Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
0	000		0
0	0		0
00	00		0
			00

Inverse relations between powers of Bochner's operator and differential operators of even order

ana filipa loureiro ISEC,Coimbra

September, 2008 SLC'61, Curia - Portugal

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
0	000		0
0	0		0
00	00		0
			00

Introduction

Introduction and preliminary results Orthogonal polynomial sequences Classical polynomial sequences

Generalisations on Bochner's characterisation about classical polynomials

Generalised on Bochner's differential equation Extension of Bochner's differential equation Relation between the two generalisations

sums relating powers of a variable and its factorials

Sums relating powers of ${\mathcal F}$ and its "factorials"

Hermite case Laguerre case Bessel case Jacobi case

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
•	000		0
00	00		0
			00

Some of the notation

- $\mathbb N\,$ set of all nonnegative integers
- \mathbb{N}^* set of all positive integers
 - $\mathbb C$ set of all complex numbers
- ${\mathcal P}\,$ vector space of polynomials with coefficients in ${\mathbb C}\,$
- \mathcal{P}' dual space of $\mathcal P$
- $(p)^{(n)}$ *n*-th derivative of $p \in \mathcal{P}$, $n \in \mathbb{N}$
 - $p^{[n]}$ *n*-th normalized derivative, so that $p^{[n]}$ is monic
- $\langle u, p \rangle$ action of $u \in \mathcal{P}'$ on $p \in \mathcal{P}$
- MPS Monic Polynomial Sequence $\{P_n\}_{n\geq 0}$ such that $P_n(x) = x^n + p_{n-1}(x)$, with deg $p_{n-1} = n 1$

Preliminary results

Derivative and product by a polynomial of a form $\langle u', f \rangle := -\langle u, f' \rangle$, $\langle gu, f \rangle := \langle u, gf \rangle$, $f \in \mathcal{P}$,

The **dual sequence** $\{u_n\}_{n \ge 0}$ of a monic polynomial sequence (MPS) $\{P_n\}_{n \ge 0}$ is defined by $\langle u_n, P_k \rangle = \delta_{n,k}, \quad n, k \ge 0.$

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
•	000		0
00	00		0
			00

Some of the notation

- ${\mathbb N}\,$ set of all nonnegative integers
- \mathbb{N}^* set of all positive integers
 - $\mathbb C\,$ set of all complex numbers
- ${\mathcal P}\,$ vector space of polynomials with coefficients in ${\mathbb C}\,$
- \mathcal{P}' dual space of $\mathcal P$
- $(p)^{(n)}$ *n*-th derivative of $p \in \mathcal{P}$, $n \in \mathbb{N}$
 - $p^{[n]}$ *n*-th normalized derivative, so that $p^{[n]}$ is monic
- $\langle u, p
 angle$ action of $u \in \mathcal{P}'$ on $p \in \mathcal{P}$
- MPS Monic Polynomial Sequence $\{P_n\}_{n\geq 0}$ such that $P_n(x) = x^n + p_{n-1}(x)$, with deg $p_{n-1} = n - 1$

Preliminary results

Derivative and product by a polynomial of a form $\langle u', f \rangle := -\langle u, f' \rangle$, $\langle gu, f \rangle := \langle u, gf \rangle$, $f \in \mathcal{P}$,

The **dual sequence** $\{u_n\}_{n \ge 0}$ of a monic polynomial sequence (MPS) $\{P_n\}_{n \ge 0}$ is defined by $\langle u_n, P_k \rangle = \delta_{n,k}, \quad n,k \ge 0.$

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
•	000		0
0	0		0
00	00		00

Some of the notation

- ${\mathbb N}\,$ set of all nonnegative integers
- \mathbb{N}^* set of all positive integers
 - $\mathbb C\,$ set of all complex numbers
- ${\mathcal P}\,$ vector space of polynomials with coefficients in ${\mathbb C}\,$
- \mathcal{P}' dual space of $\mathcal P$
- $(p)^{(n)}$ *n*-th derivative of $p \in \mathcal{P}$, $n \in \mathbb{N}$
 - $p^{[n]}$ *n*-th normalized derivative, so that $p^{[n]}$ is monic
- $\langle u, p
 angle$ action of $u \in \mathcal{P}'$ on $p \in \mathcal{P}$
- MPS Monic Polynomial Sequence $\{P_n\}_{n\geq 0}$ such that $P_n(x) = x^n + p_{n-1}(x)$, with deg $p_{n-1} = n - 1$

Preliminary results

Derivative and product by a polynomial of a form $\langle u', f \rangle := -\langle u, f' \rangle$, $\langle gu, f \rangle := \langle u, gf \rangle$, $f \in \mathcal{P}$,

The dual sequence $\{u_n\}_{n \ge 0}$ of a monic polynomial sequence (MPS) $\{P_n\}_{n \ge 0}$ is defined by $\langle u_n, P_k \rangle = \delta_{n,k}, \quad n, k \ge 0.$

troduction	Generalisations on Bochner's characterisation
	000
	0
0	00
0	00

Orthogonal polynomial sequences (OPS)

Definition

A MPS $\{P_n\}_{n \ge 0}$ is said to be a MOPS with respect to $u \in \mathcal{P}'$ if

 $\langle u, P_n P_m \rangle = K_n \delta_{n,m}, \quad n, m \ge 0$

 $K_n \neq 0, \quad n \geqslant 0$.

