Alternative tableaux, permutations, a Robinson-Schensted like bijection and the

asymmetric exclusion process in physics
dédié à la mémoire de Pierre Leroux (1942-2008)

```
xavier viennot
```

SLC 61
Curía, Portugal, Sept 2008

LaBRI, CNRS
Université Bordeaux 1

alternative tableare

$$
\begin{gathered}
\text { - Fevers diagram } \mathcal{F} \begin{array}{c}
\left(\begin{array}{c}
\text { posilfy } \\
\text { emply roves } \\
\text { or column }
\end{array}\right)
\end{array} \\
\text { (nbofrows) }+(n b \text { couifinns }) \\
=n
\end{gathered}
$$

alternative tallean

- Ferrers diagram F

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { posibly } \\
\text { emply rours } \\
\text { or column }
\end{array}\right) \\
& (\text { nb of rows) }+ \text { (nb couifinn) } \\
& =n
\end{aligned}
$$

- some cells are colomed red orblue
alternative tableau T
- Ferners diagram $F\left(\begin{array}{c}\text { possibly } \\ \text { emptily roues } \\ \text { or column }\end{array}\right)$

$$
\begin{gathered}
(\text { nb of rows })+(n b) \text { colifinns }) \\
=n
\end{gathered}
$$

- some cells are colowed red orblue
- $\left\{\begin{array}{l}\text { no colowed well at the left of } \\ \text { no coloured cell coelom }\end{array}\right.$ n size of T
alternative tableau
Ferrers diagram (=Young diagram)

alternative tableau

Prop. The number of alternative tableaux of size n is $(n+1)!$

$$
\mathrm{n}=12
$$

Def- Permutation $\sigma=\sigma(1) \cdots \sigma(n)$

$$
x=\sigma(i), \quad 1 \leqslant x<n
$$

(valeur) $x\left\{\begin{array}{l}\text { avance } \\ \text { recul }\end{array} x+1=\sigma(j),\left\{\begin{array}{l}i<j \\ j<i\end{array}\right.\right.$

- convention $x=n$ est un recul
$-(x-(x+1)$

$$
\sigma=7438196
$$

!ex.j!!

$=$

?

The inverse

exchange-deletion bijection

σ permutation

$$
\sigma_{-1}^{-1}(x)<\frac{1}{\sigma}(x+1)
$$

convention: $\sigma(n)$ descent e

$$
\begin{aligned}
& =\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 4 & 3 & 8 & 2 & 9 & 5 & 1 & 6
\end{array}\right) \\
& \sigma^{-1}=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 \\
8 & 5 & 3 & 2 & 7 & 9 & 1 & 4 & 6
\end{array}\right) \\
& 0^{5}, 2^{1 / 6}
\end{aligned}
$$

9
"Genocchi shape" of a permutation
nombres de

$$
G_{2 n}=2\left(2^{2 n}-1\right) B_{2 n}
$$

Bernoulli:

Hinc igitur calculo inftituto reperietur :

$$
\begin{aligned}
& \mathrm{A}=\mathrm{I} \\
& B=1 \\
& C=3 \\
& \mathrm{D}=\quad 17 \\
& E=155^{\circ}=5.3 I \\
& \mathrm{~F}=2073=69 \mathrm{I} .3 \\
& \mathrm{G}=3^{8227}=7.546 \mathrm{I}=7 \cdot \frac{127 \cdot 129}{3} . \\
& \mathrm{H}=929569=3617.257 \\
& I={ }_{28820619}=43867 \cdot 9.73 \quad \text { \&c. }
\end{aligned}
$$

BORDEAUX 1. Le professeur Donald Knuth consacre sa vie à la programmation informatique, considérée comme un art. Il vient d'être sacré docteur honoris causa à Bordeaux

L'ermite de l'informatique

Une sommité de l'informatique mondiale a séjourné en Gironde
ces derniers jours. Donald Knuth, 69 ans, a êté sacré nald Knuth, 69 ans, a ete sacre
mardi docteur honoris causa de l'université Bordeaux 1, après avoir été lundi au centre d'une journée d'échanges qui réunissait une bonne partie du gratin français et européen de la recherche en informatique (1).
Depuis son premier contact, il ya un demi-siecle, avec un monu-
mental et dinosaurien IBM 650 , Donald Knuth n'a cessé d'être habité par la passion de l'informatique. Physicien, puismathématicien de formation, ce géant affable et modeste a voué sa vie à ce qu'il appelle «l'art de la proà ses yeux, plus qu'une technique, c'est une forme d'activité qui requiert à la fois rigueur, inquitionet sens esthétique. Les programmes informatiques réussis ont une sorte de beautéà laquelle même les non-spécialistes peuvent être sensibles.
Uneencyclopédie.Au long desa carrière académique (pour l'essentiel a runiversite californien-
ne de Stanford), Donald Knuth a fait preuve d'une grande fécondité, en jouant notamment un rôle essentiel dans le développement de langages toujours utilisés par la communauté des mathématiKnuth a décidé de prendre sa retraite de Stanford. Il trouve que les fonctions administratives sont trop absorbantes pour lui permettre de mener à bien l'œutvreentaméeà la fin des années 60 sous le titre de "Art of computer programming », sorte d'encyclo-
pédie de l'algorithmique et de programmation informati

Donald Knuth, à Bordeaux, le 2
que. Donald Knuth a publié, ily a niers volums deja, les trois premiers volumes de cette gigantesque somme, traduite en russe, en japonais, en polonais, etc. mais me est pour bientôt. Et Donald Knuth se dit décidé à poursuivre sa tâche tant qu'ilen aura la force. Ses ouvrages, dont les ventes cumulées au fil des ans approchent le million d'exemplaires, visent essentiellement les informaticiens et créateurs de pro-
 $\begin{array}{ll}\text { monde, mais qui se trouve inves- } & \text { debute par la bibliothèque ou la } \\ \text { ie d'une mission considérable. } & \text { piscine. Après quoi, il passe tout }\end{array}$ En quelques décennies, l'écriture informatique a aidé à résoudre d'innombrables problèmes.
«Maisilyenatantd'autresquiattendent des solutions, notamment dans le domaine médical :, affirme le professeur émérite de Stanford.

