ON CONJUGACY CLASSES OF NILPOTENT MATRICES Riccardo Biagioli (Lyon), Sara Faridi (Halifax) \& Mercedes Rosas (Sevilla),

"Resolutions of De Concini-Procesi ideals of Hooks", Communications in Algebra, 35, 12, 3875 3891, (2007)
"The defining ideals of conjugacy classes of

Origin of the problem

Partitions parametrize nilpotent matrices.
A nilpotent matrix of size n has Jordan canonical form

$$
\left(\begin{array}{llll}
J_{\lambda_{1}} & 0 & 0 & 0 \\
0 & J_{\lambda_{2}} & & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & J_{\lambda_{m}}
\end{array}\right)
$$

where $J_{\lambda_{i}}$ is Jordan blocks of size λ_{i}, and λ is a partition of n.

Let $C_{\lambda}=$ Conjugacy class of nilpotent matrices with Jordan block sizes given by the partition λ.

Question. Describe the ideal \mathcal{J}_{λ} of polynomial functions vanishing on C_{λ}.
J. Weyman [The equations of conjugacy classes of nilpotent matrices. Invent. Math., (1989)] conjectured a minimal set of aenerators for \mathcal{T}.

Our strategy

Look at a related problem.
$\mathcal{I}_{\lambda}=$ ideal of scheme theoretic intersection of $\overline{C_{\lambda}}$ with the set of diagonal matrices.

Example 2×2 matrices.

De Concini and Procesi produced a specific generating set for \mathcal{I}_{λ}, and Tanisaki gave a simpler generating set, motivating much subsequent work

first result, a simpler generating set for \mathcal{I}_{λ}.

Computing the generating set for \mathcal{I}_{λ} when
$\lambda=(4,4,2,1) \vdash 11$.

Notation For an alphabet X, let $f(X)$ denote the function f evaluated at f. Moreover, for a given integer n, let $f(n)$ denote the union of all $f(X)$ for $|X|=n$.

Our generating set :
$e_{1}(11), e_{2}(11), e_{3}(11), e_{4}(10), e_{6}(9), e_{7}(8)$
Another presentation for our generating set :

The work of Weyman

Weyman uses the representation theory of the general linear group to construct and study two generating sets for the ideal \mathcal{J}_{λ} of polynomial functions vanishing on the conjugacy class \mathcal{C}_{λ}.

The generators in the first family, denoted by V_{λ}, are expressed as sums of minors, and come from reducible representations of $G L(n)$.

The ideals V_{λ} are a sum of ideals $V_{i, p}$ where the points (i, p) are easily read from the Weyman diagram of λ.

The second set of generators U_{λ} arises from the irreducible representations of $G L(n)$.

Again, the sets U_{λ} are a sum of ideals $U_{i, p}$ for some points determined by the Weyman diagram of λ.

Weyman's diagrams

Weyman diagram for $\lambda=(4,4,2,1)$.

We need generators

$$
\begin{array}{rr}
U_{0,1}, U_{0,2}, U_{0,3}, U_{0,4}, & 0^{t h} \text { column } \\
U_{1,4} & 1^{\text {st }} \text { column } \\
U_{2,6} & 2^{\text {nd }} \text { column }
\end{array}
$$

Weyman's Conjecture, '89

Let λ be a partition. The set consisting of $U_{0, p}$ for $1 \leq p \leq \ell(\lambda)$, and $U_{i, p}$, where (i, p) labels a top cell of the i-th row (in the Weyman diagram of λ), such that there are no X 's to the right of or on the line segment joining (i, p) with $(0,1)$, is a minimal set of generators \mathcal{W}_{λ} of \mathcal{J}_{λ}.

The shaded cells are redundant.

