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Signed Stirling numbers of the first kind
n _ m _k
x _go []Ja:

Meaning of (—1)”—"7[";]: the number of permutations of n elements
with k cycles.

Stirling numbers of the second kind

=3 (e

k=0

Meaning of {Z} the number of partitions of n elements into k subsets.



Unimodality. A sequence (apn) of positive real numbers is unimodal
if

ap < a1 S a2 < SO = Al = 00 = Q] 2 Q41 = Q142 2 0

for some indices k and [.

Log-concavity. (ap) is log-concave if

aj > ap_1ap41 (k>1)

LLog-concavity = unimodality.



Hammersley, Erdos:
<< <l <l )=l = > L]
with
[Iog n — %] < K, < [logn].

Canfield, Dobson, Gunter, Harborth, Kanold, Lieb, Menon, Pomer-
ance, Rennie, Wegner:

(< <<l J=le) >, 0> 1)

n

with

logn logn — loglogn



Broder-Carlitz:

Signed r-Stirling numbers of the first kind

n

ot = ) [Z] (z + r)F

k=0 ™ T
Meaning of (—1)"~ km . the number of permutations of n elements
with k cycles such that the first r elements are in distinct cycles.

r-Stirling numbers of the second kind

n

(z4+r)"= ) {n} Tk

=g k’r

Meaning of {”} the number of partitions of n elements into k£ subsets
such that the fT rst r elements are in distinct subsets.



Necessary tools to prove unimodality of r-Stirling numbers

Newton: If p(z) = YF_, apz® has only real roots then

e T S

Darroch: If p(z) = Y7_; axz”® has only real roots and p(1) > O then
for the maximizing index K,

|Kn N :u| <1,
where

/ n

Here —r;'s are the roots of p(x).



The case of the first kind — Mezo 2007

n

p(x) = Z(—l)n_k[k] =@+ +r+1)---(z+r+n-1).
k=1 r

n

Newton: (—1)"—’“[Z]r is log-concave,

Darroch:

1 1 1
‘Kn’r_(r—|—1+7°+2+“.+r-|—n>‘<1’

o o0 (1) <3

that is,




The case of the second kind — Mez6 2007

> {Z} ok = B ()

k=1 r
For r = 0, we get the usual Bell polynomials.

The problem: we do not know the root-structure of these polynomials
sO the above theorems cannot be applied.

T heorem.
B (x) = 2 (B},_1,(z) + Bne1,(2)) + rBp_1,(2)

Rolle theorem = Bj, (x) has only real and negative roots = {Z}T is
log-concave.

We shall call these polynomials as r-Bell polynomials.



Estimations for the maximizing index

Bonferroni inequality:
(m=+7r)" (m—-1+7r)" (n+r (m+7)"
m! a (m —1)! < {m—l—’r‘}r< m!

and a corollary:

n—4r (m 4 r)"
m—+r’, m!
Theorem — Mez6 2007
n—r n—r

log(n —r) s log(n —r) —loglog(n — )’



Some words again on the r-Bell numbers and polynomials.

Bnr = Bn,(1) = znj "

p—q1 k’r

Meaning: Bn,r gives the number of partitions of an n-set with the
restriction that the first »r elements are in distinct subsets.

A surprising occurrence: in a paper of Whitehead he made a table of
the coefficients of the polynomial z"(x),,_, according to the " complete
graph base”. These are exactly the r-Bell numbers.



Exponential generating function:

Z Bnr(fﬁ)— _ ezc(e —1)—|—7“z
n=0
Ordinary generating function:
) 1 1 rz—1
n __
z_: Bn,r(fn)z — e — 1 o 1F]_ ( ,r.z_iz_l CU) .
Summation formula:
k —|— r)"

Integral formula (Cesaro: »r =0 in 1885).
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The ordered Bell numbers (1968)
Ordered Bell numbers (R. D. James, M. Tanny):
n
n
— |
a8 kgok.{k}.
Meaning: F, gives the number of ordered partitions of an n-set.

Some identities:
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The ordered »-Bell numbers — Mez6 2007

= +
Fr, = kzzjo(k + r)!{z N :}T

Meaning: Fy » gives the number of ordered partitions of an n-set such
that the first r elements are in distinct subsets.

Some identities:

B o= i (k—l—r)"(k—l—r)!.

=5 ka—l—r—l—l k!
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The r-Eulerian numbers — Joint work with G. Nyul

Meaning: the permutation (il
1

N zn> has an r-ascent (i;,i;41) if
ij < ij_|_1 and {ij,’ij_|_1} 7 {1, e ,7“}.

<Z> gives the number of permutations of an n-set having k£ r-ascents.
r
Recursion:

(), =+

m’ r ™m

n—1
m—1

>T—|—(n—m—|—fr)<n_l>r.

The r-Eulerian triangles are no longer symmetric (if »r > 1) but log-
concavity is preserved.
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Generalized Worpitzky-identity — G. Nyul

Original identity (Worpitzky — 1883):

> (METH =

k=0

The generalized identity involving r-Eulerian numbers is:

"on x4k o
2. <k>r<n—|—r) = 2" (@)r.
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Whitney numbers — Dowling 1973

Whitney numbers of the first Kind:

n

m"z™ = Y wm(n, k) (mz + 1)k,
k=0
Whitney numbers of the second kind:

n
(mz4+1)"= ) MW (n, k) 2.
k=0
They connected to the so-called Dowling lattices.

n—|—1}’

n-+1
k—+1 }

wi(n, k) = | bt

Wi(n, k) = {
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Dowling numbers — M. Benoumhani (1996)

Dp(n) = ) Wmn(n,k)
k=0

T hey satisfy the same identities as the Bell numbers.
But the integral representation formula were not presented before.

Mezb 2008:

2n/! T it m/ it
Dpy(n) = ™ Im e® t e€ t sin(nt)dt.
w Ve 0
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A question of Benoumhani

Ordered Dowling numbers:

mn
Fr(n) = Z EWnm(n, k)
k=0
Benoumhani: it is known that for the ordered Bell numbers F,, =
”> 2k Can we construct " Eulerian-like” numbers to get a

n
k=0 <k
similar idgntity? I gave the answer. If we define these new " Eulerian-

like numbers’ as

Am(n, k) = 3 miatWin(n, (") (-1,
1=0
then

Fr(n) = Y Am(n,k)2% and  Ai(n, k) = <k +1

k=1
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The crucial point

It seems that the two way of generalizations (r-Stirling and Whitney)
can be unified.
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Stirling numbers

v
Bell and ordered Bell
v
Eulerian
r-Stirling numbers Whitney numbers
v v
r-Bell and ordered r-Bell Downing and ordered Downing
v v
r-Eulerian “"Whitney-Eulerian”
\/ \/

r-Whitney numbers
v
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Thank you for your attention
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