In this case, u is called a regular form and it is proportional to u_0

Some characterisation properties:

Consider $\{P_n\}_{n\geq 0}$ to be a MPS. The statements are equivalent: (a) $\{P_n\}_{n\geq 0}$ is a MOPS with respect to u_0

(b)
$$\begin{cases} P_1(x) = x - \beta_0; \quad P_1(x) = 1\\ P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x)\\ \text{with } \beta_n = \frac{\langle u_0, xP_n^2 \rangle}{\langle u_0, P_n^2 \rangle} \text{ and } \gamma_{n+1} = \frac{\langle u_0, P_{n+1}^2 \rangle}{\langle u_0, P_n^2 \rangle} \neq 0, \ n \in \mathbb{N}. \end{cases}$$

(c)
$$u_n = \left(\langle u_0, P_n^2 \rangle \right)^{-1} P_n u_0, \quad n \in \mathbb{N},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

troduction	Generalisations on Bochner's characterisation
	000
0	00

Orthogonal polynomial sequences (OPS)

Definition

A MPS $\{P_n\}_{n \ge 0}$ is said to be a MOPS with respect to $u \in \mathcal{P}'$ if

 $\langle u, P_n P_m \rangle = K_n \delta_{n,m}, \quad n, m \ge 0$

 $K_n \neq 0, \quad n \geqslant 0$.

In this case, u is called a regular form and it is proportional to u_0

Some characterisation properties:

Consider $\{P_n\}_{n \ge 0}$ to be a MPS. The statements are equivalent: (a) $\{P_n\}_{n \ge 0}$ is a MOPS with respect to u_0

(b)
$$\begin{cases} P_1(x) = x - \beta_0; & P_1(x) = 1\\ P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x)\\ \text{with } \beta_n = \frac{\langle u_0, xP_n^2 \rangle}{\langle u_0, P_n^2 \rangle} \text{ and } \gamma_{n+1} = \frac{\langle u_0, P_{n+1}^2 \rangle}{\langle u_0, P_n^2 \rangle} \neq 0, n \in \mathbb{N}. \end{cases}$$

(c)
$$u_n = \left(\langle u_0, P_n^2 \rangle \right)^{-1} P_n u_0, \quad n \in \mathbb{N},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Generalisations on Bochner's characterisation
0	000
•0	00

Classical polynomial sequence

Let $k \in \mathbb{N}^*$ and $\{P_n\}_{n \ge 0}$ be a MPS. The sequence $\{P_n^{[k]}\}_{n \in \mathbb{N}}$ with $P_n^{[k]}(x) := \frac{1}{n+1} \left(P_{n+1}^{[k-1]}(x)\right)'$, $n \in \mathbb{N}$, (and $P_n^{[0]} := P_n$, $n \ge 0$), is also a MPS.

Definition

A MOPS $\{P_n\}_{n\in\mathbb{N}}$ is said to be classical when $\{P_n^{[1]}\}_{n\in\mathbb{N}}$ is also orthogonal (Hahn's property, [Hahn(1935)]) The associated regular form u_0 is called classical form (Hermite, Laguerre, Bessel and Jacobi).

Introduction	Generalisations on Bochner's characterisation
0	000
•0	00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Classical polynomial sequence

Let
$$k \in \mathbb{N}^*$$
 and $\{P_n\}_{n \ge 0}$ be a MPS. The sequence $\{P_n^{[k]}\}_{n \in \mathbb{N}}$ with $P_n^{[k]}(x) := \frac{1}{n+1} \left(P_{n+1}^{[k-1]}(x)\right)'$, $n \in \mathbb{N}$, (and $P_n^{[0]} := P_n$, $n \ge 0$), is also a MPS.

Definition

A MOPS $\{P_n\}_{n \in \mathbb{N}}$ is said to be classical when $\{P_n^{[1]}\}_{n \in \mathbb{N}}$ is also orthogonal (Hahn's property, [Hahn(1935)]) The associated regular form u_0 is called classical form (Hermite, Laguerre, Bessel and Jacobi).

Introduction	Generalisations on Bochner's characterisation
○	000
○	0
○●	00

Classical polynomial sequences - characterisation

For any MOPS $\{P_n\}_{n \in \mathbb{N}}$ associated to u_0 , the statements are equivalent: (a) $\{P_n\}_{n \in \mathbb{N}}$ is a classical sequence.

- (b) $\exists k \ge 1$ such that $\{P_n^{[k]}\}_{n \in \mathbb{N}}$ is orthogonal (Hahn's theorem).

$$D(\Phi u_0) + \Psi u_0 = 0 ,$$

$$\mathcal{F}(\mathbf{P}_{n}(\mathbf{x})) = \chi_{n}\mathbf{P}_{n}, \ n \ge 0, \ [Bochner (1929)]$$

$$\mathcal{F} = \Phi(\mathbf{x}) \mathbf{D}^2 - \Psi(\mathbf{x}) \mathbf{D}$$

Introduction	Generalisations on Bochner's characterisation	Powers of
0 0 0	000 0 00	

Classical polynomial sequences - characterisation

For any MOPS $\{P_n\}_{n\in\mathbb{N}}$ associated to u_0 , the statements are equivalent: (a) $\{P_n\}_{n\in\mathbb{N}}$ is a classical sequence.