Un chèque de 2,56 dollars.
Pour mener à bien sa tâche, Do-
nald Knuth s'est imposé une vie
 piscine. Apres quoi, il passe tout travail, dimanche compris. Il n'a plus d'e-mail depuis le début des années 90 , considérant que le
courrier électronique représente une perte de temps, dès lors qu'on veut aller au fond des choseset non pasresteràleursurface. Une secrétaire lui fait passer les messages considérés comme les plus urgents. Pour le reste, Do-
nald Knuth demande qu'on lui
écrive par courrier ordinaire ou par fax, dont il prend parfois connaissance avec des mois dere tard.II s'oblige, en revanche, à te nir aussi scrupuleusement que possible sa promesse d'envoyer un chèque de 2,56 dollars à tou lecteur ayant détecté une erreur
dans un de ses lives Par ailleurs, pour se détendre, il pratique l'orgue, appris dans sa prime jeunes se auprès de son père qui partagea sa vie entre la musique et l'enseignement.
L'orgue de Sainte-Croix. Donald Knuth n'est pas fermé aux choses de ce monde. Sur son site
Internet, à la rubrique © Ques tionsquinemesont pas fréquem ment posées $»$, il demande entre autres : © Pourquoi mon paysa-t-il le droit d'occuper l'Irak? ?, «Pourquoi mon pays ne soutientil pas une Cour internationale de justice? , Mais cet homme de tant, pas plus qu'il n'aspire au ve dettariat et à la richesse. «Beaucoup de gens, dit-il, ont tendance à considérer que l'informatique C'est surtout des histoires de business, d'entreprise. Ce n'est pas mon cas, » Sortant de sa semireclusion, Donald Knuth s'est
donclaisséconvaincred'accepter les hommages de l'université de Bordeaux, après celles de Harvard, d'Oxford, de Tübingen. Il a eule coup de foudre pour la beauté et l'agrément de la ville. Et il n'oubliera sans doute pas de sitôt l'orgue illustre de l'église Sainteheur d'exercer son taleut
(1) Ces journéesétaientorganisées parle La boratoire bordelais de recherche en infor matique (Labri).
(2) Thierry Semenoux, professeur d'orgue au conservatoire de Bordeaux, a joué dans ee domaine un rôle de cicérone auprès de Donald Knuth.

boundary induced phase transitions
molecular diffusion
linear array of enzymes bio polymers
traffic flow formation of shocks

$$
\begin{aligned}
& \mathbb{P}_{n}\left(\tau_{1}, \ldots, \tau_{n}\right)=\operatorname{l}_{n}\left(\tau_{1}, \ldots, \tau_{n}\right) / \mathbb{Z}_{n} \\
& \mathbb{Z}_{n}=\sum_{\tau} f_{n}\left(\tau_{1}, \ldots, \tau_{n}\right) \quad \begin{array}{r}
\text { partition } \\
\text { function }
\end{array}
\end{aligned}
$$

Derrida, Evans, Hakim, Pasquier (1993) "matrix ansatz"
D E matrices,
V column, W vector row vector

$$
\left\{\begin{array}{c}
D E=q E D+D+E \\
(\beta D-\delta E)|V\rangle=|V\rangle \\
\langle W|(\alpha E-\gamma D)=\langle W|
\end{array}\right.
$$

Then

$$
f_{n}\left(\tau_{1}, \ldots, \tau_{n}\right)
$$

Derrida, Evans, Hakim, Pasquier (1993) "matrix ansatz"
$D E$ matrices,
V column ${ }_{\text {vector }}$, row vector TASEP

$$
\left\{\begin{array}{l}
D E=\square+D+E \\
(\beta D-\square)|\dot{V}\rangle=|V\rangle \\
\langle W|(\alpha E-\square)=\langle W|
\end{array}\right.
$$

Then

$$
f_{D}\left(\tau_{1}, \ldots, \tau_{n}\right)=\left\langle W \prod_{i=1}^{n}\left(\tau_{i} D+\left(1-\tau_{i}\right) E\right) \mid V\right\rangle
$$

$$
P_{n}(s)=
$$

TASEP

> Brak, Essam (2003), Duchi, Schaeffer, (2004),
> Angel (2005), xgv, (2007)

(P) ASEP

Brak, Corteel, Essam, Parviainen, Rechnitzer (2006)
Corteel, Williams (2006)
Josuat-Vergès (2008)

Derrida, ...
Mallick, Golinelli, Mallick (2006)

Def- profile of an alternative tableau
 word $w \in\{E, D\}^{*}$

Prowf: "planarization" of the rewriting sules

q-analog

$$
\begin{aligned}
& D E=q E D+E+D \\
& w(E, D)=\sum_{T} q^{k(T)} E^{i(t)} D^{j(T)} \\
& k(T)=\text { no of onative tollan with pufile } w
\end{aligned}
$$

$$
\left\{\begin{array}{l}
D E=q E D+D+E \\
D V=\bar{\beta} V \quad \bar{\beta}=1 / \beta \\
W E=\bar{\alpha} W \quad \bar{\alpha}=1 / \alpha \\
W E^{i} D^{j} V=\bar{\alpha}^{i} \bar{\beta}^{j} \underbrace{W V}_{1}
\end{array}\right.
$$

