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TWISTED LIE ALGEBRAS AND IDEMPOTENT OF DYNKIN

MARC AUBRY

Abstract. In this paper we define a Dynkin idempotent for twisted Hopf algebras
and generalize the results of Patras and Reutenauer in the classical case. We treat as
a special case the free Lie algebra and so generalize the results of Waldenfels.

1. Introduction

These pages are intended to be the initial part of a larger program: to spread the
light of twisted Lie algebras onto the James–Hopf and the Hilton–Hopf invariants. This
is certainly presumptuous, but presently it seems a promising direction to go.

Actually the starting post was planted by Barratt in his well-known article [3]: there
he announced his intention to look inside twisted structures “where the milling crowd
of generalised Hopf invariants may be reduced to order or at least quieted.” But this
remained almost without posterity; nevertheless, we should mention the work of Goerss
[7] in this direction.

Except for this topological context, twisted algebraic structures grew in interest in
their own right as a combinatorial subject of study. General framework studies were
proposed: Stover [16] set up definitions directly modelled on the classical ones; they
are effective and very useful for elementary calculations (we shall briefly recall them
and use them in our proofs). Joyal [8] gave an abstract and very synthetic approach
by the species of structures; Bergeron, Labelle and Leroux [4] devote a book to this
subject. In this vein, we can cite Patras and Reutenauer [12] and Patras and Schocker
[13, 14]. Operadic results on bi- and Hopf algebras enriched this combinatorial point
of view (see [1, 5, 6, 9, 10]). An extensive account of all these subjects by Aguiar and
Mahajan is in press [2].

After all these developments on twisted algebraic structures, it is perhaps worthwhile
revisiting Barratt’s pages on the subject.

First, at the end of [3], Barratt gives a description of a linear basis of the free twisted
Lie algebra, but without proof. As a quick check reveals (just consider the action of
the symmetric group by the sign of a permutation — what topologists call a graded
Lie algebra — and the element [[x, y], [x, y]]), Barratt’s basis is not a generating set.
So the first task arises by itself: determine a basis for the free twisted Lie algebra (and
prove that it really is one!).

This can be done using the Hall basis as in the classical case — this is the concern of
a forthcoming paper. Major tools for that are the Dynkin and Klyachko idempotents
for Lie algebras. As an introductory chapter, this article deals with the idempotent
of Dynkin in a more general setting, namely the setting of Hopf algebras. Following
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Patras and Reutenauer [11], we do that abstractly on morphisms, not on elements.
But since our next task is to deal with the Hall basis (elements in Lie algebras), we
think that it is not too redundant to also translate the description of Waldenfels [18],
which explicitly uses elements.

The paper is organized as follows.
We recall some definitions about twisted algebraic structures in Section 2. We also

set up notations once for all.
In Section 3, we discuss free twisted objects and adapt the notion of associative and

Lie polynomials to the twisted case.
Section 4 deals with the case of free Lie algebras and reproduces the proofs of

Waldenfels and Reutenauer giving various characterizations of Lie polynomials. We
shall directly use this approach to construct the Hall basis.

In Section 5, we adapt the notion of pseudo-coproduct for the twisted case.
Making a large use of pseudo-coproducts, in Section 6 we prove the properties of

the Dynkin idempotent for Hopf Algebras. This forms a generalization of the results
obtained in Section 4.

Acknowledgements. We are indebted to F. Patras for drawing our attention to
Barratt’s article on twisted Lie algebras, and particularly to the question of their
linear basis. We are also grateful to the referee who incited us to specify the notion of
twisted algebra and polynomial.

2. Twisted algebras

We briefly review all algebraic structures we shall use in their twisted version. To this
end, we follow and refer to Stover [16]. This presentation is very explicit on elements
and so immediately manageable when we construct the Hall basis.

First we fix some notations for the permutation group.

2.1. Permutation groups. Let us denote by Sn the group of all bijections of n
objects; in the following it is understood (unless otherwise specified) that these objects
are the set of integers {1, . . . , n}; we also explicitly denote a permutation σ by its
image (σ(1), . . . σ(n)). We compose permutations as usual for maps by acting on the
left: σ ◦ τ(i) = σ(τ(i)).

Given a decomposition (all integers in the following are non-negative) (p1, p2) of
n = p1 + p2 (by abuse of terminology, we shall say: a decomposition n = p1 + p2), we
define the inclusion Sp1 ×Sp2 ⊂ Sn as reflecting the inclusion given on objects by the
map preserving order from left to right:

{1, . . . , p1} q {1, . . . , p2} ⊂ {1, . . . , n}

i 7→ i on the first factor

i 7→ p1 + i on the second factor

(Clearly, for q order matters). One immediately extends this to the case n = p1 + · · ·+
pk, k ≥ 2, to define Sp1 × · · ·×Spk

⊂ Sn. If Φi is a permutation in Si, i = 1, 2, . . . , k,
we denote by (Φ1, . . . , Φk) the image in Sn of (Φ1 × · · · × Φk) ∈ Sp1 × · · · ×Spk

.
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We now define permutations acting on blocks. Let n = p1 + · · · + pk be some
decomposition and σ ∈ Sk. We define the permutation of Sn acting on the k-blocks
p1, . . . , pk by the following composition:

Cpσ−1(1),...,pσ−1(k)
(σ) : {1, . . . , n} → {1, . . . , p1} q · · · q {1, . . . , pk}

→ {1, . . . , pσ−1(1)} q · · · q {1, . . . , pσ−1(k)} → {1, . . . , n}
where the first and last arrows preserve the order from left to right, and the second one
preserves the elements (i.e., if σ(j) = i, at the l-th spot of the i-th block of the image
you find the element that was at the l-th spot of the j-th block in the preimage).

We also recall the following facts.

