r-Stirling numbers, Whitney numbers and their common generalization

István Mező

22th September, 2008.

Signed Stirling numbers of the first kind

$$
x^{\underline{n}}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}
$$

Meaning of $(-1)^{n-k}\left[\begin{array}{l}n \\ k\end{array}\right]$: the number of permutations of n elements with k cycles.

Stirling numbers of the second kind

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{\underline{k}}
$$

Meaning of $\left\{\begin{array}{l}n \\ k\end{array}\right\}$: the number of partitions of n elements into k subsets.

Unimodality. A sequence $\left(a_{n}\right)$ of positive real numbers is unimodal if
$a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq a_{k}=a_{k+1}=\cdots=a_{k+l} \geq a_{k+l+1} \geq a_{k+1+2} \geq \cdots$
for some indices k and l.

Log-concavity. (a_{n}) is log-concave if

$$
a_{k}^{2} \geq a_{k-1} a_{k+1} \quad(k \geq 1)
$$

Log-concavity \Rightarrow unimodality.

Hammersley, Erdős:

$$
\left[\begin{array}{l}
n \\
1
\end{array}\right]<\left[\begin{array}{l}
n \\
2
\end{array}\right]<\cdots<\left[\begin{array}{c}
n \\
K_{n}-1
\end{array}\right]<\left[\begin{array}{c}
n \\
K_{n}
\end{array}\right]>\left[\begin{array}{c}
n \\
K_{n}+1
\end{array}\right]>\cdots>\left[\begin{array}{l}
n \\
n
\end{array}\right]
$$

with

$$
\left[\log n-\frac{1}{2}\right]<K_{n}<[\log n]
$$

Canfield, Dobson, Günter, Harborth, Kanold, Lieb, Menon, Pomerance, Rennie, Wegner:

$$
\left\{\begin{array}{l}
n \\
1
\end{array}\right\}<\left\{\begin{array}{l}
n \\
2
\end{array}\right\}<\cdots<\left\{\begin{array}{c}
n \\
K_{n}-1
\end{array}\right\} \leq\left\{\begin{array}{c}
n \\
K_{n}
\end{array}\right\}>\left\{\begin{array}{c}
n \\
K_{n}+1
\end{array}\right\}>\cdots>\left\{\begin{array}{l}
n \\
n
\end{array}\right\}
$$

with

$$
\frac{n}{\log n}<K_{n}<\frac{n}{\log n-\log \log n}
$$

Broder-Carlitz:

Signed r-Stirling numbers of the first kind

$$
x^{\underline{n}}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{r}(x+r)^{k}
$$

Meaning of $(-1)^{n-k}\left[\begin{array}{l}n \\ k\end{array}\right]_{r}$: the number of permutations of n elements with k cycles such that the first r elements are in distinct cycles.
r-Stirling numbers of the second kind

$$
(x+r)^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r} x^{\underline{k}}
$$

Meaning of $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}$: the number of partitions of n elements into k subsets such that the first r elements are in distinct subsets.

Necessary tools to prove unimodality of r-Stirling numbers

Newton: If $p(x)=\sum_{k=1}^{n} a_{k} x^{k}$ has only real roots then

$$
a_{k}^{2} \geq a_{k+1} a_{k-1} \frac{k}{k-1} \frac{n-k+1}{n-k}
$$

Darroch: If $p(x)=\sum_{k=1}^{n} a_{k} x^{k}$ has only real roots and $p(1)>0$ then for the maximizing index K_{n}

$$
\left|K_{n}-\mu\right|<1
$$

where

$$
\mu=\frac{p^{\prime}(1)}{p(1)}=\sum_{j=1}^{n} \frac{1}{r_{j}+1}
$$

Here $-r_{j}$'s are the roots of $p(x)$.