Cor- The stationary probability associated to the state $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ (PASE)

$$
\text { is probe }(q ; \alpha, \beta)=\frac{1}{\mathbb{Z}_{n}} \sum_{T} q^{L(T)} \alpha^{-f(T)} \beta^{-\alpha i(T)}
$$

alternative tableaux profile τ

Permutation Tableau
Firers diagram $F \subseteq k x(h-k)$ rectangle

Permutation Tableau
Ferrers diagram $F \subseteq k \times(h-k)$ rectangle

filling of the cells with O^{0} and 1
(i)

$$
=0 \quad \square=1
$$

(ii)

Permutation Tableau
Firers diagram $F \subseteq k \times(h-k)$ rectangle
filling of the cells with O° and 1
(i) in each column: at least one 1

$$
\square=0
$$

\square

$$
\bullet=1
$$

(ii)

Permutation Tableau
Firers diagram $F \subseteq k \times(h-k)$ rectangle filling of the wells with O° and 1
(i) in each column: at least one 1
(ii)
 forbidden
permutation tableau
A. Pootnikor (2001,...)
totally nonnegative part of the Grassmannian
E. Steingrúmsson, L, Williams (2005)

Corteel, Williams (2006) PASEP Partially Asymmetric Exclusion Process
M. Josuat-Vergès (2007)

The total number of permutation tableaux (n fixed, $1 \leqslant k \leqslant n$) is $n 1_{0}^{0}$
bijection
permutations \longleftrightarrow permutation

- Postriker, Steingrlmason, Williams
- Corteal (2006) (2005)
- Corteel, Nadean (2007)
bijection $\hat{\phi}^{\text {alternative tableaux size } n}$ permutation tableaux size $(n+1)$

(iii). replace the cells or X by 1
- replace the ells $\# \uparrow+$ by 0

check: $A T \xrightarrow{\varphi} P T$ size $(n+1)$
- the exist ot least a 1 in each column of $P T=\varphi(A T)$

inverse bijection $\psi=\varphi^{-1}$
(i) mark the columns with a 1 in the first now

(ii) delete the finst now

(iii) in each marked column

(iv) in each non marked column (\exists some cells with 1) replace the bwest 1 by

(vi) in each rows where there exist empty cells, these cells
is marked
is of is marked

(vii) delete the marks
区 中

notations. T tallean de permutations

- $\quad w t(T)=(n d$ total de 1)-(ne de colonnes)
- $f(T)=\left(n l\right.$ de 1 sur la $1^{\text {ine }}$ ligne)
- $u(T)=$ (nb de lignes non restreintes)

Def- ligne restreinte: ssi elle a une case restreinte, c.à.d une case outenant un 0 et situer aue desses d'un 1.

Corteel, Williams (2006)
Cor. La probabilité stationnare assaciéc el^{\prime} ettat $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ (PASEP)
est

$$
\frac{P}{}(q)=\sum_{n}^{1} \sum_{T} q^{w(t)} \alpha^{-f(T)} \beta^{-u(T)}
$$

Gallean de permutation forme F assacié a τ

From algebra $D E=E D+D+E$ to bijections
$U D=D U+1$
RSK correspondence
Combinatorial theory
of orthogonal polynomials

$$
\sigma=\left(\begin{array}{llllllllll}
1 & 2 & 3 & 5 & 5 & 7 & 8 & 10 \\
3 & 1 & 6 & 0 & 2 & 5 & 8 & 4 & 9 & 7
\end{array}\right)
$$

Heisenberg

operators

U, D
$U D=D U+1$
differential poset
Fomin, Stanley

$$
\begin{aligned}
& U^{n} D^{n}= \\
& \cup \cdots \cdot \underbrace{\cup D D}_{(D U+I)} D \cdot D
\end{aligned}
$$

.

Robinson-Schensted-Schützenberger bijection

Operators U and D

adding or deleting a cell in a Ferrers diagram

Young lattice

Heisenberg commutation relation

$$
\mathrm{UD}=\mathrm{DU}+\mathrm{I}
$$

$\mathrm{UD}=\mathrm{DU}+\mathrm{I}$

combinatorial "representation" of the commutation relation $\mathrm{UD}=\mathrm{DU}+\mathrm{I}$

$$
\alpha=\beta=\gamma
$$

local RSK and geometric RSK

(the geometric construction with "light" and "shadow" for RSK leads to a simple proof of the fact that RSK and the "local rules" give the same bijection)

dessin foit par S. FOMIN

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Sergey Fomin

- Schur operators and Knuth correspondences, Journal of Combinatorial Theory, Ser.A $\mathbf{7 2}$
(1995), 277-292.
- Duality of graded graphs, Journal of Algebraic Combinatorics 3 (1994), 357-404.
- Schensted algorithms for dual graded graphs, Journal of Algebraic Combinatorics 4 (1995), 5-45.
- Dual graphs and Schensted correspondences, Series formelles et combinatoire algebrique, P.Leroux and C.Reutenauer, Ed., Montreal, LACIM, UQAM, 1992, 221-236.
- Finite posets and Ferrers shapes (with T.Britz, 41 pages)

Advances in Mathematics 158 (2000), 86-127.
A survey on the Greene-Kleitman correspondence; many proofs are new.

- Knuth equivalence, jeu de taquin, and the Littlewood-Richardson rule (30 pages)

Appendix 1 to Chapter 7 in: R.P.Stanley, Enumerative Combinatorics, vol.2,
Cambridge University Press, 1999.