Proposition 2.1.1. 1) For all σ, τ ∈ Sk, we have

Cp(σ◦τ)−1(1),...,p(σ◦τ)−1(k)
(σ ◦ τ) = Cp(σ◦τ)−1(1),...,p(σ◦τ)−1(k)

(σ) ◦ Cpτ−1(1),...,pτ−1(k)
(τ).

2) For all σ ∈ Sk, Φ1 ∈ Sp1, . . . , Φk ∈ Spk
, we have

Cpσ−1(1),...,pσ−1(k)◦(Φ1×···×Φk)=(Φσ−1(1)×···×Φσ−1(k)
) ◦ Cpσ−1(1),...,pσ−1(k)

(σ)

2.2. Twisted modules and tensor products. Let R be a ring. A graded R-module
X is a collection (Xn)n∈N of R-modules Xn indexed by non-negative integers n.

Twisted modules. A twisted module M is a graded module together with a right
Sn-action (a right R(Sn)-module structure on Xn for each n). Morphisms of graded R-
modules and of twisted modules are defined as one can imagine; we shall only consider
morphisms of degree 0. A twisted module M is connected if M0 = 0. R is canonically
given the structure of a twisted module.

Twisted tensor product. The twisted tensor product of k twisted modules M1, . . . ,Mk

is defined by its nth-term

(M1⊗· · ·⊗Mk)n =
∑

p1 + · · ·+ pk = n
pi ≥ 0

((M1)p1 ⊗R · · ·⊗R (Mk)pk
)⊗R(Sp1×...Spk

) R(Sn).

Notice that in what follows M ⊗ N will always denote this product when M and N
are twisted modules. The canonical element (m1 ⊗ · · · ⊗mk) ⊗ σ will be denoted by
(m1⊗· · ·⊗mk)◦σ unless σ ∈ Sn is the identity, in which case we simplify the notation
to m1 ⊗ · · · ⊗mk.

Because of their importance, in the following we specify the notions of associativity
and commutativity for tensor products of twisted modules on elements.

Associativity. There is a natural morphism of twisted modules

(M1,1⊗· · ·⊗M1,k1)⊗· · ·⊗(Ml,1⊗· · ·⊗Ml,kl
) → M1,1⊗· · ·⊗M1,k1⊗· · ·⊗Ml,1⊗· · ·⊗Ml,kl

which sends the element

((m1,1 ⊗ · · · ⊗m1,k1) ◦ σ1 ⊗ · · · ⊗ (ml,1 ⊗ · · · ⊗ml,kl
) ◦ σl) ◦ τ

to the element

(m1,1 ⊗ · · · ⊗m1,k1)⊗ · · · ⊗ (ml,1 ⊗ · · · ⊗ml,kl
) ◦ (σ1 × · · · × σl) ◦ τ.
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Commutativity. Let α ∈ Sk. There is an isomorphism of twisted modules

α# : M1 ⊗ · · · ⊗Mk → Mα−1(1) ⊗ · · · ⊗Mα−1(k)

which sends the element

(m1 ⊗ · · ·⊗k) ◦ σ

to the element

(mα−1(1) ⊗ · · · ⊗mα−1(k)) ◦ Cpα−1(1),...pα−1(k)
◦ σ,

where pi is the degree of mi; to avoid too many definitions, we shall often write pi =
|mi|.

We denote by T the swapping map: (2, 1)# : M ⊗N → N ⊗M .

Remark. In the following sections, and to avoid confusions, we shall omit the symbol
◦ for denoting the action of R(S). It will be reserved to the composition of maps.

2.3. Twisted algebras, coalgebras, bialgebras, Hopf algebras. We refer to [16]
for the definitions of twisted algebras, coalgebras and bialgebras. Formally they re-
produce the definition diagrams of the classical case. We go into details only for the
case of Hopf algebras because we want to prove a twisted version of a certain useful
proposition concerning the antipode.

Definition 2.3.1. A twisted Hopf algebra is a twisted bialgebra A together with a
morphism of twisted modules S : A → A such that following diagram commutes:

A
∆

- A⊗ A
S ⊗ A

- A⊗ A

R

ε

-

A⊗ A

∆

? A⊗ S
- A⊗ A

µ
- A

µ

?

η

-

where ε : A → R (respectively η : R → A) is the counit (respectively unit) of the
coalgebra A.

Convolution. At this point it seems judicious to introduce an operation we shall use
very often in the next sections.

Proposition 2.3.2. Let C be a twisted coalgebra and A a twisted algebra. The set of
morphisms of twisted modules HomR(S)(C, A) is an associative monoid with product,
called the convolution and denoted by ?:

f ? g : C
∆

- C ⊗ C
f ⊗ g

- A⊗ A
µ

- A
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Now, by definition the antipode is the inverse of the identity under the convolution
product; it is thus unique. Like in the classical case, there is a canonical way to define
an antipode on a twisted connected bialgebra, and thus to give the latter the structure
of a twisted Hopf algebra.

We conclude this subsection with a proposition which has not yet been published in
the twisted case; here we follow Sweedler [17]. We shall use it in Section 6.

Convention. For any object O of any category, we denote by the same symbol O the
identity: O → O.

Proposition 2.3.3. Let H be a Hopf algebra with antipode S. Then the following
statements hold.

1) S ◦ π = π ◦ T ◦ (S ⊗ S) : H ⊗H → H.
2) S ◦ η = η : R → H.
3) ε ◦ S = ε : H → R.
4) T ◦ (S ⊗ S) ◦∆ = ∆ ◦ S : H → H ⊗H.
5) The following conditions are equivalent:

a) π ◦ (S ⊗H) ◦ T ◦∆ = η ◦ ε : H → H.
b) π ◦ (H ⊗ S) ◦ T ◦∆ = η ◦ ε : H → H.
c) S ◦ S = H.

6) If H is commutative or cocommutative then S ◦ S = H.

