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1. Preliminaries

1.1 Classical Orders on Sn

Let
S := {(i, i + 1) : 0 ≤ i < n},

and
T := {(i, j) : 1 ≤ i < j ≤ n}.

The (right) weak order on Sn is
the reflexive and transitive closure of π ¹ · σ if

(1) σ = πs for some s ∈ S; and

(2) inv(π) < inv(σ).

The strong order on Sn is
the reflexive and transitive closure of π ≤ · σ if

(1) σ = πt for some t ∈ T ; and

(2) inv(π) < inv(σ).
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1.2 Wreath Products

Consider G(r, n) = Zr o Sn

the wreath product of a cyclic group Zr

with a symmetric group Sn.

Example Let ω := e2πi/r.

v =




ω2 0 0

0 0 ω0

0 ω1 0


 |v| =




1 0 0

0 0 1

0 1 0




3



2. Problems

Problem 1. Define weak and strong orders on
Zr o Sn.

Problem 2. Find a “correct analogue” of the
inversion number on the group Zr o Sn.

Problem 3. Find generating sets for Zr o Sn,
which will be the counterpart of

S := {(i, i + 1) : 1 ≤ i < n},

T := {(i, j) : 1 ≤ i < j ≤ n}.
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Denote

(x; q, t)k :=
k−1∏

i=0

(x− [ti− 1]q).

Define (q, t)-Stirling numbers via

xn =
n∑

k=0

Sq,t(n, k) · (x; q, t)k.

(x; q, t)n =
n∑

k=0

sq,t(n, k) · xk.

Problem 4. [Remmel] Find combinatorial
interpretations of these Stirling numbers.
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Foata-Han’s flag inversion number

For π ∈ Zr o Sn let

finv(π) := r · inv(|π|) + sum of exponents.

Example

finv




ω2 0 0

0 0 ω0

0 ω1 0


 = r · 1 + (2 + 0 + 1)

Proposition [Foata-Han]

∑

π∈ZroSn

qfinv(π) =
n∏

i=1

qri − 1
q − 1

.
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3. The Flag Orders

Let

Sr,n := {ni : 1 ≤ i ≤ n} ∪ {ai : 1 ≤ i < n},

where

ni :=


1 . . . i . . . n

1 . . . iω . . . n




and

ai :=


1 . . . i i + 1 . . . n

1 . . . (i + 1)ω i . . . n


 .

Let
Tr,n := {gSr,ngt : g ∈ Bn}.
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The flag (right) weak order on Zr o Sn, ¹ , is
the reflexive and transitive closure of π ¹ · σ if

(1) σ = πs for some s ∈ Sr,n; and

(2) finv(π) < finv(σ).

The flag strong order on Zr o Sn, ≤ , is
the reflexive and transitive closure of π ≤ · σ if

(1) σ = πt for some t ∈ Tr,n; and

(2) finv(π) < finv(σ).
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Proposition The posets (G(r, n),¹) and
(G(r, n),≤) are

(i) ranked (by flag inversion number);

(ii) self-dual (with π 7→ πw0, where
w0 := [ω−1n, . . . , ω−11] is the unique maximal
element in both orders);

(iii) rank-symmetric and unimodal.
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Proposition The poset (G(r, n),¹) is a
complemented lattice.

Theorem
Suppose that π ≺ σ and that
finv(σ)− finv(π) ≥ 2.
Then the order complex of the open interval
(π, σ) is homotopy equivalent to the sphere Sk−2

if σ is the join of k atoms of the interval [π, w0];
and contractible otherwise.

Corollary For every π, σ ∈ G(r, n)

µ(π, σ) =





(−1)k σ is a join of k atoms in [π,w0];

0 otherwise.
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Corollary (Tits Property)

Any two labelled maximal chains in (G(r, n),¹)
are connected via the following pseudo-Coxeter
moves

ninj = njni (i 6= j),

ainj = njai (j 6= i, i + 1),

aini+1 = niai (1 ≤ i < n),

and

aiai+1ni+1ai = ai+1ni+1aiai+1 (1 ≤ i < n).
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Euler-Mahonian

Denote

Sn(q, t) :=
∑

π∈Sn

qinv(π)tdes(π).

For every π ∈ G(r, n) let wdes(π) be the number
of elements which are covered by π in the poset
(G(r, n),¹).

Proposition
∑

π∈G(r,n)

qfinv(π)twdes(π)

= (1 + qt[r − 1]q)nSn(qr,
t[r]q

1 + qt[r − 1]q
).
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3. Colored Rook Monoid

The colored rook monoid P (r, n) consists of
partial permutations on n letters colored by
{ω0, . . . , ωr−1}.

Example

v =




0 ω2 0

0 0 0

ω1 0 0


 |v| =




0 1 0

0 0 0

1 0 0




For π ∈ P (r, n) let

finv(π) := rank(π) · inv(π) + exponents sum

+r ·
∑

nonzero row i

(i + n + 1− |π(i)|).

Example (cont.)

finv(v) = 2 · 1 + (2 + 1) + 3 · (1 + 2 + 3 + 3) = 32.
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Flag Strong Order on P (r, n)

The flag strong order on P (r, n), ≤ , is
the reflexive and transitive closure of π ≤ · σ if

(1) σ = πt for some t ∈ Tr,n and

finv(π) < finv(σ);

or

(2) π is obtained from σ by replacing a nonzero
entry by 0.

Remark 1. For r = 1 it coincides with
Renner-Solomon’s strong order.

2. The flag strong order on G(r, n) is embedded
as an upper interval.
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(q, t) Stirling Numbers

Recall (x; q, r)k :=
k−1∏
i=0

(x− [ri− 1]q).

Theorem

(1) xn =
n∑

k=0

Sq,t(n, k) · (x; q, t)k

=
∑

0≤π≤ωr−2id

qfinv(π)−(n−rank(π)
2 )(x; q, r)n−rank(π).

(2) (x)n,q,r =
n∑

k=0

sq,r(n, k) · xk

= ±
∑

id≤π≤w0

qfinv(π)(
x

q
)rlmax(π),

where n− rlmax(π) :=
#{right to left maxima in |π| colored by r − 1}.
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