- (b) $\exists k \ge 1$ such that $\{P_n^{[k]}\}_{n \in \mathbb{N}}$ is orthogonal (Hahn's theorem).
- (c) $\exists \Phi \ \Psi \in \mathcal{P}$ such that the associated regular form u_0 satisfies

$$D(\Phi u_0) + \Psi u_0 = 0 ,$$

where $\mbox{deg}\,\Phi\leqslant 2$ (Φ monic) and $\mbox{deg}(\Psi)=1$

(d) There exist two polynomials Φ (monic with deg $\Phi \leq 2$) and Ψ (with deg $\Psi = 1$) and a sequence $\{\chi_n\}_{n\in\mathbb{N}}$ with $\chi_0 = 0$ and $\chi_{n+1} \neq 0$, $n \in \mathbb{N}$, such that

$$\mathcal{F}(\mathsf{P}_{\mathsf{n}}(\mathsf{x})) = \chi_{\mathsf{n}}\mathsf{P}_{\mathsf{n}}, \ n \ge 0, \ [\mathsf{Bochner}\ (1929)]$$

where

$$\mathcal{F} = \mathbf{\Phi}(\mathbf{x}) \mathbf{D}^2 - \mathbf{\Psi}(\mathbf{x}) \mathbf{D}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	Generalisations on Bochner's characterisation	Po
0	000	
0	0	
0.	00	

Classical polynomial sequences - characterisation

For any MOPS $\{P_n\}_{n\in\mathbb{N}}$ associated to u_0 , the statements are equivalent: (a) $\{P_n\}_{n\in\mathbb{N}}$ is a classical sequence.

- (b) $\exists k \ge 1$ such that $\{P_n^{[k]}\}_{n \in \mathbb{N}}$ is orthogonal (Hahn's theorem).
- (c) $\exists \Phi \ \Psi \in \mathcal{P}$ such that the associated regular form u_0 satisfies

$$D(\Phi u_0) + \Psi u_0 = 0$$

where deg $\Phi \leqslant 2~(\Phi~\text{monic})$ and deg $(\Psi) = 1$

(d) There exist two polynomials Φ (monic with deg $\Phi \leq 2$) and Ψ (with deg $\Psi = 1$) and a sequence $\{\chi_n\}_{n \in \mathbb{N}}$ with $\chi_0 = 0$ and $\chi_{n+1} \neq 0$, $n \in \mathbb{N}$, such that

$$\mathcal{F}(\mathbf{P}_{n}(\mathbf{x})) = \chi_{n}\mathbf{P}_{n}, \ n \ge 0, \ [Bochner \ (1929)]$$

where

$$\mathcal{F} = \Phi(x) D^2 - \Psi(x) D$$

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
0	000		0
0	0		0
00	00		0
			00

Construction of a generalisation on the Bochner differential equation fulfilled by classical polynomials

Let $k \in \mathbb{N}^*$ and $\{P_n\}_{n \ge 0}$ be a MPS.

If $\{u_n\}_{n\in\mathbb{N}}$ and $\{u_n^{[k]}\}_{n\in\mathbb{N}}$ represent the dual sequences of $\{P_n\}_{n\geq 0}$ and $\{P_n^{[k]}\}_{n\in\mathbb{N}}$ (resp.), then it holds

$$D^k\left(u_n^{[k]}
ight)=(-1)^k\prod_{\mu=1}^k\left(n+\mu
ight)\,\,u_{n+k},\,\,n\in\mathbb{N}$$

Suppose $\{P_n\}_{n\in\mathbb{N}}$ and $\{P_n^{[k]}\}_{n\in\mathbb{N}}$ are two MOPS.

Therefore, the elements of the corresponding dual sequences are related by

$$\left(P_n^{[k]} u_0^{[k]}\right)^{(k)} = \lambda_n^k P_{n+k} u_0 , \quad n \in \mathbb{N},$$

with

$$\lambda_n^k = (-1)^k \frac{\left\langle u_0^{[k]}, \left(P_n^{[k]}\right)^2 \right\rangle}{\left\langle u_0, P_{n+k}^2 \right\rangle} \prod_{\mu=1}^k (n+\mu) , \quad n \in \mathbb{N}.$$

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
0	000		0
0	0		0
00	00		0
			00

Construction of a generalisation on the Bochner differential equation fulfilled by classical polynomials

Let $k \in \mathbb{N}^*$ and $\{P_n\}_{n \ge 0}$ be a MPS.

If $\{u_n\}_{n\in\mathbb{N}}$ and $\{u_n^{[k]}\}_{n\in\mathbb{N}}$ represent the dual sequences of $\{P_n\}_{n\geq 0}$ and $\{P_n^{[k]}\}_{n\in\mathbb{N}}$ (resp.), then it holds

$$D^k\left(u_n^{[k]}
ight)=(-1)^k\prod_{\mu=1}^k\left(n+\mu
ight)\,\,u_{n+k},\,\,n\in\mathbb{N}$$

Suppose $\{P_n\}_{n\in\mathbb{N}}$ and $\{P_n^{[k]}\}_{n\in\mathbb{N}}$ are two MOPS.