Richard P. Stanley

- Differential posets, J. Amer. Math. Soc. 1 (1988), 919-961.
- Variations on differential posets, in Invariant Theory and Tableaux (D. Stanton, ed.),

The IMA Volumes in Mathematics and Its Applications, vol. 19, Springer-Verlag, New York, 1990, pp. 145-165.

Christian Krattenthaler

- Growth diagram and increasing and decreasing chains in filling of Ferrers shapes, arXiv math.CO/0510676

Xavier Gérard Viennot

- Une forme géométrique de la correspondance de Robinson-Schensted, in "Combinatoire et Représentation du groupe symétrique" (D. Foata ed.) Lecture Notes in Mathematics n ${ }^{\circ}$ 579, pp 29-68, 1976

Marc van Leeuwen

- The Robinson-Schensted and Schützenberger algorithms, an elementary approach
(a 272 Kb dvi file) Electronic Journal of Combinatorics, Foata Festschrift, Vol 3(no.2), R15 (1996)

Guoniu Han

http://math.u-strasbg.fr/~guoniu/software/rsk/index.html
Autour de la correspondance de Robinson-Schensted
Exposé au SLC 52 et LascouxFest, 29/03/2004

§ 7
Laguerre histories

Bijection Permutations $n+1$ Histoires de Laguerre $\left(\gamma_{c}, f\right)$

Bijection Permutations $n+1$ Histoires de Laguerre $\left(\gamma_{c}, f\right)$ Chemin de Motzkin nま

Laguerre polynomial

$$
\left.\begin{array}{l}
P_{k+1}(x)=\left(x-b_{k}\right) P_{k}(x)-\lambda_{k} P_{k-1}(x) \\
P_{n}=1 \quad P_{1}=x-b_{0}
\end{array}\right\} \begin{aligned}
& \left\{\begin{array}{l}
\left.b_{k}=2\right)! \\
\lambda_{k}=2 k+2
\end{array}\right. \\
& J(t)=\frac{1}{1-2 t-\frac{1 \cdot 2 t^{2}}{1-4 t-2 \cdot \frac{3 t^{2}}{\cdots}}}
\end{aligned}
$$

Bijection Laguerre histories permutations

Françon-xgv., 1978

parameter "q-Laguerre"

Lemme $\quad \operatorname{mov}^{\ell} \quad{ }^{h}=\left(\omega_{c} ;\left(p_{1}, \ldots, p_{n}\right)\right) \in \mathscr{L}_{n} \quad$ Laguerre history permutation $\sigma \in \sigma_{n+1}$
$P_{x}=j$ est ausi
$j=1+n b$ de tripets (a, b, x)
ayont le "motif" (31-2) c.àd:

$$
\begin{gathered}
a=\sigma(i), \quad b=\sigma(i+1), x=\sigma(l) \\
i<i+1<l \quad b<x<a
\end{gathered}
$$

" q-analogue" of Laguerre histories

V vector space generated by B basis B alternating words two letters $\{O, \bullet\}$ (no occurencs of 00 or 00)

4 operators A, S, J, K

4 operators $A, S, J, K, \quad u \in B$

$$
\begin{aligned}
& \langle u| A=\sum_{\text {letter } 0} v, v \underset{0 \rightarrow 0 \cdot 0}{\text { oetcined }} \text { by: } \\
& \langle u| S=\sum_{0 \text { of } u} \quad \begin{array}{l}
v \quad \begin{array}{l}
\text { obtained } \\
0 \rightarrow 0 \\
\text { of } u
\end{array} \\
\text { (and } \rightarrow 0 \rightarrow 0
\end{array} \quad \infty \rightarrow 0 \text {) } \\
& <u \mid J=\sum_{00 f_{u}} v \quad v, 0 \rightarrow 0 \text { (and } \bullet \cdot \rightarrow 0 \text {) } \\
& \langle u| K=\sum_{\sum_{0} v} v, 0 \rightarrow 0 \text { (and } 0 \rightarrow \rightarrow 0 \text {) } \\
& \bigcirc \bigcirc \bigcirc \mid \mathrm{S}=00+00
\end{aligned}
$$

Lemma.

$$
\begin{aligned}
& A S=S A+J+K \\
& A K=K A+A \\
& J S=S J+S \\
& J K=K J
\end{aligned}
$$

Lemma.

$$
\begin{aligned}
& A S=S A+J+K \\
& A K=K A+A \\
& J S=S J+S \\
& J K=K J
\end{aligned}
$$

$$
\begin{aligned}
& D=A+J \\
& E=S+K
\end{aligned}
$$

$$
\begin{aligned}
& D=A+J \\
& E=S+K
\end{aligned}
$$

$$
\begin{aligned}
D E & =(A+J)(S+K) \\
& =A S+A K+J S+J K \\
& =(\underbrace{S A+K A+S J+K J}_{E D})+\underbrace{S+K+A+S}_{E+D}(A+J)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { A through } \\
\text { (valley) } & S \text { peak } i \\
\text { / } J \text { dork } & K \text { double } \\
\text { descent }
\end{array}
$$

Representation of the operators D and E

and

"Data structure histories"

- Computer deience

Computing the average cost of a data structure integrated on a sequence of primitive operations
ex: stack $\left\{\begin{array}{l}\text { priority queue } \\ \text { dictionary } \\ \text { list } \\ \text { symbol! table }\end{array}\right.$

Flajolet, Frangon, Vaillemin

24
 17

10

8

$$
\begin{aligned}
& 24 \\
& 17 \\
& < \\
& 10
\end{aligned}
$$

$$
8
$$

histoires de fichiers Francon, (1976)