Proof. 6) We prove that 5) implies 6).
If H is cocommutative, then T ◦∆ = ∆ : H → H, and a) merely says that S is the

left convolution inverse of the identity H, and equivalently b) says that S is the right
convolution inverse of H. Similarly we check π ◦ (S ⊗H) ◦ T = π ◦ T ◦ (H ⊗ S) and
π ◦ (H ⊗ S) ◦ T = π ◦ T ◦ (S ⊗H). If H is commutative, then π ◦ T = π, and again
we recover that S is the inverse of the identity H. So in each case the conclusion of 6)
holds.

1) Consider the three R(S) linear maps : M, N, P : H ⊗H → H defined by M = π,
N = π ◦ (S ⊗ S) and P = S ◦ π.

Let us endow H ⊗H with the structure of a coalgebra given by the coalgebra struc-
ture of H, and consider Hom(H ⊗H, H), where the target space is H with its algebra
structure. Hom(H ⊗H, H) is an algebra under the convolution product (cf. Proposi-
tion 2.4.3). Let us denote the counit of H ⊗ H by ε′. Then η ◦ ε′ is the unit of the
algebra Hom(H⊗H, H). We shall now prove that P ?M = η◦ε′ = M ?N , that is, that
P is a left inverse and N a right inverse of M . As we know, this implies that P = N ,
which had to be proved. Let us now proceed.

Let us make some abuse of notation: if x ∈ A ⊗ B we write x = a ⊗ b for the
expression that, more accurately, should be written as x =

∑
i∈I ai ⊗ bi. Similarly, if

∆ is a coproduct of C, let us write ∆(c) = c(1) ⊗ c(2) for ∆(c) =
∑

i∈I ci
1 ⊗ ci

2.
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Let g, h be two elements of H. We calculate first:

P ? M(g ⊗ h) = P ((g ⊗ h)(1))M((g ⊗ h)(2))

= P (g(1) ⊗ h(1))M((g(2) ⊗ h(2))C|g(1)|,|h(1)|,|g(2)|,|h(2)|((1, 3, 2, 4))

= S(g(1)h(1))g(2)h(2)C|g(1)|,|h(1)|,|g(2)|,|h(2)|((1, 3, 2, 4))

= S((gh)(1))(gh)(2).

Remark. For convenience, when the symmetric group Sn acts on a factor of degree
n of an element a of degree N , n ≤ N , we shall write this as an action of SN on a via
the corresponding canonical embedding Sn ⊂ SN .

The last equation uses the statement that ∆ is an algebra map, i.e., that

∆ ◦M(g ⊗ h) = (gh)(1) ⊗ (gh)(2) = g(1)h(1) ⊗ g(2)h(2)C|h(1|,|g(2)|((1, 3, 2, 4)).

The last term is (S ? H)(gh) (and thus ε(gh) or ε(g)ε(h)) by definition.
On the other hand, we have

M ? N(g ⊗ h) = M(g(1) ⊗ h(1))N(g(2) ⊗ h(2))C|g(1)|,|h(1)|,|g(2)|,|h(2)|((1, 3, 2, 4))

= g(1)h(1)S(h(2))S(g(2))C|g(1)|,|h(1)|,|h(2)|,|g(2)|((1, 2, 4, 3))C|g(1)|,|h(1)|,|g(2)|,|h(2)|((1, 3, 2, 4))

= g(1)ε(h)S((g)(2))C|g(1)|,|h|,|g(2)|((1, 3, 2)),

where we used H ? S(h) = ε(h) by definition of S. Since the above factor is 0 if h is
not a coefficient, we can continue this computation by

M ? N(g ⊗ h) = g(1)S((g)(2))ε(h)

= ε(g)ε(h),

where we used H ? S(g) = ε(g), again by definition of S. This ends the proof of 1).

2) and 3) are straightforward and similar to the classical case.

4) can be proved similarly to 1).

5) a) ⇒ c) It suffices to prove that S ◦ S is a convolution inverse to S itself like the
identity. Let us proceed:

S ? (S ◦ S)(g) = S(g(1))(S ◦ S)(g(2))

= S(S(g(2))g(1))C|g(2)|,|g(1)|((2, 1))

= S ◦ ε(g)

= ε(g).

Here, the second line follows by part 1) of this proposition, the third line by hypothesis,
and the last line by part 2) of this proposition.

c)⇒ b) We have

ηε(g) = H ? S(g) = g(1)S(g(2))

= (S ◦ S)(g(1))S(g(2))

= S(g(2)S(g(1))C|g(2|,|g(1)|((2, 1)).
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Here, the second line follows by hypothesis, while the last line follows by part 1) of this
proposition.

Applying S to both sides, we get

S ◦ η ◦ ε(g) = (S ◦ S)(g(2)S(g(1)))C|g(2|,|g(1)|((2, 1)) = g(2)S(g(1)))C|g(2)|,|g(1)|((2, 1)).

Then b) follows by 2) of the proposition.
The other implications can be proved along the same lines. This completes the proof

of the proposition. �

2.4. Lie algebras.

Definition 2.4.1. A twisted Lie algebra L is a twisted module together with a mor-
phism of twisted modules β : L ⊗ L → L, called the bracket, which satisfies the
traditional anticommutativity

β + β ◦ T = 0 in HomR(S)(L⊗ L, L)

and the Jacobi identities

β◦(β⊗L)+β◦(β⊗L)◦(2, 3, 1)#+β◦(β⊗L)◦(2, 3, 1)2
# = 0 in HomR(S)(L⊗L⊗L, L),

where (2, 3, 1)# acts on L⊗ L⊗ L by x⊗ y ⊗ z 7→ y ⊗ z ⊗ x.