Therefore, the elements of the corresponding dual sequences are related by

$$\left(P_n^{[k]} u_0^{[k]}\right)^{(k)} = \lambda_n^k P_{n+k} u_0 , \quad \boldsymbol{n} \in \mathbb{N},$$

with

$$\lambda_n^k = (-1)^k \frac{\left\langle u_0^{[k]}, \left(P_n^{[k]}\right)^2 \right\rangle}{\left\langle u_0, P_{n+k}^2 \right\rangle} \prod_{\mu=1}^k (n+\mu) , \quad n \in \mathbb{N}.$$

Introduction	Generalisations on Bochner's characterisation
0	000
0	0
00	00

construction of a generalisation on the Bochner (cont.)

Using Leibniz relation for derivation, it follows

$$\sum_{\nu=0}^{k} \binom{k}{\nu} \left(P_{n}^{[k]}\right)^{(\nu)} \left(\mathbf{u}_{0}^{[k]}\right)^{(k-\nu)} = \lambda_{n}^{k} P_{n+k} \mathbf{u}_{0}, \quad n \in \mathbb{N},$$

Inasmuch as $\{P_n^{[j]}\}_{n \in \mathbb{N}}, 0 \leq j \leq k$, is also classical we derive

$$\left(\mathbf{u}_{\mathbf{0}}^{[k]}\right)^{(k-\nu)} = \omega_{k,\nu} \ \lambda_{\mathbf{0}}^{k} \ \mathbf{\Phi}^{\nu} \ P_{k-\nu}^{[\nu]} \ \mathbf{u}_{\mathbf{0}} \ , \quad \mathbf{0} \leqslant \nu \leqslant k$$

with $\omega_{k,\nu} = \begin{cases} \left(-\Psi'(0) \right)^{-\nu} & \text{if } 0 \leqslant \deg \Phi \leqslant 1 \\ \frac{1}{\left(k - 1 - \Psi'(0) \right)_{\nu}} & \text{if } \deg \Phi = 2 \\ \end{cases}$

thereby...

$$\sum_{\nu=0}^{k} \binom{k}{\nu} \omega_{k,\nu} \ \lambda_{0}^{k} \ \Phi^{\nu} \ P_{k-\nu}^{[\nu]} \ \left(P_{n}^{[k]}\right)^{(\nu)} \ \mathbf{u}_{0} = \lambda_{n}^{k} \ P_{n+k} \ \mathbf{u}_{0}, \quad n \in \mathbb{N},$$

By virtue of the regularity of u_0 , this last equality permits to deduce ...

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials
0	000	
0	0	
00	00	

Powers of \mathcal{F} and its "factorials" 0 0 0

= na<</p>

construction of a generalisation on the Bochner (cont.)

Using Leibniz relation for derivation, it follows

$$\sum_{\nu=0}^{k} \binom{k}{\nu} \left(P_{n}^{[k]}\right)^{(\nu)} \left(\mathbf{u}_{0}^{[k]}\right)^{(k-\nu)} = \lambda_{n}^{k} P_{n+k} \mathbf{u}_{0}, \quad n \in \mathbb{N}.$$

Inasmuch as $\{P_n^{[j]}\}_{n\in\mathbb{N}}, 0 \leq j \leq k$, is also classical we derive

$$\left(\mathbf{u}_{\mathbf{0}}^{[k]}\right)^{(k-\nu)} = \omega_{k,\nu} \ \lambda_{\mathbf{0}}^{k} \ \Phi^{\nu} \ \mathcal{P}_{k-\nu}^{[\nu]} \ \mathbf{u}_{\mathbf{0}} \ , \quad \mathbf{0} \leqslant \nu \leqslant k$$

with
$$\omega_{k,\nu} = \begin{cases} \left(-\Psi'(0) \right)^{-\nu} & \text{if } 0 \leqslant \deg \Phi \leqslant 1 \\ \frac{1}{\left(k - 1 - \Psi'(0) \right)_{\nu}} & \text{if } \deg \Phi = 2 \\ \end{cases}$$

thereby...

$$\sum_{\nu=0}^{k} \binom{k}{\nu} \omega_{k,\nu} \ \lambda_{0}^{k} \ \Phi^{\nu} \ P_{k-\nu}^{[\nu]} \ \left(P_{n}^{[k]}\right)^{(\nu)} \ \mathbf{u}_{0} = \lambda_{n}^{k} \ P_{n+k} \ \mathbf{u}_{0}, \quad n \in \mathbb{N},$$

By virtue of the regularity of u_0 , this last equality permits to deduce ...

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials
0	000	
0	0	
00	00	

construction of a generalisation on the Bochner (cont.)

Using Leibniz relation for derivation, it follows

$$\sum_{\nu=0}^{k} \binom{k}{\nu} \left(P_{n}^{[k]}\right)^{(\nu)} \left(\mathbf{u}_{0}^{[k]}\right)^{(k-\nu)} = \lambda_{n}^{k} P_{n+k} \mathbf{u}_{0}, \quad n \in \mathbb{N}.$$

