu+A)) & \text { if } & k \in \mathbb{N}^{*},
\end{array}\right.
$$

to be the A-modified falling factorial (of order k).
As a result, there exist two unique sequences of numbers $\left\{\widehat{\widehat{s}}_{\mathcal{A}}(k, \nu)\right\}_{k, \nu \in \mathbb{N}}$ and $\left\{\widehat{S}_{A}(k, \nu)\right\}_{k, \nu \in \mathbb{N}}$ such that

$$
\begin{aligned}
& \{x\}_{(\mathrm{k}: \mathbf{A})}=\sum_{\nu=0}^{k} \widehat{s}_{A}(k, \nu) x^{\nu}, k \in \mathbb{N} \\
& x^{k}=\sum_{\nu=0}^{k} \widehat{S}_{A}(k, \nu)\{x\}_{(\nu ; \mathbf{A})}, k \in \mathbb{N},
\end{aligned}
$$

A-modified Stirling numbers

Proposition

The set of numbers $\left\{\widehat{s}_{A}(k, \nu)\right\}_{\nu, k \geqslant 0}$ satisfy the following "triangular" recurrence relation

$$
\begin{aligned}
& \widehat{s}_{A}(k+1, \nu+1)=\widehat{s}_{A}(k, \nu)-k(k+A) \widehat{s}_{A}(k, \nu+1), \\
& \widehat{s}_{A}(k, 0)=\widehat{s}_{A}(0, k)=\delta_{k, 0} \\
& \widehat{s}_{A}(k, \nu)=0, \nu \geqslant k+1
\end{aligned}
$$

whereas the set of numbers $\left\{\widehat{S}_{A}(k, \nu)\right\}_{\nu, k \geqslant 0}$ satisfy the "triangular" relation

$$
\begin{aligned}
& \widehat{S}_{A}(k+1, \nu+1)=\widehat{S}_{A}(k, \nu)+(\nu+1)(\nu+1+A) \widehat{S}_{A}(k, \nu+1) \\
& \widehat{S}_{A}(k, 0)=\widehat{S}_{A}(0, k)=\delta_{k, 0} \\
& \widehat{S}_{A}(k, \nu)=0, \nu \geqslant k+1
\end{aligned}
$$

for $k, \nu \in \mathbb{N}$.

A-modified Stirling numbers: some properties

- $\widehat{S}_{A}(k, \nu)=\frac{1}{\nu!} \sum_{\sigma=1}^{\nu}\binom{\nu}{\sigma}(-1)^{\nu+\sigma} \frac{(A+2 \sigma) \Gamma(A+\sigma)}{\Gamma(A+\sigma+\nu+1)}(\sigma(\sigma+A))^{k}$,
for $k, \nu \in \mathbb{N}$ and $1 \leqslant \nu \leqslant k$.
- When $x=n(n+A)$ for $n \in \mathbb{N}$ and $A \in \mathbb{C}$, its A-modified factorial (of order k) is given by:

which, in accordance with the definition of falling or rising factorial, may be expressed like

$$
\begin{equation*}
\{n(n+A)\}_{(\mathrm{k} ; \mathbf{A})}=\{n\}_{(\mathrm{k})}(n+A)_{k} . \tag{2}
\end{equation*}
$$

A-modified Stirling numbers: some properties

- $\widehat{S}_{A}(k, \nu)=\frac{1}{\nu!} \sum_{\sigma=1}^{\nu}\binom{\nu}{\sigma}(-1)^{\nu+\sigma} \frac{(A+2 \sigma) \Gamma(A+\sigma)}{\Gamma(A+\sigma+\nu+1)}(\sigma(\sigma+A))^{k}$,
for $k, \nu \in \mathbb{N}$ and $1 \leqslant \nu \leqslant k$.
- When $x=n(n+A)$ for $n \in \mathbb{N}$ and $A \in \mathbb{C}$, its A-modified factorial (of order k) is given by:
$\{n(n+A)\}_{(\mathbf{k} ; \mathbf{A})}=\prod_{\nu=0}^{k-1}(n(n+A)-\nu(\nu+A))=\prod_{\nu=0}^{k-1}((n-\nu)(n+A+\nu))$
which, in accordance with the definition of falling or rising factorial, may be expressed like

$$
\begin{equation*}
\{n(n+A)\}_{(\mathbf{k} ; \mathbf{A})}=\{n\}_{(\mathbf{k})}(n+A)_{k} . \tag{2}
\end{equation*}
$$

list of the first A-modified Stirling numbers of first kind: $\widehat{s}_{A}(k, \nu)$

\mathbf{k}	ν	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	1	0	0	0	$\mathbf{5}$
$\mathbf{2}$	$-(1+A)$	1	0	0	0
$\mathbf{3}$	$2(1+A)_{2}$	$-5-3 A$	1	0	0
$\mathbf{4}$	$-6(1+A)_{3}$	$49+A(48+11 A)$	$-2(7+3 A)$	1	0
$\mathbf{5}$	$24(1+A)_{4}$	$-2(410+515 A)$	$273+5 A(40+7 A)$	$-10(3+A)$	1

second kind: $\widehat{S}_{A}(k, \nu)$

\mathbf{k}	ν	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$		1	0	0	0	0
$\mathbf{2}$	$1+A$	1	0	0	0	
$\mathbf{3}$	$(1+A)^{2}$	$5+3 A$	1	0	0	
$\mathbf{4}$	$(1+A)^{3}$	$21+A(24+7 A)$	$14+6 A$	1	0	
$\mathbf{5}$	$(1+A)^{4}$	$(5+3 A)(17+A(18+5 A))$	$147+5 A(24+5 A)$	$10(3+A)$	1	