Let us be redundant and transcribe this definition on elements. As usual we write
the bracket β in the form β = [ , ], and the identities are written with explicit elements
ui ∈ Lpi

for i = 1, 2, 3 as

[u1, u2] = [u2, u1] ◦ Cp2,p1((2, 1))

and

[[u1, u2], u3] + [[u2, u3], u1]Cp2,p3,p1((2, 3, 1)) + [[u3, u1], u2]Cp3,p1,p2((3, 1, 2)) = 0.

As in the classical case, we can define a Lie bracket on each twisted algebra A by
β = µ− µ ◦ T , or, on elements, by [x, y] = xy − yxCq,p((2, 1)) for x and y elements of
A of respective degrees p and q.

We conclude here the review on generalities about twisted algebraic structures. It
gives a convenient framework to understand the notations of the coming sections. The
paper of Stover [16] continues with enveloping algebras and the Milnor–Moore theorem,
to which we shall not refer for the moment.

Let us now try to fix some ideas about free twisted objects.

3. Free twisted objects and twisted Lie polynomials

In this section, we follow again Stover [16] and adapt the first chapter of Reutenauer’s
book [15] to the case of twisted structures.

First let us recall some basic definitions and properties of free monoids. Here no
twisting occurs, and we shall be brief.
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3.1. Words and free monoids. Let X be a set, finite or infinite, and denote by x
or xi, i ∈ X, its elements. A juxtaposition (or concatenation) of a finite number of
ordered letters, e.g., x1x2 . . . xn, is called a word. The collection of all words generated
by X, denoted by W (X), comes with an obvious embedding of sets ı : X → W (X).
Moreover W (X) admits a product, called the concatenation product, defined as in the
following example: (x1 . . . xn)(x′1 . . . x′n′) = x1 . . . xnx

′
1 . . . x′n′ . W (X) with this product

is a free monoid. This definition is justified by the following result.

Proposition 3.1.1. For any monoid M and any map of sets f : X → M , there is a
unique map of monoids f : W (X) → M such that the following diagram in the category
of sets commutes:

X
f

- M

W (X)

f

-

ı

-

3.2. Definitions of free twisted objects and polynomials. Let X be a graded set
(each x ∈ X is equipped with a positive integer |x| called the degree) and R be a ring.
The twisted free module over R generated by X is any twisted module isomorphic to⊕

x∈X xR(S|x|) and is denoted by R(S)(X). Again, there is an obvious embedding of
sets ı : X → R(S)(X).

Proposition 3.2.1. For any twisted module M and any map of graded sets f : X →
M , there is a unique map of twisted module f : R(S)(X) → M such that the following
diagram in the category of graded sets commutes:

X
f

- M

R(S)(X)

f

-

ı

-

Proof. Given any element x1r1 + · · · + xnrn, xi ∈ X, ri ∈ R(S), the commutation of
the diagram implies that f(xi) = f(xi) and, by linearity, that

f(x1r1 + · · ·+ xnrn) = f(x1)r1 + · · ·+ f(xn)rn.

Thus f , if existing, is unique. Moreover the preceding formula is precisely a definition
of f once f is given. �

Now let M be a twisted module over R. Let us denote by M⊗n the twisted module
given by the tensor product of n copies of M , and by T (M) the direct sum

⊕
n>1 M⊗n

(see Subsection 2.2 for the definition of the twisted tensor product). The associativity
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formula of Subsection 2.2 defines a (product) map M⊗n ⊗ M⊗m → M⊗(n+m) which,
by linearity, extends to T (M) and endows it with a structure of an associative twisted
algebra. This is called the free twisted (associative) algebra generated by the twisted
module M . There is an obvious embedding of twisted modules ı : M → T (M). This
terminology is justified by the following result.

Proposition 3.2.2. For any twisted (associative) algebra A and any map of twisted
modules f : M → A, there is a unique map of twisted algebras f : T (M) → A such
that the following diagram in the category of twisted modules commutes:

M
f

- A

T (M)

f

-

ı

-

Proof. Given an element (m1 ⊗ · · · ⊗mi)σ, define

f((m1 ⊗ · · · ⊗mi)σ) = f(m1)⊗ · · · ⊗ f(mi)⊗ σ.

A straightforward inspection shows that

f((m1σ1 ⊗ · · · ⊗miσi)σ) = f(m1)σ1 ⊗ · · · ⊗ f(mi)σi ⊗ σ

= f(m1)⊗ · · · ⊗ f(mi)(σi × σ1 × · · · × σi)σ.

This proves, first, that f is well-defined on T (M) as a twisted module map and, sec-
ondly, that f is multiplicative. Moreover, and by definition, f = f on the twisted
module M . This completes the proof. �

We briefly pause here to emphasize an important point we shall only use in the
next subsection. Consider the map of twisted modules ∆ : M → T (M) ⊗ T (M)
given by ∆(m) = m ⊗ 1 + 1 ⊗ m, and extend it to obtain a map of twisted algebras
∆ : T (M) → T (M)⊗T (M) . This process endows T (M) with a structure of a twisted
bialgebra. Actually, this bialgebra is connected; indeed it is easy to check that the anti-
automorphism S : T (M) → T (M) defined by S(m) = −m (just apply the universal
property of Proposition 3.2.2 to the algebra opposite to T (M)) satisfies the axioms of
an antipode for T (M). In other words, we just defined the structure of a twisted Hopf
algebra for T (M).

Now let us specialize to the free twisted module generated by a graded set X. Let us
denote by F(X) the free twisted associative algebra T (R(S)(X)). Combining Propo-
sitions 3.2.1 and 3.2.2 , we readily obtain the following result.