Inasmuch as $\{P_n^{[j]}\}_{n\in\mathbb{N}}, 0 \leq j \leq k$, is also classical we derive

$$\left(\mathbf{u}_{\mathbf{0}}^{[k]}\right)^{(k-\nu)} = \omega_{k,\nu} \ \lambda_{\mathbf{0}}^{k} \ \Phi^{\nu} \ \mathcal{P}_{k-\nu}^{[\nu]} \ \mathbf{u}_{\mathbf{0}} \ , \quad \mathbf{0} \leqslant \nu \leqslant k$$

with
$$\omega_{k,\nu} = \begin{cases} \left(-\Psi'(0) \right)^{-\nu} & \text{if } 0 \leqslant \deg \Phi \leqslant 1 \\ \frac{1}{\left(k - 1 - \Psi'(0) \right)_{\nu}} & \text{if } \deg \Phi = 2 \\ \end{cases}$$

thereby...

$$\sum_{\nu=0}^{k} \binom{k}{\nu} \omega_{k,\nu} \ \lambda_{0}^{k} \ \Phi^{\nu} \ P_{k-\nu}^{[\nu]} \ \left(P_{n}^{[k]}\right)^{(\nu)} \ \mathbf{u}_{0} = \lambda_{n}^{k} \ P_{n+k} \ \mathbf{u}_{0}, \quad n \in \mathbb{N},$$

By virtue of the regularity of u_0 , this last equality permits to deduce

ntroduction	Generalisations on Bochner's characterisation
C	000
	0
00	00

Generalisation of Bochner's differential equation

Theorem

Let $\{P_n\}_{n\in\mathbb{N}}$ be a MOPS. Suppose there is an integer $k \ge 1$ such that $\{P_n^{[k]}\}_{n\in\mathbb{N}}$ is a MOPS. Then any polynomial P_{n+k} fulfils the following differential equation of order 2k:

 $\sum_{
u=0}^{k} \Lambda_{
u}\left(\mathbf{k};\mathbf{x}\right) \ \mathbf{D}^{\mathbf{k}+
u} \mathbf{P}_{\mathbf{n}+\mathbf{k}}\left(\mathbf{x}\right) = \mathbf{\Xi}_{\mathbf{n}}\left(\mathbf{k}\right) \mathbf{P}_{\mathbf{n}+\mathbf{k}}\left(\mathbf{x}\right), \ \mathbf{n} \in \mathbb{N},$

where

$$\begin{split} \Lambda_{\nu}(k;x) &= \frac{\lambda_{0}^{k} \omega_{k,\nu}}{\nu!} \Phi^{\nu}(x) \left(P_{k}(x)\right)^{(\nu)}, \quad 0 \leq \nu \leq k \\ \Xi_{n}(k) &= \lambda_{n}^{k} \{n+k\}_{(k)}, \quad n \in \mathbb{N}; \\ \lambda_{n}^{k} &= (-1)^{k} \frac{\langle v_{0}, Q_{n}^{2} \rangle}{\langle u_{0}, P_{n+k}^{2} \rangle} (n+1)_{k}, \quad n \in \mathbb{N}; \end{split}$$

with D representing the differential operator and $\{x\}_{(k)} := x(x-1)\dots(x-k+1), k \in \mathbb{N}.$

luction	Generalisations on Bochner's characterisation
	000
	•

Extension of Bochner's differential equation

Corollary

Let $\{P_n\}_{n\in\mathbb{N}}$ be a classical MOPS and k a positive integer. Consider the differential operator $\mathcal{F} = \Phi(x)D^2 - \Psi(x)D$ where Φ is a monic polynomial with deg $\Phi \leq 2$, and Ψ a polynomial such that deg $\Psi = 1$. Then, for any set $\{c_{k,\mu} : 0 \leq \mu \leq k\}$ of complex numbers not depending on n, each element of $\{P_n\}_{n\in\mathbb{N}}$ fulfils the differential equation given by

$$\sum_{\mu=0}^k c_{k,\mu} \mathcal{F}^\mu \mathcal{P}_n(x) = \sum_{\mu=0}^k c_{k,\mu} (\chi_n)^\mu \mathcal{P}_n(x) , \quad n \in \mathbb{N},$$

where $\{\chi_n\}_{n\geq 1}$ represents a sequence of nonzero complex numbers and \mathcal{F}^k is recursively defined through $\mathcal{F}^k[y](x) = \mathcal{F}(\mathcal{F}^{k-1}[y](x))$, for $k \in \mathbb{N}^*$ with \mathcal{F}^0 denote the identity operator.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

ntroduction	Generalisations on Bochner's characterisation
C	000
)	0
00	•0

Relation between the two generalisations

Corollary

Let $\{P_n\}_{n\in\mathbb{N}}$ be a classical sequence and k a positive integer. If there exist coefficients $d_{k,\mu}$ and $d_{k,\mu} \in 0 \leq \mu \leq k$, not depending on n, such that

$$\begin{split} \Xi_{n-k}(k) &= \sum_{\tau=0}^k d_{k,\tau} \left(\chi_n \right)^{\tau} , \quad n \ge 0, \\ (\chi_n)^k &= \sum_{\tau=0}^k \widetilde{d}_{k,\tau} \, \Xi_{n-\tau}(\tau) , \quad n \ge 0, \end{split}$$

then the two following equalities hold:

$$\sum_{\nu=0}^{k} \Lambda_{k}(k; x) D^{k+\nu} = \sum_{\tau=0}^{k} d_{k,\tau} \mathcal{F}^{\tau}$$
$$\mathcal{F}^{k} = \sum_{\tau=0}^{k} \widetilde{d}_{k,\tau} \left\{ \sum_{\nu=0}^{\tau} \Lambda_{\nu}(\tau; x) D^{\tau+\nu} \right\}$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials
0	000	
0	0	
00	0.	