Data structure histories

$$
\begin{aligned}
& \text { Operations primitives } \\
& \text { Primitive operations } \\
& \text { for "dictionaries" data structure: } \\
& \text { add or delete any elements, asking questions } \\
& \text { (with positive or negative answer) }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
D=A+I_{-} \\
E=S+I_{+}
\end{array}\right.
$$

this corresponds to the n ! "restricted Laguerre histories"

$$
D E=E D+E+D
$$

ansi:

this valuation corresponds to the $(n+1)$! "enlarged Laguerre histories"

89 another bijection

permutations alternative tableaux

\bullet
$\bullet 1 \bullet$
$\bullet 1 \bullet 2 \bullet$
$\bullet 1 \bullet 3 \bullet 2$
$41 \bullet 3 \bullet 2$
$41 \bullet 352$
$416 \bullet 352$
$416 \bullet 7 \bullet 352$
$416 \bullet 78352$

416978352

416978352
inverse bijection

Two bijection
one theorem

Prop.

from $D E=E D+E+D$

P. Nadeau notice that, the (first) bijection described by him and S.Corteel (published in European J. of Combinatorics) between permutation tableaux and permutations, is equivalent to a "column insertion" in the algorithm presented here with "local rules", up to transforming permutation tableaux into alternating tableaux and taking complements mirror image of the permutation constructed by "local rules" (which is the inverse of the permutation used in the "exchange-delete" algorithm).

permutation
alternative tableaux
$\left\{\begin{array}{l}n b \text { of unnakictred rows } \\ n b \text { of } 1^{\prime} \text { in inst row }\end{array}\right\} \rightleftarrows\left\{\begin{array}{l}n b \text { of rows without } \\ n b \\ n b \text { of columowithout }\end{array}\right.$
$\begin{array}{r}\text { Cartel } \\ (2006)\end{array} \quad T_{n}(x, y)=\prod_{i=0}^{n-1}(x+y+i) \quad\{R L=$ minima \quad.
bijection Corteel-Nadeau (2007)

$$
\begin{aligned}
& \text { permutation } \\
& \text { tableanx } \\
& \left\{\begin{array}{l}
\text { profile } \\
\text { - nszis unnestricted rows } \longleftrightarrow \text { (nises, descents) } \\
\text { - nb of "superffur" } 1
\end{array}\right. \text { RL- minimum } \\
& \text { of }(31-2) \\
& \text { alteinative } \\
& \text { tableauy } \\
& \left\{\begin{array}{l}
\text { - profile } \\
\text { - ne of rows without } \\
\text { - nb of cells }
\end{array}\right.
\end{aligned}
$$

The "exchange-fusion" algorithm

An alternative description of the bijection alternative tableaux -- permutations

Def- Permutation $\sigma=\sigma(1) \cdots \sigma(n)$

$$
x=\sigma(i), \quad 1 \leqslant x<n
$$

(valeur) $x\left\{\begin{array}{l}\text { avance } \\ \text { recul }\end{array} x+1=\sigma(j),\left\{\begin{array}{l}i<j \\ j<i\end{array}\right.\right.$

- convention $x=n$ est un recul
$-(x-(x+1)$

$$
\sigma=7438196
$$

!ex.j!!

$=$

Pesin

?

?

Description of the "exchange-fusion" algorithm

In the "exchange-fusion" algorithm, the red and blue blocks are falling down, starting at the beginning where all the blocks have only one letter. Each blocks is formed of consecutive letters.

- When two blocks meet at the crossing of a blue and red thread, if the union of the two blocks is formed with consecutive letters, then the two blocks form a single block by concatenation, and the new block follows the thread of the block having the biggest letters.
- If not, then the two blocks cross and follow their own colored thread.

The proof of the fact that the two algorithms "exchange-delete" and "exchange-fusion" produce exactly the same alternating tableau is based on the following observation:
(key) observation
In the "exchange-delete" algorithm, when a blue or a red dot is put on a crossing, that is when the two values x and y which are going to cross are "consecutive", then all the intermediate values between x and y (which have disappeared) belong to one of the corresponding blocks in the analog crossing which will appears in the "exchange-fusion" algorithm.

A consequence of that is to give an interpretation of the number of red or blue blocks falling on the ground level, that is the number of columns having no red cells and numbers of rows having no blue cells. We call such row or column "open".

Some Parameters

The maximum letter of the blocks of letters reaching the ground level are:

- for the columns of T (red threads), the left-to-right maximum elements of the values of the permutation s less than the last letter $s(n+1)$,
- for the rows of T (blue threads), the right-to-left maximum elements of the values of the permutation s bigger than the last letter
(3 proofs comming 3 different methodologies: by P. Nadeau, O.Bernardi and xgv)

This gives an interpretation of the two parameters on alternative tableaux:

- number of "open" columns (i.e. columns without a red cell)
- number of "open" rows (i.e. rows without a blue cell)

In fact, each block falling on the ground level in the "exchange-fusion" algorithm (corresponding to an open column or row), has an underlying binary tree structure coming from the different fusions (or equivalently the deletions of the "exchange-delete" algorithm)
(see a forthcoming paper of P. Nadeau on "alternative trees" and alternative tableaux).

Number of "crossings" in the alternative tableaux

This parameter is the number of crossing occurring in the "exchange-delete", or equivalently of the "exchange-fusion" algorithm. Each crossing corresponds to a cell in the alternative tableau (colored) which is above a red cell and at the right of a blue cell. It has the same distribution as the parameter "number of occurrences of the pattern (31-2)" in permutations. (from the bijection of S. Corteel and P. Nadeau or from Steingrimsson and Williams)

This parameter is the natural q-analogue of Laguerre histories, that is the parameter obtained by taking the sum of all the "possibilities choices decreased by one". In other words, if at each step $1,2, \ldots, x, \ldots, n+1$, of the construction of the permutation, the (k +1) free positions available to insert the value x are labeled (in a certain way) $0,1, \ldots$, k, then we put the weight q^{1} when value x is inserted at position i, and the weight of the Laguerre history is the product of the weight of each individual step. If the labeling is always from left to right, then the q-analogue becomes the number of occurrence of (31-2). (see the next section).