Our generating set, an example

Let $\lambda=(5,4,1)$,

1				
2	3	4	5	
10	9	8	7	6

$e_{3}(9)=h_{3}(1)=m_{(3)}: \operatorname{Add} x_{1}^{3}, \cdots, x_{10}^{3}$.
$e_{4}(8)=h_{4}(2)=m_{(3,1)}(2)+m_{(4)}(2)+m_{(2)}(2)$.
But $m_{(3,1)}^{(2)}$ and $m_{(4)}^{(2)}$ are in the ideal and
$m_{(2,2)}(2)=\left(x_{i} x_{j}\right)^{2}$, with $i \neq j$ is not. Add $m_{(2,2)}(2)$
to the generating set.
$e_{5}(7)=h_{5}(3)$. Partitions : $(2,2,1),(3,1,1),(3,2)$, $(4,1),(5)$. They are already in the ideal.
$e_{6}(6)=h_{6}(4)$. Partitions : $(2,2,1,1),(3,1,1,1)$, $(2,2,2),(3,2,1)$... They are already in the ideal.

$$
\begin{array}{lllllll}
p=1 & \frac{X}{p} & & & & \\
p=2 & X & & & \\
p=3 & X & X & & & \\
p=4 & X & \frac{X}{X} & X & & \\
p=5 & X & X & X & & & \\
p=6 & X & X & X & X & \\
p=7 & X & X & X & X & \\
p=8 & X & X & X & & & \\
n=9 & X & X & X & &
\end{array}
$$

Theorem. [The case of partially-rectangular partitions] Let λ be a partition of n, and let $k>2$ be any integer. If columns $0,1, \ldots, k-1$ of the Young diagram have the same height, then in the generating set for the ideal \mathcal{I}_{λ} generators coming from columns $2, \ldots, k$ are redundant.

(Only the first two columns are relevant !)
Diagram for (5, 4, 4, 3)

An infinite family of counterexamples

Theorem. If $\lambda=\left(u^{a},(u-1)^{c}, 1\right)$ with $u \geq 3$ and $g=a+c>1$, then \mathcal{I}_{λ} is generated by
$e_{1}(n), \ldots, e_{g}(n), x_{1}^{g+1}, \ldots, x_{n}^{g+1}$,
$\left(x_{1} x_{2}\right)^{g},\left(x_{1} x_{3}\right)^{g}, \ldots,\left(x_{n-1} x_{n}\right)^{g}$.
Only the first three columns are relevant.

Diagram for (5, 5, 5, 1).

A second infinite family of counterexamples

Theorem. If $\lambda=\left(u^{a},(u-1)^{c}, 1,1\right)$ with $u \geq 4$ and $g=a+c+1>2$, then \mathcal{I}_{λ} is generated by
$e_{1}(n), \ldots, e_{g}(n), x_{1}^{g+1}, \ldots, x_{n}^{g+1},\left(x_{i}+x_{j}\right)\left(x_{i} x_{j}\right)^{g-1}$
for all $i \neq j,\left(x_{i} x_{j} x_{k}\right)^{g-1}$ for all $i<j<k$.
Diagram for (5, 5, 1, 1).

Can Weyman's conjecture be fixed ? Let λ be a partition and draw the Weyman diagram of λ.

If the $X^{\prime} s$ at the top of columns $1,2, \ldots, r$ are collinear, and the line containing them passes through the point ($0, k$), then the generators coming from columns $k+1, \ldots, r$ redundant.

- We know this holds for $k=1,2$, and 3 .
- For $k=4$, we used Macaulay2 to verify whether the statement is still true for the smallest possible member of this family, the partition $(6,5,1,1,1)$
The Weyman diagram for $(6,5,1,1,1)$:

Counterexample to Weyman's original conjecture

Consider the partition $(4,3,1)$, the points $(1,3),(2,4)$ and $(3,5)$ are collinear, but the line that contains them does not pass through (0,1). So according to Weyman's conjecture, all these cells contribute generators to a minimal generating set of $\mathcal{J}_{(4,3,1)}$.

However, our previous results suggest that the generators coming from cell $(3,5)$ may be redundant.

Using Macaulay 2, we computed the minimal generating set for $\mathcal{J}_{(4,3,1)}$ and verified that this is indeed the case.
We conclude that $(4,3,1)$ is a counterexample to
Weyman's original conjecture.

Degrees	Weyman's conjecture	Minimal number of generators
1	1	1
2	1	64
3	64	720
4	720	redundant
5	2352	786

To summarize, in this particular case, Weyman's conjecture predicts that we need 3138 generators, but only 786 of them are really necessary.

We end the presentation with a natural question.