Proposition 3.2.3. For any twisted associative algebra A and any map of graded sets
f : X → A, there is a unique map of twisted algebras f : F(X) → A such that the
following diagram in the category of graded sets commutes:
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X
f

- A

F(X)

f

-

ı

-

We end this subsection by introducing polynomials in the twisted case. A typical
element of R(S)(X) may be written as

∑
i∈I xi ◦ σi, for a finite indexing set I. Thus

F(X) is linearly generated by elements of the type ⊗j∈Jxj, where J runs through all
finite tuples of elements of X. Such an element is also written x1 . . . xj for a j-tuple
(x1, . . . , xj), and it is called a monomial of F(X). In the algebra F(X) the product
of polynomials follows the rules of the product in a free twisted algebra discussed in
Subsection 2.2:

((x1,1σ1,1 ⊗ · · · ⊗ x1,kσ1,k)τ1 × (x2,1σ2,1 ⊗ · · · ⊗ x2,l)σ2,l)τ2

= (x1,1σ1,1 ⊗ · · · ⊗ x1,kσ1,k)⊗ (x2,1σ2,1 ⊗ · · · ⊗ x2,lσ2,l)τ1 × τ2

= (x1,1 ⊗ · · · ⊗ x1,k ⊗ x2,1 ⊗ · · · ⊗ x2,l)(σ1,1 × · · · × σ1,k × σ2,1 × · · · × σ2,l)(τ1 × τ2).

Notation. We denote by TR(M)(⊂ T (M)) the obvious embedding (of R-modules)
of the classical free tensor algebra generated by M over R in the twisted one; i.e., a
typical element of TR(M) is m1 ⊗ · · · ⊗mk, where the m1, . . . ,mk are elements of M .

3.3. Free twisted Lie algebras and Lie polynomials. We refer here again to Stover
[16], especially for the proofs.

Consider a non-associative abstract operation on symbols, and write it as a bracket-
ing. Starting with a unique symbol — say x — the bracketing operation gives rise to an
infinite set N (x) — the free non-associative monoid generated by x. Given a twisted
module M and an element b of N (x), we define M⊗b as the twisted module M⊗#b,
where #b denotes the number of occurrences of x in b, and the twisted structure is sim-
ilar to the twisted structure of the ordinary tensor product. The bracketing operation
in the monoid N (x) induces an obvious bracketing operation M⊗b ⊗M⊗c → M⊗(bc).
Let us define the twisted module T (M) =

⊕
b∈N (x) M⊗b. The bracketing operation

just defined extends to T (M) by linearity. Call it β.
Define I(M) as the two sided twisted ideal of T (M) generated by the images of

β + β ◦ (2, 1) : T (M)× T (M) → T (M)

β ◦ (β × I(M)) + β ◦ (β × I(M))(2, 3, 1)

+β ◦ (β × I(M))(2, 3, 1)2 : T (M)× T (M)× T (M) → T (M).

The quotient L(M) = T (M)/I(M) is equipped with the map induced by β (denoted
as usual by [ , ]), and it is called the free twisted Lie algebra generated by M . This
denomination is justified by the following proposition proved by Stover [16]. There is
an obvious embedding of twisted modules ı : M → L(M).
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Proposition 3.3.1. For any twisted Lie algebra L and any map of twisted modules
f : M → L, there is a unique map of twisted Lie algebra f : L(M) → L such that the
following diagram in the category of twisted modules commutes:

M
f

- L

L(M)

f

-

ı

-

Let us end this subsection with some lines on twisted universal algebras.
If L is a twisted Lie algebra, consider T (L), the free (associative) twisted algebra

generated by the twisted module L, with the linear embedding ı : L → T (L). Now
let IL be the two-sided twisted Lie ideal generated in T (L) by elements of the form
[ı(x), ı(y)]− ı[x, y].

The enveloping algebra of L is the quotient (associative) algebra T (L)/I(L). We
denote it by UL. It satisfies the following property.

Proposition 3.3.2. For any twisted Lie algebra L and any map of twisted Lie algebras
f : L → A, there is a unique map of twisted algebras f : UL → A such that the following
diagram in the category of twisted Lie algebras commutes:

L
f

- A

UL

f

-

ı

-

Now we can phrase the twisted version of Milnor–Moore theorem given in [16].

Proposition 3.3.3. Let M be a twisted module. The twisted algebra map

T (M) → UL(M)

induced by the composition of maps of twisted modules

M → L(M) → UL(M)

is an isomorphism.

As in the preceding subsection, we can introduce Lie polynomials. Recall that a
typical element of R(S)(X) may be written in the form

∑
i∈I xiσi, for an indexing

set I, and that a (non-commutative) polynomial in F(X) is a linear combination of
elements such as x1σ1⊗ · · · ⊗ xiσj. By Subsection 2.4 and Proposition 3.3.1, we define
an embedding of twisted Lie algebras: L(X) ⊂ F(X). A polynomial in F(X) is called
a Lie polynomial if it is in the image of L(X) by this embedding.
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Remark. If we suppose that all elements of X are of degree 1, we recover Barratt’s
definition of free twisted (associative) algebras and Lie algebras.

4. Characterization of Lie polynomials

This section and the following ones examine the notion of Dynkin idempotent. The
last one gives a more abstract and general presentation. However, when we shall be
facing the problem of finding a basis for the free twisted Lie algebra, we shall need to
work more concretely with elements.

So, as a first result, we prove Friedrich’s theorem in the twisted case. We partly
follow Waldenfels [18] and rewrite the proofs in the context of the free twisted Lie
algebras; we shall also use Reutenauer’s presentation [15]. We emphasize that all the
characteristic properties of the “classical” Lie polynomials remain valid in the twisted
version. From now on the ground ring (R in the preceding section) is a a field F of
characteristic 0, and so twisted algebraic objects are F(S)-modules with possibly more
structure.

Let us first introduce some definitions in the framework of twisted algebras.

1. If A is a twisted module (in the following A will always be an algebra), we
define an endomorphism D by D(a) = na for any (homogeneous) element a of
degree n.

2. If A is a twisted algebra and a ∈ A, we define a map of F-modules ad( ) : A →
EndF(S)(A) by ad(a)(b) = ab− baC|b|,|a|((2, 1)) for any b ∈ A.