The case of the first kind - Mezö 2007

$$
p(x)=\sum_{k=1}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{r} x^{k}=(x+r)(x+r+1) \cdots(x+r+n-1)
$$

Newton: $(-1)^{n-k}\left[\begin{array}{l}n \\ k\end{array}\right]_{r}$ is log-concave,
Darroch:

$$
\left|K_{n, r}-\left(\frac{1}{r+1}+\frac{1}{r+2}+\cdots+\frac{1}{r+n}\right)\right|<1
$$

that is,

$$
\left|K_{n, r}-\left(r+\log \left(\frac{n-1}{r-1}\right)\right)\right|<1
$$

The case of the second kind - Mező 2007

$$
\sum_{k=1}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r} x^{k}=B_{n, r}(x)
$$

For $r=0$, we get the usual Bell polynomials.
The problem: we do not know the root-structure of these polynomials so the above theorems cannot be applied.

Theorem.

$$
B_{n, r}(x)=x\left(B_{n-1, r}^{\prime}(x)+B_{n-1, r}(x)\right)+r B_{n-1, r}(x)
$$

Rolle theorem $\Rightarrow B_{n, r}(x)$ has only real and negative roots $\Rightarrow\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}$ is log-concave.

We shall call these polynomials as r-Bell polynomials.

Estimations for the maximizing index

Bonferroni inequality:

$$
\frac{(m+r)^{n}}{m!}-\frac{(m-1+r)^{n}}{(m-1)!}<\left\{\begin{array}{l}
n+r \\
m+r
\end{array}\right\}_{r}<\frac{(m+r)^{n}}{m!}
$$

and a corollary:

$$
\left\{\begin{array}{l}
n+r \\
m+r
\end{array}\right\}_{r} \sim \frac{(m+r)^{n}}{m!} \quad(n \rightarrow \infty)
$$

Theorem - Mezö 2007

$$
\frac{n-r}{\log (n-r)}<K_{n, r}<\frac{n-r}{\log (n-r)-\log \log (n-r)},
$$

Some words again on the r-Bell numbers and polynomials.

$$
B_{n, r}:=B_{n, r}(1)=\sum_{k=1}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r}
$$

Meaning: $B_{n, r}$ gives the number of partitions of an n-set with the restriction that the first r elements are in distinct subsets.

A surprising occurrence: in a paper of Whitehead he made a table of the coefficients of the polynomial $x^{r}(x)_{n-r}$ according to the " complete graph base". These are exactly the r-Bell numbers.

Exponential generating function:

$$
\sum_{n=0}^{\infty} B_{n, r}(x) \frac{z^{n}}{n!}=e^{x\left(e^{z}-1\right)+r z}
$$

Ordinary generating function:

$$
\sum_{n=0}^{\infty} B_{n, r}(x) z^{n}=\frac{-1}{r z-1} \frac{1}{e^{x}}{ }_{1} F_{1}\left(\left.\frac{\frac{r z-1}{z}}{\frac{r z+z-1}{z}} \right\rvert\, x\right) .
$$

Summation formula:

$$
B_{n, r}(x)=\frac{1}{e^{x}} \sum_{k=0}^{\infty} \frac{(k+r)^{n}}{k!} x^{k}
$$

Integral formula (Cesàro: $r=0$ in 1885):

$$
B_{n, r}=\frac{2 n!}{\pi e} \operatorname{Im} \int_{0}^{\pi} e^{e^{e^{i \theta}}} e^{r e^{i \theta}} \sin (n \theta) d \theta
$$

The ordered Bell numbers (1968)

Ordered Bell numbers (R. D. James, M. Tanny):

$$
F_{n}=\sum_{k=0}^{n} k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\} .
$$

Meaning: F_{n} gives the number of ordered partitions of an n-set.