The number of crossings of the alternative tableau has been be characterized by O.Bernardi on the corresponding permutation s.

It is the number of pairs $(x, y), x=s(i), y=s(j), 1 \leq i<j \leq n+1$, such that there exist two integers $k, l \geq 0$ such that:
the set of the values $x+1, x+2, \ldots, x+k, y+1, \ldots, y+l$ are located between x and y (in the word s), and $x+k+1$ is located (in s) at the right of y and $y+l+1$ is located (in s) at the left of x (with the convention of $n+2$ at the left of all the values).
O.B. deduce the nice corollary:

The permutations s coming from tableaux with no crossing (counted by Catalan numbers) are characterised by the following condition
there is no pair of values (x, y) such that the four values $(x, x+1, y, y+1)$ appear in the following order in the permutation:

$$
s=\ldots . y+1 \ldots . . x \ldots . . \quad y \ldots . . \quad x+1 \ldots . .
$$

Def Catalan alternative tallean T alt. Val. without cells 区 ie: every empty cell is bebw a red cell or on the left of a blue cell

tall lean alternation de Catalan

Def Catalan alternative tallean T alt. Cal. without cells 区 ie: every empty cell is bebw a red cell or on the left of a blue cell

Une lettre d'Euler à Christian Goldbach

Berlin, 4 Septembre 1751

Ich bin neulich auf eine Betrachtung gefallen, welche mir nicht wenig merkwürdig vorkam. Dieselbe betrifft, auf wie vielerley Arten ein gegebenes polygonum durch Diagonallinien in triangula zerschnitten werden könne.

Also ein quadrilaterum $a b c d$ kann entweder durch die diagonalem $a c$, oder durch $b d$, und also auf zweyerley Art in zwey triangula resolvirt $\mathrm{w}^{\text {awdan }}$

Ein Fünfeck abcde wi drey triangula getheilet, un
 verschiedene Arten geschehen, nenmien aurca ae alagonates
I. $a c, a d$. II. $b d, b e$. III. $c a ; c e$. FV. $d b, d a$, V. $e c, e b$.

Ferner wird ein Sechseck durch direy diagonales in vier triangula zertheilet, und dieses kann auf 14 verschiedene Arten geschehen.

Nun ist die Frage generaliter: da ein polygonum von n Seiten durch $n-3$ diagonales in $n-2$ triangula zerschnitCorr. math, et phys. T. I.

Journées Pierre Leroux Montréal, UQAM, 8-9 Septembre 2006

the "binary trees sliding" algorithm Catalan tableaux \longleftrightarrow binary trees

in Proc. FPSAC'07, Tienjín (described in term of permutation tableaux)

今 s
s s
必 次

$$
e x
$$

$$
\% \text { 掠 }
$$

0 缃
必 兑

$$
\therefore \text { 兑 }
$$

$$
\because
$$

疋
苑
*

The bijection presented at Tienjin FPSAC'07 between binary trees and "Catalan permutation tableaux", once rewritten in term in terms of "Catalan alternating tableaux" (which is immediate to do), can be viewed as a particular case of the inverse of the "exchange-fusion" algorithm.

This "binary tree sliding algorithm" can be extended to permutations and gives a bijection between alternative tableaux and a new kind of binary trees introduced by P. Nadeau in his forthcoming paper under the name of "alternative binary tree"

P. Nadeau
 "alternative binary tree"

Def-ASM alternating sign matrix

$$
\left[\begin{array}{rrrrr}
0 & 1 & 0 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

(i) entries: $0,1,-1$
(ii) sum of entries in each (row $\begin{aligned} & \text { row en } \\ & \text { colum }\end{aligned}=1$
(iii) non-zero entasis alternate in each 2 row mn

Alernating sign matrices: at the crossroads of algebra, combinatorics and physics",
colloquium au CMUC (Centro de Matematica da Universidade do Coimbra), Portugal, 26 Sept 2008, 17 h
$A, A^{\prime}, B, B^{\prime}$,
commutations

$$
\begin{aligned}
& \left\{\begin{array}{l}
B A=A B+A^{\prime} B^{\prime} \\
B^{\prime} A^{\prime}=A^{\prime} B^{\prime}+A B
\end{array}\right. \\
& \left\{\begin{array}{l}
B^{\prime} A=A B^{\prime} \\
B A^{\prime}=A^{\prime} B
\end{array}\right.
\end{aligned}
$$

Lemma. Any word $W(A, A, B, B)$ in letters $A, A^{\prime}, B, B^{\prime}$, cam be uniquely written

Prop. For $w=B^{n} A^{m}$

$$
u=A^{\prime n}, v=B^{\prime n}
$$

$C(u, v ; w)=$ the number of $n \times n$ ASM (alternating sign matrices)

8- parameters quadratic algebra
commutations

$$
\begin{aligned}
& \left\{\begin{array}{l}
B A=q_{1} A B+q_{2} A^{\prime} B^{\prime} \\
B^{\prime} A^{\prime}=q_{3}^{\prime} B^{\prime} B^{\prime}+q_{4} A B
\end{array}\right. \\
& \left\{\begin{array}{l}
B^{\prime} A=q_{3} A B^{\prime}+q_{6}^{\prime} A^{\prime} B \\
B A^{\prime}=q_{7}^{A^{\prime}} B+q_{8} A B^{\prime}
\end{array}\right.
\end{aligned}
$$