Hermite Case

we have

$$
\begin{aligned}
& \mathcal{F}=D^{2}-2 x D \\
& \Lambda_{\nu}(k ; x)=\binom{k}{\nu}(-2)^{k-\nu} P_{k-\nu}(x), 0 \leqslant \nu \leqslant k
\end{aligned}
$$

therefore ...

$$
\left\{\begin{array}{l}
\sum_{\nu=0}^{k} \Lambda_{\nu}(k ; x) D^{k+\nu}=\sum_{\tau=0}^{k}(-2)^{k-\tau} s(k, \tau) \mathcal{F}^{\tau} \\
\mathcal{F}^{k}=\sum_{\tau=0}^{k}(-2)^{k-\tau} S(k, \tau) \sum_{\nu=0}^{\tau} \Lambda_{\nu}(\tau ; x) D^{\tau+\nu}
\end{array},\right.
$$

Laguerre Case

we have

$$
\begin{aligned}
& \mathcal{F}=x D^{2}-(x-\alpha-1) D \\
& \Lambda_{\nu}(k ; x)=\binom{k}{\nu} \frac{(-1)^{k-\nu}}{(\alpha+1)_{k}} x^{\nu} P_{k-\nu}(x ; \alpha+\nu)
\end{aligned}
$$

therefore ...

$$
\left\{\begin{array}{l}
\sum_{\nu=0}^{k} \Lambda_{\nu}(k ; x) D^{k+\nu}=\sum_{\tau=0}^{k} \frac{(-1)^{k-\tau}}{(\alpha+1)_{k}} s(k, \tau) \mathcal{F}^{\tau} \\
\mathcal{F}^{k}=\sum_{\tau=0}^{k}(-1)^{k-\tau}(\alpha+1)_{\tau} S(k, \tau) \sum_{\nu=0}^{\tau} \Lambda_{\nu}(\tau ; x) D^{\tau+\nu}
\end{array}\right.
$$

Bessel Case

we have

$$
\begin{aligned}
& \mathcal{F}=x^{2} D^{2}+2(\alpha x+1) D \\
& \Lambda_{\nu}(k ; x)=\binom{k}{\nu} C_{\alpha}^{k}(2 \alpha-1+k+\nu)_{k-\nu} x^{2 \nu} P_{k-\nu}(x ; \alpha+\nu), 0 \leqslant \nu \leqslant k
\end{aligned}
$$

therefore ...

$$
\left\{\begin{array}{l}
\sum_{\nu=0}^{k} \Lambda_{\nu}(k ; x) D^{k+\nu}=\sum_{\tau=0}^{k} C_{\alpha}^{k} \widehat{S}_{2 \alpha-1}(k, \nu) \mathcal{F}^{\tau} \\
\mathcal{F}^{k}=\sum_{\tau=0}^{k}\left(C_{\alpha}^{\tau}\right)^{-1} \widehat{S}_{2 \alpha-1}(k, \tau) \sum_{\nu=0}^{\tau} \Lambda_{\nu}(\tau ; x) D^{\tau+\nu}
\end{array}\right.
$$

Jacobi Case

we have

$$
\begin{aligned}
& \mathcal{F}=\left(x^{2}-1\right) D+((\alpha+\beta+2) x-(\alpha-\beta)) D \\
& \Lambda_{\nu}(k ; x)=\binom{k}{\nu} C_{\alpha, \beta}^{k}(\alpha+\beta+1+k+\nu)_{k-\nu}\left(x^{2}-1\right)^{\nu} P_{k-\nu}(x ; \alpha+\nu, \beta+\nu)
\end{aligned}
$$

therefore ...

$$
\left\{\begin{array}{l}
\sum_{\nu=0}^{k} \Lambda_{\nu}(k ; x) D^{k+\nu}=\sum_{\tau=0}^{k} C_{\alpha, \beta}^{k} \widehat{S}_{\alpha+\beta+1}(k, \tau) \mathcal{F}^{\tau} \\
\mathcal{F}^{k}=\sum_{\tau=0}^{k}\left(C_{\alpha, \beta}^{\tau}\right)^{-1} \widehat{S}_{\alpha+\beta+1}(k, \tau) \sum_{\nu=0}^{\tau} \Lambda_{\nu}(\tau ; x) D^{\tau+\nu}
\end{array}\right.
$$

Some references

S．Bochner，Über Sturm－Liouvillesche Polynomsysteme，Math．Z． 29 （1929）730－736．

嘈
A．F．Loureiro，P．Maroni，P．，Z．Rocha，The generalized Bochner condition about classical orthogonal polynomials revisited，J．Math．Anal．Appl． 322 （2006）645－667．

웅
A．F．Loureiro，New results on the Bochner condition about classical orthogonal polynomials，submitted． （http：／／www．fc．up．pt／cmup／v2／frames／publications．htm ）

P．Maroni，Variations around classical orthogonal polynomials．Connected problems，J．Comput．Appl．Math． 48 （1993）133－155．
䔍
P．Maroni，Fonctions Eulériennes．Polynômes orthogonaux classiques． Techniques de l＇Ingénieur，traité Généralités（Sciences Fondamentales），A 154 （1994），1－30．

完
J．Riordan，Combinatorial identities，Wiley，New Yok， 1968.

