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Signed Stirling numbers of the first kind

xn =
n∑

k=0

[n
k

]
xk

Meaning of (−1)n−k
[
n
k

]
: the number of permutations of n elements

with k cycles.

Stirling numbers of the second kind

xn =
n∑

k=0

{n
k

}
xk

Meaning of
{

n
k

}
: the number of partitions of n elements into k subsets.
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Unimodality. A sequence (an) of positive real numbers is unimodal

if

a0 ≤ a1 ≤ a2 ≤ · · · ≤ ak = ak+1 = · · · = ak+l ≥ ak+l+1 ≥ ak+1+2 ≥ · · ·

for some indices k and l.

Log-concavity. (an) is log-concave if

a2
k ≥ ak−1ak+1 (k ≥ 1)

Log-concavity ⇒ unimodality.
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Hammersley, Erdős:[n
1

]
<
[n
2

]
< · · · <

[ n

Kn − 1

]
<
[ n

Kn

]
>
[ n

Kn + 1

]
> · · · >

[n
n

]
with [

logn−
1

2

]
< Kn < [logn].

Canfield, Dobson, Günter, Harborth, Kanold, Lieb, Menon, Pomer-

ance, Rennie, Wegner:{n
1

}
<
{n
2

}
< · · · <

{ n

Kn − 1

}
≤
{ n

Kn

}
>
{ n

Kn + 1

}
> · · · >

{n
n

}
with

n

logn
< Kn <

n

logn− log logn
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Broder-Carlitz:

Signed r-Stirling numbers of the first kind

xn =
n∑

k=0

[n
k

]
r
(x + r)k

Meaning of (−1)n−k
[
n
k

]
r
: the number of permutations of n elements

with k cycles such that the first r elements are in distinct cycles.

r-Stirling numbers of the second kind

(x + r)n =
n∑

k=0

{n
k

}
r
xk

Meaning of
{

n
k

}
r
: the number of partitions of n elements into k subsets

such that the first r elements are in distinct subsets.
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Necessary tools to prove unimodality of r-Stirling numbers

Newton: If p(x) =
∑n

k=1 akxk has only real roots then

a2
k ≥ ak+1ak−1

k

k − 1

n− k + 1

n− k
.

Darroch: If p(x) =
∑n

k=1 akxk has only real roots and p(1) > 0 then
for the maximizing index Kn

|Kn − µ| < 1,

where

µ =
p′(1)

p(1)
=

n∑
j=1

1

rj + 1
.

Here −rj’s are the roots of p(x).
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The case of the first kind – Mező 2007

p(x) =
n∑

k=1

(−1)n−k
[n
k

]
r
xk = (x + r)(x + r + 1) · · · (x + r + n− 1).

Newton: (−1)n−k
[
n
k

]
r

is log-concave,

Darroch: ∣∣∣∣Kn,r −
(

1

r + 1
+

1

r + 2
+ · · ·+

1

r + n

)∣∣∣∣ < 1,

that is, ∣∣∣∣Kn,r −
(
r + log

(
n− 1

r − 1

))∣∣∣∣ < 1.
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The case of the second kind – Mező 2007
n∑

k=1

{n
k

}
r
xk = Bn,r(x)

For r = 0, we get the usual Bell polynomials.

The problem: we do not know the root-structure of these polynomials
so the above theorems cannot be applied.

Theorem.

Bn,r(x) = x
(
B′

n−1,r(x) + Bn−1,r(x)
)
+ rBn−1,r(x)

Rolle theorem ⇒ Bn,r(x) has only real and negative roots ⇒
{

n
k

}
r

is
log-concave.

We shall call these polynomials as r-Bell polynomials.
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Estimations for the maximizing index

Bonferroni inequality:

(m + r)n

m!
−

(m− 1 + r)n

(m− 1)!
<
{n + r

m + r

}
r

<
(m + r)n

m!
,

and a corollary: {n + r

m + r

}
r
∼

(m + r)n

m!
(n →∞).

Theorem – Mező 2007

n− r

log(n− r)
< Kn,r <

n− r

log(n− r)− log log(n− r)
,
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Some words again on the r-Bell numbers and polynomials.

Bn,r := Bn,r(1) =
n∑

k=1

{n
k

}
r
.