Conclusion: In this talk I have presented a sort of

"cellular ansatz"

- Some (formal) operators satisfying some commutation relations are given and generate a certain quadratic algebra.
- The computations in this algebra are made by some (oriented) rewriting rules which are visualized in a planar way on a (square) elementary cell of a grid. May be the operator identity I has to be introduced as another formal operator.
- The rewriting of a word of the algebra is visualized by a kind of a 2D cellular oriented expansion. The edges of the grid are labeled by the operators, the cells are labeled by each of the possible rewriting rules.
- The grid with the final labeling of the cells is in bijection with a class P of combinatorial objects (Permutations, Alernative tableaux, ASM, FPL, Tilings, etc ...).
- If the operators can be represented as combinatorial operators acting on a certain class F of combinatorial objects, then a simple combinatorial explanation of the commutation rules can be "attached" to each labeled cell of the grid. The vertices of the grid becomes labeled by the objects of F and "local rules" should be defined. In the case (as in the two examples of RSK and Alternating tableaux) when only the labels of the cells, and not those of the edges, are needed for defining the local rules, then from the cellular propagation of these local rules across the grid, one obtain a bijection between the objects of P and some other objects coded by the sequence of the F-labels on the border of the grid.

some perspectives

Questions.

- find a "combinatorial representation" for operators $A, A^{\prime}, B, B^{\prime}$.
- analogue of RSK (Rolinson-SchenotedKnuth)
for ASM?
- analogue of "local rules"
- direct proof of the formula

$$
A_{n}=\prod_{j=1}^{n} \frac{(3 j-2)!}{(n+j-1)!}
$$

(n o of ASM of rive n)

$$
=1,2,47,429, \ldots
$$

```
(with P. Nadeau)
another representation of operators D and E
with triangulations of regular polygons
hypercube -- associahedron -- permutohedron
( Loday-Ronco )
```

-- alternohedron
(Lascoux-Schützenberger)

```
Razumov-Stroganov conjecture
spin chain Heisenberg XXZ model
```

- Orthogonal polynomials
\rightarrow Sasamoto (1999) Colaiori, Essler (2000)
q-Hermite polynomial
α, β, q $\gamma=\delta=1$

$$
\begin{aligned}
D & =\frac{1}{1-q}+\frac{1}{\sqrt{1-q}} \hat{a} \\
E= & \frac{1}{1-q}+\frac{1}{\sqrt{1-q}} \hat{a}^{+} \\
& \hat{a} \hat{a}^{+}-q \hat{a}^{+} \hat{a}=1
\end{aligned}
$$

\rightarrow Uchiyama, Sasamoto, Wadati (2003)

$$
\alpha, \beta, \gamma, \delta, \quad q
$$

Askey-Wilson polynomials

Askey-Wilson

Novelli,Thibon,Williams (April 2008)
Hall-Littlewood functions, Tevlin' bases (2007)
conjectures

references:

xgv website :

http://www.labri.fr/perso/viennot/

Recherche, cv, publications, exposés, diaporamas, livres, petite école, photos: voir ma page personnelle ici Vulgarisation scientifique voir la page de l'association Cont'Science
downloadable papers, slides and lecture notes, etc ... here
(the summary on page "recherches" and most slides are in english)
\longrightarrow page "video"
"Alternative tableaux, permutations and asymmetric exclusion process" conference 23 April 2008, Isaac Newton Institute for Mathematical science
or http://www.newton.cam.ac.uk/ (page "web seminar")
page "exposés"

An alternative approach to alternating sign matrices, (pdf 9,3 Mo) Workshop on "Combinatorics and Statistical Physics", The Erwin Schrödinger International Institute for Mathematicals Physics (ESI), Vienna, 20 May 2008.

Growth diagrams for Young tableaux, Robinson-Schensted correspondance and some quadratic algebra coming from physics, exposé au CMUP (Centro de Matematica da Universidade do Porto), Portugal, 17 Sept 2008 slides ($13,1 \mathrm{Mo}$)

Alernating sign matrices: at the crossroads of algebra, combinatorics and physics", exposé au CMUC (Centro de Matematica da Universidade do Coimbra), Portugal, 26 Sept 2008

TASEP:
\longrightarrow page "exposés"
Catalan numbers, permutation tableaux and asymmetric exclusion process (pdf, 4,8 Mo) GASCOM'06, Dijon, Septembre 2006, aussi: Journées Pierre Leroux, Montréal, Septembre 2006

Robinson-Schensted-Knuth: RSK1 (pdf, 9,1 Mo)
groupe de travail de combinatoire, Bordeaux, LaBRI, Février 2005
Robinson-Schensted-Knuth: RSK2 (pdf, 10,8Mo)
groupe de travail de combinatoire, Bordeaux, LaBRI, Février 2005
survey paper on Robinson-Schensted correspondence:
[30] Chain and antichain families, grids and Young tableaux,
Annals of Discrete Maths., 23 (1984) 409-464.

from xgv website:

\longrightarrow A Combinatorial theory of orthogonal polynomials

[4] Une théorie combinatoire des polynômes orthogonaux, Lecture Notes UQAM, 219p., Publication du LACIM, Université du Québec à Montréal, 1984, réed. 1991.
$\longrightarrow \quad$ page "petite école"
Petite école de combinatoire LaBRI, année 2006/07
"Une théorie combinatoire des polynômes orthogonaux, ses extensions, interactions et applications"

