

SLC 61

September 2008

1. Preliminaries

1.1 Classical Orders on S_n

Let

$$S := \{ (i, i+1) : 0 \le i < n \},\$$

and

$$T := \{ (i, j) : 1 \le i < j \le n \}.$$

The *(right) weak order* on S_n is the reflexive and transitive closure of $\pi \leq \cdot \sigma$ if (1) $\sigma = \pi s$ for some $s \in S$; and (2) $\operatorname{inv}(\pi) < \operatorname{inv}(\sigma)$.

The *strong order* on S_n is the reflexive and transitive closure of $\pi \leq \cdot \sigma$ if (1) $\sigma = \pi t$ for some $t \in T$; and (2) $\operatorname{inv}(\pi) < \operatorname{inv}(\sigma)$.

1.2 Wreath Products

Consider $G(r,n) = \mathbf{Z}_r \wr S_n$

the wreath product of a cyclic group Z_r with a symmetric group S_n .

Example Let $\omega := e^{2\pi i/r}$.

$$v = \begin{pmatrix} \omega^2 & 0 & 0 \\ 0 & 0 & \omega^0 \\ 0 & \omega^1 & 0 \end{pmatrix} \qquad |v| = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

2. Problems

Problem 1. Define weak and strong orders on $Z_r \wr S_n$.

Problem 2. Find a "correct analogue" of the inversion number on the group $Z_r \wr S_n$.

Problem 3. Find generating sets for $Z_r \wr S_n$, which will be the counterpart of

$$S := \{ (i, i+1) : 1 \le i < n \},$$
$$T := \{ (i, j) : 1 \le i < j \le n \}.$$

Denote

$$(x;q,t)_k := \prod_{i=0}^{k-1} (x - [ti-1]_q).$$

Define (q, t)-Stirling numbers via

$$x^{n} = \sum_{k=0}^{n} S_{q,t}(n,k) \cdot (x;q,t)_{k}.$$

$$(x;q,t)_n = \sum_{k=0}^n s_{q,t}(n,k) \cdot x^k.$$

Problem 4. [*Remmel*] Find combinatorial interpretations of these Stirling numbers.

Foata-Han's flag inversion number

For
$$\pi \in \mathbf{Z}_r \wr S_n$$
 let

 $\operatorname{finv}(\pi) := r \cdot \operatorname{inv}(|\pi|) + \operatorname{sum of exponents.}$

Example

finv
$$\begin{pmatrix} \omega^2 & 0 & 0 \\ 0 & 0 & \omega^0 \\ 0 & \omega^1 & 0 \end{pmatrix} = r \cdot 1 + (2 + 0 + 1)$$

Proposition [Foata-Han]

$$\sum_{\pi \in \mathbf{Z}_r \wr S_n} q^{\operatorname{finv}(\pi)} = \prod_{i=1}^n \frac{q^{ri} - 1}{q - 1}.$$

3. The Flag Orders

Let

 $S_{r,n} := \{n_i : 1 \le i \le n\} \cup \{a_i : 1 \le i < n\},\$

where

$$n_i := \begin{pmatrix} 1 & \dots & i & \dots & n \\ 1 & \dots & i\omega & \dots & n \end{pmatrix}$$

and

$$a_i := \begin{pmatrix} 1 & \dots & i & i+1 & \dots & n \\ 1 & \dots & (i+1)\omega & i & \dots & n \end{pmatrix}$$

Let

$$T_{r,n} := \{gS_{r,n}g^t : g \in B_n\}.$$

The *flag (right) weak order* on $Z_r \wr S_n, \preceq$, is the reflexive and transitive closure of $\pi \preceq \cdot \sigma$ if (1) $\sigma = \pi s$ for some $s \in S_{r,n}$; and (2) finv $(\pi) < \text{finv}(\sigma)$.

The *flag strong order* on $Z_r \wr S_n, \leq$, is the reflexive and transitive closure of $\pi \leq \cdot \sigma$ if

(1)
$$\sigma = \pi t$$
 for some $t \in T_{r,n}$; and
(2) finv $(\pi) < \text{finv}(\sigma)$.

Proposition The posets $(G(r, n), \preceq)$ and $(G(r, n), \leq)$ are

(i) ranked (by flag inversion number);

- (ii) self-dual (with $\pi \mapsto \pi w_0$, where $w_0 := [\omega^{-1}n, \dots, \omega^{-1}1]$ is the unique maximal element in both orders);
- (iii) rank-symmetric and unimodal.