Some identities:

$$
\begin{aligned}
F_{n} & =\sum_{k=0}^{\infty} \frac{k^{n}}{2^{k+1}} \\
F_{n} & =\sum_{k=0}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle 2^{k} .
\end{aligned}
$$

The ordered r-Bell numbers - Mezö 2007

$$
F_{n, r}=\sum_{k=0}^{n}(k+r)!\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r}
$$

Meaning: $F_{n, r}$ gives the number of ordered partitions of an n-set such that the first r elements are in distinct subsets.

Some identities:

$$
\begin{gathered}
F_{n}=\sum_{k=0}^{\infty} \frac{(k+r)^{n}}{2^{k+r+1}} \frac{(k+r)!}{k!} \\
F_{n}=\sum_{k=0}^{n}\left\langle\frac{n}{k}\right\rangle_{r} 2^{k}
\end{gathered}
$$

The r-Eulerian numbers - Joint work with G. Nyul

Meaning: the permutation $\left(\begin{array}{ccc}1 & \cdots & n \\ i_{1} & \cdots & i_{n}\end{array}\right)$ has an r-ascent $\left(i_{j}, i_{j+1}\right)$ if $i_{j}<i_{j+1}$ and $\left\{i_{j}, i_{j+1}\right\} \nsubseteq\{1, \ldots, r\}$.
$\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{r}$ gives the number of permutations of an n-set having $k r$-ascents.

Recursion:

$$
\left\langle\begin{array}{l}
n \\
m
\end{array}\right\rangle_{r}=(m+1)\left\langle\begin{array}{c}
n-1 \\
m
\end{array}\right\rangle_{r}+(n-m+r)\left\langle\begin{array}{c}
n-1 \\
m-1
\end{array}\right\rangle_{r} .
$$

The r-Eulerian triangles are no longer symmetric (if $r>1$) but logconcavity is preserved.

Generalized Worpitzky-identity - G. Nyul

Original identity (Worpitzky - 1883):

$$
\sum_{k=0}^{n}\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle\binom{ x+k}{n}=x^{n}
$$

The generalized identity involving r-Eulerian numbers is:

$$
\sum_{k=0}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{r}\binom{x+k}{n+r}=x^{n}(x)_{r}
$$

Whitney numbers - Dowling 1973

Whitney numbers of the first kind:

$$
m^{n} x^{\underline{n}}=\sum_{k=0}^{n} w_{m}(n, k)(m x+1)^{k}
$$

Whitney numbers of the second kind:

$$
(m x+1)^{n}=\sum_{k=0}^{n} m^{k} W_{m}(n, k) x^{\underline{k}}
$$

They connected to the so-called Dowling lattices.

$$
w_{1}(n, k)=\left[\begin{array}{l}
n+1 \\
k+1
\end{array}\right], \quad W_{1}(n, k)=\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\} .
$$

Dowling numbers - M. Benoumhani (1996)

$$
D_{m}(n)=\sum_{k=0}^{n} W_{m}(n, k)
$$

They satisfy the same identities as the Bell numbers.

But the integral representation formula were not presented before.

Mező 2008:

A question of Benoumhani

Ordered Dowling numbers:

$$
F_{m}(n)=\sum_{k=0}^{n} k!W_{m}(n, k)
$$

Benoumhani: it is known that for the ordered Bell numbers $F_{n}=$ $\sum_{k=0}^{n}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{r} 2^{k}$. Can we construct "Eulerian-like" numbers to get a similar identity? I gave the answer. If we define these new "Eulerianlike numbers" as

$$
A_{m}(n, k)=\sum_{i=0}^{n} m^{i} i!W_{m}(n, i)\binom{n-i}{k}(-1)^{n-i-k}
$$

then

$$
F_{m}(n)=\sum_{k=1}^{n} A_{m}(n, k) 2^{k} \quad \text { and } \quad A_{1}(n, k)=\left\langle\begin{array}{l}
n+1 \\
k+1
\end{array}\right\rangle
$$

The crucial point

It seems that the two way of generalizations (r-Stirling and Whitney) can be unified.

Thank you for your attention