Chapitre 2, Histoires et moments, (17, 23 Nov, 1, 8, 15 Dec 2006)
Chapitre X Histoires et opératerus (10 and 12 January 2007)
\longrightarrow page "cours"
Cours au Service de Physique Théorique du CEA, Saclay Sept-Oct 2007 "Eléments de combinatoire algébrique"

Ch 4 - (9,4 Mo) théorie combinatoire des polynômes orthogonaux et fractions continues

from xgv website:

\longrightarrow Paper: FV bijection
[21] (avec J. Françon) Permutations selon les pics, creux, doubles montées et doubles descentes, nombres d Euler et nombres de Genocchi, Discrete Maths., 28 (1979) 21-35
survey paper: Genocchi, Euler (tangent and secant numbers), Jacobi elliptic functions [6] Interprétations combinatoires des nombres d Euler et de Genocchi (pdf, 9,2 Mo) Séminaire de Théorie des nombres de Bordeaux, Publi. de l'Université Bordeaux I, 1982-83, 94p.

more references:

O. Angel, The stationary measure of a 2-type totally asymmetric exclusion process, J. Combin. Theory A, 113 (2006) 625-635, arXiv:math.PR/0501005
J.C. Aval and X.G. Viennot, Loday-Ronco Hopf algbra of binary trees and Catalan permutation tableaux, in preparation.
P. Blasiak, A.Horzela, K.A. Penson, A.I. Solomon and G.H.E. Duchamp, Combinatorics and Boson normal ordering: A gentle introduction, arXiv: quant-phys/0704.3116.
R.A. Blythe, M.R. Evans, F. Colaiori, F.H.L.Essler, Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra, J.Phys.A: math.Gen. 33 (2000) 2313-2332, arXiv:cond-mat/ 9910242.
R. Brak and J.W. Essam, Asymmetric exclusion model and weighted lattice paths, J. Phys.A: Math Gen., 37 (2004) 4183-4217.
A. Burstein, On some properties of permutation tableaux, PP'06, June 2006, Reykjavik, Iceland.
S. Corteel, A simple bijection between permutations tableaux and permutations, arXiv: math/0609700
S.Corteel and Nadeau, Bijections for permutation tableaux, Europ. J. of Combinatorics, 2007
S. Corteel, R. Brak, A. Rechnitzer and J. Essam, A combinatorial derivation of the PASEP stationary state, FPSAC'05, Taormina, 2005.
S. Corteel and L.K Williams, A Markov chain on permutations which projects to the PASEP. Int. Math. Res. Not. (2007) article ID rnm055, arXiv:math/0609188
S. Corteel and L.K. Williams, Tableaux combinatorics for the asymmetric exclusion process, Adv in Apl Maths, to appear, arXiv:math/0602109
B. Derrida, M.R. Evans, V. Hakim and V. Pasquier, Exact solution of a one dimensional aysmmetric exclusion model using a matrix formulation, J. Phys. A: Math., 26 (1993) 1493-1517.
B. Derrida, An exactly soluble non-equilibrium system: the asymmetric simple exclusion process, Physics Reports 301 (1998) 65-83, Proc. of the 1997-Altenberg Summer School on Fundamental problems in statistical mechanics.
B. Derrida, Matrix ansatz and large deviations of the density in exclusion process, invited conference, Proceedings of the International Congress of Mathematicians, Madrid, 2006.
E. Duchi and G. Schaeffer, A combinatorial approach to jumping particles, J. Combinatorial Th. A, 110 (2005) 1-29.
S. Fomin, Duality of graded graphs, J. of Algebraic Combinatorics 3 (1994) 357-404
S. Fomin, Schensted algorithms for dual graded graphs, J. of Algebraic Combinatorics 4 (1995) 5-45
J. Françon and X.G.Viennot Permutations selon les pics, creux, doubles montées et doubles descentes, nombres d'Euler et nombres de Genocchi, Discrete Maths., 28 (1979) 21-35.
O.Golinelli, K.Mallick, Family of commuting operators for the totally asymmetric exclusion process, J.Phys.A:Math.Theor. 40 (2007) 5795-5812, arXiv: cond-mat/0612351
O.Golinelli, K.Mallick, The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics, J. Phys.A: Math.Gen. 39 (2006), arXiv:cond-mat/0611701
M. Josuat-Vergès, Rook placements in Young diagrams, this SLC 61
J.C. Novelli, J.Y.Thibon and L.Williams, Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions ans permutations, arXiv:0804.0995
A. Postnikov, Total positivity, Grassmannians, and networks, arXiv: math.CO/0609764.
T. Sasamoto, One-dimensional partially asymmetric simple exclusion process with open boundaries: orthogonal polynomials approach., J. Phys. A: math. gen. 32 (1999) 7109-7131
L.W. Shapiro and D. Zeilberger, A Markov chain occuring in enzyme kinetics, J. Math. Biology, 15 (1982) 351-357.
E.Steingrimsson and L. Williams Permutation tableaux and permutation patterns, J. Combinatorial Th. A., 114 (2007) 211-234. arXiv:math.CO/0507149
M.Uchiyama, T.Sassamoto, M.Wadati, Asymmetric simple exclusion process with open boundaries and Askey-Wilson polynomials, J. PhysA:Math.Gen. 37 (2004) 4985-5002, arXiv: cond-math/0312457
X.G.Viennot, Alternative tableaux, permutations and partially asymmetric exclusion process, in preparation
X.G.Viennot, Catalan tableaux and the asymmetric exclusion process, in Proc. FPSAC'07 (Formal Power Series and Algebraic Combinatorics), Tienjin, Chine, 2007, 12 pp.
http://www.fpsac.cn/PDF-Proceedings/Talks/87.pdf

MUITO OBRIGADO