3. If M is a twisted module, we define a map of F-modules Ad( ) : TF(M) →
EndF(S)(T (M)) by Ad(m1 ⊗ · · · ⊗mk)(p) = [m1, [. . . [mk, p] . . . ]], where TF(M)
is defined before Subsection 3.3.

Notation. For elements xi ∈ X, i ∈ I, we abbreviate [. . . [x1, x2], . . . , xn] to [x1x2 . . .
xn] in L(X).

Theorem 4.0.4. For a polynomial P of F(X) the following statements are equivalent:

i) P is a Lie polynomial,
iii) (S ⊗F(X))(∆)(P ) = −P ⊗ 1 + 1⊗ P ,
iv) ∆(P ) = P ⊗ 1 + 1⊗ P ,
v) P (0) = 0 and D(P ) = [P ].

In the case where P ∈ TF(M) i), iii), iv), v) are also equivalent to

ii) ad(P ) = Ad(P ) and P (0) = 0.

For any free twisted module M , let us define the F-linear mapping

ζ : TF(M)⊗F TF(M) → EndF(S)(T (M))

ζ(P1 ⊗ P2))(Q) = P1 ⊗Q⊗ P2C|P1|,|Q|,|P2|((1, 3, 2))

for any monomials P1, P2 and Q. The main arguments for proving the theorem are
contained in the following two lemmas.

Lemma 4.0.5. i) For any polynomial P , the following identities are satisfied:

ad(P ) = ζ(−P ⊗ 1 + 1⊗ P ) and Ad(P ) = ζ(T (M)⊗ S)∆(P ).
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ii) ζ is injective.

Proof. i) The first identity only reflects the definitions of ad and ζ.
The second one is also clear for monomials of degree 1 (elements of M ⊂ TF(M)). By

definition, ∆ is multiplicative. So let us prove that ζ ◦(S⊗T (M)) is also multiplicative,
and we will be done for part i) of the lemma. We compute (P1, P2, Q are monomials)

ζ(TF(M)⊗ S)((U1 ⊗ U2)(V1 ⊗ V2))(Q)

= ζ(TF(M)⊗ S)(U1V1 ⊗ U2V2)(Q)C|U1|,|V1|,|U2|,|V2|,|Q|((1, 3, 2, 4, 5))

= ζ(U1V1 ⊗ S(V2)S(U2))(Q)C|U1|,|V1|,|V2|,|U2|,|Q|((1, 2, 4, 3, 5)

C|U1|,|V1|,|U2|,|V2|,|Q|((1, 3, 2, 4, 5))

= U1V1QS(V2)S(U2)C|U1|,|V1|,|Q|,|V2|,|U2|((1, 2, 5, 3, 4))

C|U1|,|V1|,|V2|,|U2|,|Q|((1, 2, 4, 3, 5)C|U1|,|V1|,|U2|,|V2|,|Q|((1, 3, 2, 4, 5))

= ζ(U1 ⊗ S(U2))(V1QS(V2))C|U1|,|U2|,|V1|,|Q|,|V2|((1, 5, 2, 3, 4))

C|V1|,|U1|,|U2|,|V2|,|Q|((1, 2, 5, 3, 4))

C|U1|,|V1|,|V2|,|U2|,|Q|((1, 2, 4, 3, 5)C|U1|,|V1|,|U2|,|V2|,|Q|((1, 3, 2, 4, 5))

= ζ(U1 ⊗ S(U2))ζ(V1 ⊗ S(V2))(Q)

C|U1|,|U2|,|V1|,|V2|,|Q|((1, 2, 3, 5, 4))C|V1|,|V2|,|U1|,|Q|,|U2|((1, 5, 2, 3, 4))

C|V1|,|U1|,|U2|,|V2|,|Q|(1, 2, 5, 3, 4))

C|U1|,|V1|,|V2|,|U2|,|Q|((1, 2, 4, 3, 5)C|U1|,|V1|,|U2|,|V2|,|Q|((1, 3, 2, 4, 5))

= ζ(TF(M)⊗ S)(V1 ⊗ V2)ζ(TF(M)⊗ S)(U1 ⊗ U2)(Q),

where the last identity only reflects the obvious composition of permutations.

ii) Write M = F(S(X)). When X is not a singleton, the proof runs exactly as
in [15]. Let us recall it for completeness. Following our notation introduced after
Proposition 3.2.3, a typical element of TF(M) is x1 ◦ σ1 ⊗ · · · ⊗ xl ◦ σl, where xk ∈ X
and σk ∈ F(Sk)), for k = 1, . . . , l. In the twisted algebra T (M), it should be written
x1⊗· · ·⊗xl ◦ (σ1×· · ·×σl) or u◦σ in abridged form. Thus we can write an element of
TF(M)⊗FTF(M) as a finite linear combination of homogeneous degree:

∑
i ui◦σi⊗vi◦τi,

where ui and vi are words in X. Suppose u1 is of minimal length among all the ui;
choose two distinct letters x and y in X and an integer N strictly greater than the
length of u1. Let us now examine ζ(

∑
i ui ◦ σi ⊗ vi ◦ τi)(x

Ny) (call this element Σ for
convenience). Focus our attention on u1 ◦ σ1 ⊗ xNy ⊗ vi ◦ τiC|ui|,|xNy|,|vj |((1, 3, 2)) in Σ.

The assertion Σ = 0 implies that there is an index i 6= 1 with u1x
Nyv1 = uix

Nyvi.
Because of the minimality of u1, u1 is a left factor of ui, and we can write u1w = ui, from
which we deduce xNyv1 = wxNyvi. As N is large, this implies that w is a left factor
of xN , say w = xn, for n ≤ N . So the above equation turns into xNyv1 = xn+Nyvi;
consequently n = 0, u1 = ui (and thus v1 = vi) in contradiction with our hypothesis
that all pairs (ui, vi) are pairwise distinct.