Powers	of	\mathcal{F}	and	its	"factorials"
0					
0					
0					
00					

canonical elements for each one of the classical families

	Hermite	Laguerre	Bessel	Jacobi
$n \in \mathbb{N}$		$\alpha \neq -(\textit{n}+1)$	$\alpha \neq -\frac{n}{2}$	$\begin{array}{l} \alpha, \beta \neq -(n+1) \\ \alpha + \beta \neq -(n+2) \end{array}$
$\Phi(x)$	1	x	x ²	$x^{2} - 1$
$\Psi(x)$	2 <i>x</i>	$x - \alpha - 1$	$-2(\alpha x+1)$	$-(\alpha + \beta + 2)x + (\alpha - \beta)$
$(\chi_n)^k$	$(-2)^k n^k$	$(-1)^k n^k$	$n^k (n+2lpha-1)^k$	$n^k (n + lpha + eta + 1)^k$
$\Xi_{n-k}(k)$	$(-2)^k \{n\}_{(k)}$	$\frac{(-1)^k}{\left(\alpha+1\right)_k}\left\{n\right\}_{(k)}$	$C^k_{lpha}(2lpha-1+n)_k\{n\}_{(k)}$	$C^k_{\alpha,\beta}(\alpha+\beta+1+n)_k\{n\}_{(k)}$
where			$C_{\alpha}^{k}=4^{-k}(2\alpha)_{2k}$	$C_{\alpha,\beta}^{k} = rac{(-4)^{-k} (\alpha+\beta+2)_{2k}}{(\alpha+1)_{k} (\beta+1)_{k}}$

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials
0	000	
0	0	
00	00	

Powers	of	\mathcal{F}	and	its	"factorials"
0					
0					
0					
00					

э

Stirling numbers

Representing by $s(k, \nu)$ and $S(k, \nu)$, with $k, \nu \in \mathbb{N}$, the **Stirling numbers of** first and second kind, respectively, the following equalities hold:

$$\{x\}_{(\mathbf{k})} = \sum_{\nu=0}^{k} s(k,\nu) x^{\nu}.$$

and

$$x^{k} = \sum_{\nu=0}^{k} S(k, \nu) \{x\}_{(\nu)},$$

where $\{x\}_{(k)} = x(x-1) \dots (x-k+1)$ represent the falling factorial of x Such numbers fulfil a "*triangular*" recurrence relation, more precisely...

$$\begin{cases} s(k+1,\nu+1) = s(k,\nu) - k s(k,\nu+1) \\ s(k,0) = s(0,k) = \delta_{k,0} \\ s(k,\nu) = 0, \quad \nu \ge k+1 \end{cases}$$

and

$$\begin{cases} S(k+1,\nu+1) = S(k,\nu) + (\nu+1) S(k,\nu+1) \\ S(k,0) = S(0,k) = \delta_{k,0} \\ S(k,\nu) = 0, \quad \nu \ge k+1 \end{cases}$$

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
0	000		0
0	0		0
00	00		0
			00

A-modified factorial of a number

Definition

Let A be a number (possibly complex) and $k \in \mathbb{N}$. For any number x we define

$$\{x\}_{(\mathbf{k};\mathbf{A})} := \begin{cases} 1 & \text{if } k = 0, \\ \prod_{\nu=0}^{k-1} (x - \nu(\nu + A)) & \text{if } k \in \mathbb{N}^*, \end{cases}$$
(1)

to be the A-modified falling factorial (of order k).

As a result, there exist two unique sequences of numbers $\{\widehat{s}_A(k,\nu)\}_{k,\nu\in\mathbb{N}}$ and $\{\widehat{S}_A(k,\nu)\}_{k,\nu\in\mathbb{N}}$ such that

$$\{x\}_{(\mathbf{k};\mathbf{A})} = \sum_{\nu=0}^{k} \widehat{s}_{A}(k,\nu) x^{\nu} , \ k \in \mathbb{N}$$
$$x^{k} = \sum_{\nu=0}^{k} \widehat{S}_{A}(k,\nu) \{x\}_{(\nu;\mathbf{A})} , \ k \in \mathbb{N},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
0	000		0
0	0		0
00	00		00
			00

A-modified factorial of a number

Definition

Let A be a number (possibly complex) and $k \in \mathbb{N}$. For any number x we define

$$\{x\}_{(\mathbf{k};\mathbf{A})} := \begin{cases} 1 & \text{if } k = 0, \\ \prod_{\nu=0}^{k-1} (x - \nu(\nu + A)) & \text{if } k \in \mathbb{N}^*, \end{cases}$$
(1)

to be the A-modified falling factorial (of order k).