Proposition The poset $(G(r, n), \preceq)$ is a complemented lattice.

Theorem

Suppose that $\pi \prec \sigma$ and that

 $\operatorname{finv}(\sigma) - \operatorname{finv}(\pi) \ge 2.$

Then the order complex of the open interval (π, σ) is homotopy equivalent to the sphere \mathbf{S}^{k-2} if σ is the join of k atoms of the interval $[\pi, w_0]$; and contractible otherwise.

Corollary For every $\pi, \sigma \in G(r, n)$

 $\mu(\pi, \sigma) = \begin{cases} (-1)^k & \sigma \text{ is a join of } k \text{ atoms in } [\pi, w_0]; \\ 0 & \text{otherwise.} \end{cases}$

Corollary (Tits Property)

Any two labelled maximal chains in $(G(r, n), \preceq)$ are connected via the following pseudo-Coxeter moves

$n_i n_j = n_j n_i$	$(i \neq j),$
$a_i n_j = n_j a_i$	$(j \neq i, i+1),$
$a_i n_{i+1} = n_i a_i$	$(1 \le i < n),$

and

$$a_i a_{i+1} n_{i+1} a_i = a_{i+1} n_{i+1} a_i a_{i+1} \qquad (1 \le i < n).$$

Euler-Mahonian

Denote

$$S_n(q,t) := \sum_{\pi \in S_n} q^{\operatorname{inv}(\pi)} t^{\operatorname{des}(\pi)}.$$

For every $\pi \in G(r, n)$ let $wdes(\pi)$ be the number of elements which are covered by π in the poset $(G(r, n), \preceq)$.

Proposition

$$\sum_{\pi \in G(r,n)} q^{\operatorname{finv}(\pi)} t^{\operatorname{wdes}(\pi)}$$

$$= (1 + qt[r-1]_q)^n S_n(q^r, \frac{t[r]_q}{1 + qt[r-1]_q}).$$

3. Colored Rook Monoid

The colored rook monoid P(r, n) consists of partial permutations on n letters colored by $\{\omega^0, \ldots, \omega^{r-1}\}.$

Example

$$v = \begin{pmatrix} 0 & \omega^2 & 0 \\ 0 & 0 & 0 \\ \omega^1 & 0 & 0 \end{pmatrix} \qquad |v| = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

For $\pi \in P(r, n)$ let

 $\operatorname{finv}(\pi) := \operatorname{rank}(\pi) \cdot \operatorname{inv}(\pi) + \operatorname{exponents sum}$

$$+r \cdot \sum_{\text{nonzero row } i} (i+n+1-|\pi(i)|).$$

Example (cont.)

 $\operatorname{finv}(v) = 2 \cdot 1 + (2+1) + 3 \cdot (1+2+3+3) = 32.$

Flag Strong Order on P(r, n)

The *flag strong order* on P(r, n), \leq , is the reflexive and transitive closure of $\pi \leq \cdot \sigma$ if

(1) $\sigma = \pi t$ for some $t \in T_{r,n}$ and finv $(\pi) < \text{finv}(\sigma);$

or

(2) π is obtained from σ by replacing a nonzero entry by 0.

Remark 1. For r = 1 it coincides with Renner-Solomon's strong order.

2. The flag strong order on G(r, n) is embedded as an upper interval.

(q,t) Stirling Numbers

Recall $(x; q, r)_k := \prod_{i=0}^{k-1} (x - [ri - 1]_q).$

Theorem

(1)
$$x^{n} = \sum_{k=0}^{n} S_{q,t}(n,k) \cdot (x; q,t)_{k}$$

$$= \sum_{0 \le \pi \le \omega^{r-2} id} q^{\operatorname{finv}(\pi) - \binom{n - \operatorname{rank}(\pi)}{2}} (x; q, r)_{n - \operatorname{rank}(\pi)}.$$

(2)
$$(x)_{n,q,r} = \sum_{k=0}^{n} s_{q,r}(n,k) \cdot x^k$$

$$=\pm\sum_{id\leq\pi\leq w_0}q^{\operatorname{finv}(\pi)}(\frac{x}{q})^{\operatorname{rlmax}(\pi)},$$

where $n - \operatorname{rlmax}(\pi) :=$ #{right to left maxima in $|\pi|$ colored by r - 1}.