Suppose now that X = {x}. An element in degree N |x| of TF(M) ⊗F TF(M) is a
finite linear combination

∑
n,N xn ◦ σn⊗ xN−n ◦ τN−n (σn and τN−n are supposed to be

non-zero in F(S)). We want to prove that ζ(
∑

n xn ◦ σn ⊗ xN−n ◦ τN−n)(x) is non-zero
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(again, let us call this sum Σ, for convenience),

Σ = xN+1
∑

n

(σn × 1x × τN−n)Cn|x|,|x|,(N−n)|x|((1, 3, 2)).

For two different n’s the corresponding block permutations are different and remain
different after left multiplication by any σn × 1x × τN−n. This observation proves that
Σ 6= 0. �

Lemma 4.0.6. Let µ and λ : F(X)⊗F(X) → F(X) be the F(S)-module morphisms
µ = π ◦ (S ⊗F(X)) and λ = π ◦ (S ⊗D). Then

µ ◦∆(P ) = P (0)

and
λ ◦∆(P ) = [P ]

Proof. First it is immediate to check that

∆1 = 1⊗ 1; whence µ ◦∆(1) = 1 = 1(0) and λ ◦∆(1) = 0 = [1].

Let us now examine the case of a non-constant polynomial. By linearity, it is enough
to consider the monomial P = x1 . . . xn.

Let us proceed by induction. The step n = 1 is obvious. So, let us suppose that
both equations of the lemma are established until step n. We now examine step n + 1.

Let us write ∆(x1 . . . xn) = fi ⊗ gi (as above, this is an abbreviation for
∑

i fi ⊗ gi).
By induction hypothesis, we have

S(fi)D(gi) = [x1 . . . xn] and S(fi)gi = 0

We calculate first:

(S ⊗F(X)) ◦∆(x1 . . . xnxn+1)

= (S ⊗F(X))(fi ⊗ gi)(xn+1 ⊗ 1 + 1⊗ xn+1)

= (S ⊗F(X))(fixn+1 ⊗ giC|fi|,|xn+1|,|gi|((1, 3, 2)) + fi ⊗ gixn+1)

= (S(xn+1)S(fi)⊗ giC|xn+1|,|fi|,|gi|((2, 1, 3))C|fi|,|xn+1|,|gi|((1, 3, 2)) + S(fi)⊗ gixn+1).

We immediately observe that

C|xn+1|,|fi|,|gi|((2, 1, 3))C|fi|,|xn+1|,|gi|((1, 3, 2)) = C|xn+1|,|fi|+|gi|((3, 1, 2)).

Hence, we have

µ(x1 . . . xnxn+1) = S(xn+1S(fi)giC|xn+1|,|fi|+|gi|((3, 1, 2)) + (figi)xn+1 = 0

and

λ(x1 . . . xnxn+1) = −S(xn+1)fiD(gi)C|xn+1|,|fi|+|gi|((3, 1, 2)) + S(fi)D(gixn+1)

= −xn+1(fiD(gi))C|xn+1|,|fi|+|gi|((3, 1, 2)) + (S(fi)D(gi))xn+1

+ (S(fi)gi)xn+1

= [[x1 . . . xn], xn+1].

Here we used the induction hypothesis on µ to cancel the third term and the induction
hypothesis on λ to form the Lie bracket out of the first two terms. This establishes the
(n + 1)-step. �
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Let us now turn to the proof of Theorem 4.0.4.

Proof of Theorem 4.0.4. The implications (i) ⇒ (iii) and (i) ⇒ (iv) are straightforward
(see [18]); they just reformulate that Lie elements are primitive.

Concerning (iv) ⇒(v), let us apply λ = π ◦ (S ⊗ D) to both sides of ∆(P ) =
P ⊗ 1 + 1 ⊗ P . As D(1) = 0, Lemma 4.0.6 gives [P ] = D(P ). Similarly, apply
µ = π ◦ (S ⊗F(X)). We obtain P (0) = S(P ) + P . Obviously, S is the identity on the
constant P (0), which leads to P (0) = 0.

As to (iii)⇒ (v), let us apply S⊗F(X) to both sides of equation iii). As S◦S = F(X),
we get ∆(P ) = −S(P )⊗ 1 + 1⊗ P.

To begin with, applying now µ to both sides, we obtain P (0) = 0, with the help of
Lemma 4.0.6. Applying next λ, we obtain [P ] = 0, by using the same arguments as in
the proof of the implication iv) ⇒ v).

For (v) ⇒(i) we just observe that it suffices to prove (i) for every homogeneous
f ∈ F(X). Thus assume f is of degree n > 0 (the case n = 0 is obvious). Then by
hypothesis D(f) = nf = [f ], which is equivalent to f = [f ]/n as the characteristic of
F is 0.

Let us now examine the particular case (ii).

(i)⇒ (ii). As observed above, (ii) is satisfied by the elements of X. Thus, by
induction, it suffices to prove that (ii) is closed under the Lie bracket. We notice
that the bracket operations distribute the sum of each factor, so we may examine the
induction on monomials instead of polynomials.

Suppose that we are given two monomials P1, P2 in TF(M) such that ad(Pi) = Ad(Pi),
i = 1, 2.