Meaning: Bn,r gives the number of partitions of an n-set with the

restriction that the first r elements are in distinct subsets.

A surprising occurrence: in a paper of Whitehead he made a table of

the coefficients of the polynomial xr(x)n−r according to the ”complete

graph base”. These are exactly the r-Bell numbers.
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Exponential generating function:

∞∑
n=0

Bn,r(x)
zn

n!
= ex(ez−1)+rz.

Ordinary generating function:

∞∑
n=0

Bn,r(x)z
n =

−1

rz − 1

1

ex 1F1

(
rz−1

z
rz+z−1

z

∣∣∣∣∣x
)

.

Summation formula:

Bn,r(x) =
1

ex

∞∑
k=0

(k + r)n

k!
xk.

Integral formula (Cesàro: r = 0 in 1885):

Bn,r =
2n!

πe
Im

∫ π

0
eeeiθ

ereiθ
sin(nθ)dθ.
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The ordered Bell numbers (1968)

Ordered Bell numbers (R. D. James, M. Tanny):

Fn =
n∑

k=0

k!
{n
k

}
.

Meaning: Fn gives the number of ordered partitions of an n-set.

Some identities:

Fn =
∞∑

k=0

kn

2k+1
.

Fn =
n∑

k=0

〈n
k

〉
2k.
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The ordered r-Bell numbers – Mező 2007

Fn,r =
n∑

k=0

(k + r)!
{n + r

k + r

}
r
.

Meaning: Fn,r gives the number of ordered partitions of an n-set such
that the first r elements are in distinct subsets.

Some identities:

Fn =
∞∑

k=0

(k + r)n

2k+r+1

(k + r)!

k!
.

Fn =
n∑

k=0

〈n
k

〉
r
2k.
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The r-Eulerian numbers – Joint work with G. Nyul

Meaning: the permutation

(
1 · · · n
i1 · · · in

)
has an r-ascent (ij, ij+1) if

ij < ij+1 and {ij, ij+1} 6⊆ {1, . . . , r}.

〈
n
k

〉
r
gives the number of permutations of an n-set having k r-ascents.

Recursion: 〈n

m

〉
r
= (m + 1)

〈n− 1

m

〉
r
+ (n−m + r)

〈n− 1

m− 1

〉
r
.

The r-Eulerian triangles are no longer symmetric (if r > 1) but log-

concavity is preserved.
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Generalized Worpitzky-identity – G. Nyul

Original identity (Worpitzky – 1883):

n∑
k=0

〈n
k

〉(x + k

n

)
= xn.

The generalized identity involving r-Eulerian numbers is:

n∑
k=0

〈n
k

〉
r

(x + k

n + r

)
= xn(x)r.

14



Whitney numbers – Dowling 1973

Whitney numbers of the first kind:

mnxn =
n∑

k=0

wm(n, k)(mx + 1)k.

Whitney numbers of the second kind:

(mx + 1)n =
n∑

k=0

mkWm(n, k)xk.

They connected to the so-called Dowling lattices.

w1(n, k) =
[n + 1

k + 1

]
, W1(n, k) =

{n + 1

k + 1

}
.
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Dowling numbers – M. Benoumhani (1996)

Dm(n) =
n∑

k=0

Wm(n, k)

They satisfy the same identities as the Bell numbers.

But the integral representation formula were not presented before.

Mező 2008:

Dm(n) =
2n!

π m
√

e
Im

∫ π

0
eeit m

√
eemeit sin(nt)dt.
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A question of Benoumhani

Ordered Dowling numbers:

Fm(n) =
n∑

k=0

k!Wm(n, k)

Benoumhani: it is known that for the ordered Bell numbers Fn =∑n
k=0

〈
n
k

〉
r
2k. Can we construct ”Eulerian-like” numbers to get a

similar identity? I gave the answer. If we define these new ”Eulerian-
like numbers” as

Am(n, k) =
n∑

i=0

mii!Wm(n, i)
(n− i

k

)
(−1)n−i−k,

then

Fm(n) =
n∑

k=1

Am(n, k)2k and A1(n, k) =
〈n + 1

k + 1

〉
.
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The crucial point

It seems that the two way of generalizations (r-Stirling and Whitney)

can be unified.
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Thank you for your attention
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