As a result, there exist two unique sequences of numbers $\{\widehat{s}_A(k,\nu)\}_{k,\nu\in\mathbb{N}}$ and $\{\widehat{S}_A(k,\nu)\}_{k,\nu\in\mathbb{N}}$ such that

$$\{x\}_{(\mathbf{k};\mathbf{A})} = \sum_{\nu=0}^{k} \widehat{s}_{A}(k,\nu) x^{\nu} , \ k \in \mathbb{N}$$
$$x^{k} = \sum_{\nu=0}^{k} \widehat{S}_{A}(k,\nu) \{x\}_{(\nu;\mathbf{A})} , \ k \in \mathbb{N},$$

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Generalisations on Bochner's characterisation
0	000
0	0
00	00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A-modified Stirling numbers

Proposition

The set of numbers $\{\hat{s}_A(k,\nu)\}_{\nu,k\geq 0}$ satisfy the following "triangular" recurrence relation

$$egin{aligned} \widehat{s}_A(k+1,
u+1) &= \widehat{s}_A(k,
u) - k(k+A) \, \widehat{s}_A(k,
u+1) \ , \ &\widehat{s}_A(k,0) &= \widehat{s}_A(0,k) = \delta_{k,0} \ , \ &\widehat{s}_A(k,
u) &= 0 \ ,
u \geqslant k+1 \ , \end{aligned}$$

whereas the set of numbers $\{\widehat{S}_{A}(k,
u)\}_{
u,k\geqslant 0}$ satisfy the "triangular" relation

$$\begin{split} \widehat{S}_{A}(k+1,\nu+1) &= \widehat{S}_{A}(k,\nu) + (\nu+1)(\nu+1+A)\widehat{S}_{A}(k,\nu+1) ,\\ \widehat{S}_{A}(k,0) &= \widehat{S}_{A}(0,k) = \delta_{k,0} ,\\ \widehat{S}_{A}(k,\nu) &= 0 , \nu \geqslant k+1 , \end{split}$$

for $k, \nu \in \mathbb{N}$.

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorial
0	000		0
0	0		0
00	00		0
			00

A-modified Stirling numbers: some properties

•
$$\widehat{S}_{A}(k,\nu) = \frac{1}{\nu!} \sum_{\sigma=1}^{\nu} {\binom{\nu}{\sigma}} (-1)^{\nu+\sigma} \frac{(A+2\sigma) \Gamma(A+\sigma)}{\Gamma(A+\sigma+\nu+1)} \left(\sigma(\sigma+A)\right)^{k},$$

for $k, \nu \in \mathbb{N}$ and $1 \leqslant \nu \leqslant k$.

When x = n(n + A) for n ∈ N and A ∈ C, its A-modified factorial (of order k) is given by:

$$\{n(n+A)\}_{(\mathbf{k};\mathbf{A})} = \prod_{\nu=0}^{k-1} \left(n(n+A) - \nu(\nu+A)\right) = \prod_{\nu=0}^{k-1} \left((n-\nu)(n+A+\nu)\right)$$

which, in accordance with the definition of falling or rising factorial, may be expressed like

$$\{n(n+A)\}_{(k;A)} = \{n\}_{(k)} (n+A)_{k}.$$
 (2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
0	000		0
0	0		0
00	00		0
			00

A-modified Stirling numbers: some properties

•
$$\widehat{S}_{A}(k,\nu) = \frac{1}{\nu!} \sum_{\sigma=1}^{\nu} {\binom{\nu}{\sigma}} (-1)^{\nu+\sigma} \frac{(A+2\sigma) \Gamma(A+\sigma)}{\Gamma(A+\sigma+\nu+1)} \left(\sigma(\sigma+A)\right)^{k},$$

for $k, \nu \in \mathbb{N}$ and $1 \leqslant \nu \leqslant k$.

When x = n(n + A) for n ∈ N and A ∈ C, its A-modified factorial (of order k) is given by:

$$\{n(n+A)\}_{(\mathbf{k};\mathbf{A})} = \prod_{\nu=0}^{k-1} \left(n(n+A) - \nu(\nu+A)\right) = \prod_{\nu=0}^{k-1} \left((n-\nu)(n+A+\nu)\right)$$

which, in accordance with the definition of falling or rising factorial, may be expressed like

$$\{n(n+A)\}_{(\mathbf{k};\mathbf{A})} = \{n\}_{(\mathbf{k})} (n+A)_{k}.$$
 (2)

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials
0	000	
00	00	

list of the first A-modified Stirling numbers of first kind: $\hat{s}_A(k,\nu)$

ر لا	/ 1	2	3	4	5
1	1	0	0	0	0
2	-(1 + A)	1	0	0	0
3	$2(1 + A)_2$	-5 - 3A	1	0	0
4	$-6(1+A)_{3}$	49 + A(48 + 11A)	-2(7 + 3A)	1	0
5	24 $(1 + A)_4$	-2(410 + 515 A) $-2 A^2(202 + 25A)$	273 + 5 <i>A</i> (40 + 7 <i>A</i>)	-10(3 + A)	1

second kind: $\widehat{S}_A(k,\nu)$

k	$ \nu \mid 1 $	2	3	4	5
1	1	0	0	0	0
2	1 + A	1	0	0	0
3	$(1+A)^2$	5 + 3A	1	0	0
4	$(1 + A)^3$	21 + A(24 + 7A)	14 + 6A	1	0
5	$(1 + A)^4$	$(5+3\dot{A})(17+\dot{A}(18+5A))$	147 + 5A(24 + 5A)	10(3 + A)	1
			4 D > 4 B >	(★ 国 ▶ ★ 国 ▶	- E

500

0 000	Introduction	Generalisations on Bochner's characterisation
0 0	0	000
	0	0
00 00	00	00

Hermite Case

we have

$$\mathcal{F} = D^2 - 2xD$$

 $\Lambda_{\nu}(k;x) = \begin{pmatrix} k \\ \nu \end{pmatrix} (-2)^{k-\nu} P_{k-\nu}(x), \ 0 \leqslant \nu \leqslant k,$

therefore ...

$$\begin{cases} \sum_{\nu=0}^{k} \Lambda_{\nu}(k; x) D^{k+\nu} = \sum_{\tau=0}^{k} (-2)^{k-\tau} s(k, \tau) \mathcal{F}^{\tau} \\ \mathcal{F}^{k} = \sum_{\tau=0}^{k} (-2)^{k-\tau} S(k, \tau) \sum_{\nu=0}^{\tau} \Lambda_{\nu}(\tau; x) D^{\tau+\nu} \end{cases}$$

,

Introduction	Generalisations on Bochner's characterisation
0	000
0	0
00	00

Laguerre Case

we have

$$\begin{aligned} \mathcal{F} &= x \, D^2 - (x - \alpha - 1) D \\ \Lambda_{\nu}(k;x) &= \binom{k}{\nu} \, \frac{(-1)^{k-\nu}}{(\alpha+1)_k} \, x^{\nu} \, P_{k-\nu}(x;\alpha+\nu) \end{aligned}$$

therefore ...

$$\begin{cases} \sum_{\nu=0}^{k} \Lambda_{\nu}(k; x) D^{k+\nu} = \sum_{\tau=0}^{k} \frac{(-1)^{k-\tau}}{(\alpha+1)_{k}} s(k, \tau) \mathcal{F}^{\tau} \\ \mathcal{F}^{k} = \sum_{\tau=0}^{k} (-1)^{k-\tau} (\alpha+1)_{\tau} S(k, \tau) \sum_{\nu=0}^{\tau} \Lambda_{\nu}(\tau; x) D^{\tau+\nu} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

,

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
0	000		0
0	0		0
00	00		•
			00

Bessel Case

we have

$$\begin{aligned} \mathcal{F} &= x^2 D^2 + 2(\alpha x + 1)D \\ \Lambda_{\nu}(k;x) &= \begin{pmatrix} k \\ \nu \end{pmatrix} \ C_{\alpha}^k \left(2\alpha - 1 + k + \nu\right)_{k-\nu} \ x^{2\nu} \ \mathcal{P}_{k-\nu}(x;\alpha+\nu), \ 0 \leqslant \nu \leqslant k, \end{aligned}$$

therefore ...

$$\begin{cases} \sum_{\nu=0}^{k} \Lambda_{\nu}\left(k;x\right) D^{k+\nu} = \sum_{\tau=0}^{k} C_{\alpha}^{k} \, \widehat{s}_{2\alpha-1}(k,\nu) \, \mathcal{F}^{\tau} \\ \mathcal{F}^{k} = \sum_{\tau=0}^{k} \left(C_{\alpha}^{\tau}\right)^{-1} \widehat{S}_{2\alpha-1}(k,\tau) \, \sum_{\nu=0}^{\tau} \Lambda_{\nu}\left(\tau;x\right) D^{\tau+\nu} \end{cases}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
0	000		0
0	0		0
00	00		0
			•0

Jacobi Case

we have

$$\mathcal{F} = (x^2 - 1)D + \left((\alpha + \beta + 2) x - (\alpha - \beta) \right) D$$
$$\Lambda_{\nu}(k; x) = \binom{k}{\nu} C_{\alpha,\beta}^k (\alpha + \beta + 1 + k + \nu)_{k-\nu} (x^2 - 1)^{\nu} P_{k-\nu}(x; \alpha + \nu, \beta + \nu)$$

therefore ...

$$\begin{cases} \sum_{\nu=0}^{k} \Lambda_{\nu}\left(k;x\right) D^{k+\nu} = \sum_{\tau=0}^{k} C_{\alpha,\beta}^{k} \, \widehat{s}_{\alpha+\beta+1}(k,\tau) \, \mathcal{F}^{\tau} \\ \mathcal{F}^{k} = \sum_{\tau=0}^{k} \left(C_{\alpha,\beta}^{\tau}\right)^{-1} \widehat{S}_{\alpha+\beta+1}(k,\tau) \, \sum_{\nu=0}^{\tau} \Lambda_{\nu}\left(\tau;x\right) D^{\tau+\nu} \end{cases}$$

,

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	Generalisations on Bochner's characterisation	Powers of a variable and its factorials	Powers of ${\mathcal F}$ and its "factorials"
0	000		0
00	0		0
00	00		ŏ•

Some references

- S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929) 730-736.
- A.F. Loureiro, P. Maroni, P., Z. Rocha, The generalized Bochner condition about classical orthogonal polynomials revisited, J. Math. Anal. Appl. 322 (2006) 645-667.
- A.F. Loureiro, New results on the Bochner condition about classical orthogonal polynomials, submitted. (http://www.fc.up.pt/cmup/v2/frames/publications.htm)
- P. Maroni, Variations around classical orthogonal polynomials. Connected problems, J. Comput. Appl. Math. **48** (1993) 133-155.
- P. Maroni, Fonctions Eulériennes. Polynômes orthogonaux classiques. Techniques de l'Ingénieur, traité Généralités (Sciences Fondamentales), A 154 (1994), 1-30.
- J. Riordan, Combinatorial identities, Wiley, New Yok, 1968.