For any monomial Q, we have

ad([P1, P2])(Q) = ad(P1P2 − P2P1C|P2|,|P1|((2, 1))Q)

= P1P2Q− P2P1QC|P2|,|P1|,|Q|((2, 1, 3))−QP1P2C|P1|,|P2|,|Q|((3, 1, 2))

+ QP2P1C|Q|,|P2|,|P1|((3, 1, 2))C|P2|,|P1|,|Q|((2, 1, 3))
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and

Ad([P1, P2])(Q)

= Ad(P1P2 − P2P1C|P2|,|P1|((2, 1)))(Q)

= (Ad(P1) ◦ Ad(P2)− Ad(P2) ◦ Ad(P1)C|P2|,|P1|((2, 1)))(Q)

= (ad(P1) ◦ ad(P2)− ad(P2) ◦ ad(P1)C|P2|,|P1|((2, 1)))(Q)

= [P1, [P2, Q]]− [P2, [P1, Q]]C|P2|,|P1|,|Q|((2, 1, 3))

= P1P2Q− P1QP2C|P1|,|Q|,|P2|((1, 3, 2))− P2QP1C|P2|,|Q|,|P1|((2, 3, 1))

+ QP2P1C|P2|,|P1|,|Q|((2, 1, 3))C|Q|,|P2|,|P1|((2, 3, 1))

P2P1QC|P2|,|P1|,|Q|((2, 1, 3))− P2QP1C|P2|,|Q|,|P1|((1, 3, 2))C|P2|,|P1|,|Q|((2, 1, 3))

− P1QP2C|P1|,|Q|,|P2|((1, 3, 2))C|P2|,|P1|,|Q|((2, 1, 3))

+ QP1P2C|Q|,|P1|,|P2|((2, 3, 1))C|P2|,|Q|,|P1|((1, 3, 2))C|P2|,|P1|,|Q|((2, 1, 3))

= P1P2Q− P2P1QC|P2|,|P1|,|Q|((2, 1, 3))−QP1P2C|P1|,|P2|,|Q|((3, 1, 2))

+ QP2P1C|Q|,|P2|,|P1|((3, 2, 1)),

which proves the identity ad([P1, P2])(Q) = Ad([P1, P2])(Q) and the induction.

(ii)⇒ (iv) By hypothesis and Lemma 4.0.5 (i), we have

ζ(−P ⊗ 1 + 1⊗ P ) = ζ(S ⊗F(X)) ◦∆(P ).

The injectivity of ζ (part (ii) of the same lemma) gives

−P ⊗ 1 + 1⊗ P = (S ⊗F(X)) ◦∆(P ).

�

5. Pseudo-coproduct

As we already saw in the preceding sections, when dealing with twisted structures
we have only to pay attention to the action of the symmetric group. Most definitions
and proofs seem to be just a rewriting of the classical ones. However, automatism in
this process could be a source of errors, as we shall see when we build the Hall basis.
So it is worthwhile to have a look at each case when we translate from classical to
twisted context.

Let A be a cocommutative bialgebra. We use the notations of Section 2 and denote
by π, ∆, η and ε its product, coproduct, unit and counit, respectively. Let ν = η ◦ ε.
Formally, the same definition as in [11] works.

Definition 5.0.7. An endomorphism f of A (here and in what follows, endomorphism
means F(S)-module endomorphism, and we denote the corresponding set — F-module
— by End(A)) admits F ∈ End(A⊗ A) as a pseudo-coproduct if F ◦∆ = ∆ ◦ f . If f
admits the pseudo-coproduct f ⊗ ν + ν ⊗ f , we say that f is pseudo-primitive.

Like in the classical case we prove the following facts.
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Theorem 5.0.8. If f and g in End(A) admit the pseudo-coproducts F and G, then
f +g, fα (where α ∈ F(S)), f ?g, f ◦g admit the coproducts F +G, Fα, F ?G, F ◦G,
respectively, where the products ◦ and ? are naturally extended to End(A)⊗ End(A).

An element f ∈ End(A) takes values in the primitives of A if and only if it is
pseudo-primitive.

Proof. Most proofs work exactly as in the classical case. We have to be more cautious
when we exchange factors; this occurs particularly for the product of the tensor product
of algebras or the coproduct of the tensor product of coalgebras. So we develop the
case of the convolution.

Let us write F = f1 ⊗ f2 (i.e., F =
∑

i f
i
1 ⊗ f i

2) and G = g1 ⊗ g2. We are now ready
to compute

F ? G(a1 ⊗ a2)

= (f1 ⊗ f2) ? (g1 ⊗ g2)(a1 ⊗ a2)

= (f1 ? g1)⊗ (f2 ? g2)(a1 ⊗ a2)

= (π ◦ (f1 ⊗ g1) ◦∆⊗ π ◦ (f2 ⊗ g2) ◦∆)(a1 ⊗ a2)

= (π ⊗ π) ◦ (f1 ⊗ g1 ⊗ f2 ⊗ g2) ◦ (∆⊗∆)(a1 ⊗ a2)

= (π ⊗ π) ◦ (A⊗ T ⊗ A) ◦ (f1 ⊗ f2 ⊗ g1 ⊗ g2) ◦ (A⊗ T ⊗ A) ◦ (∆⊗∆)(a1 ⊗ a2),

where A denotes the identity of A and T the swap map T (a⊗ b) = (b⊗a)C|b|,|a|((2, 1)).
For the sake of completeness, we have to point out that the introduction of the first
swap on the right leads to a factor C|a2(1)|,|a1(2)|((2, 1)) and the second one to a factor

C|a1(2)|,|a2(1)|((2, 1)) the product of which is 1 of course. Thus going back to F and G:

F ? G(a1 ⊗ a2) = (π ⊗ π) ◦ (A⊗ T ⊗ A) ◦ (F ⊗G) ◦ (A⊗ T ⊗ A) ◦ (∆⊗∆)(a1 ⊗ a2).

We can now continue as in the classical case:

(F ? G) ◦∆(a) = (π ⊗ π) ◦ (A⊗ T ⊗ A) ◦ (F ⊗G) ◦ (A⊗ T ⊗ A) ◦ (∆⊗∆) ◦∆(a)

= (π ⊗ π) ◦ (A⊗ T ⊗ A) ◦ ((F ◦∆)⊗ (G ◦∆)) ◦∆(a),

where we have simplified (A ⊗ T ⊗ A) ◦ (∆ ⊗ ∆) ◦ ∆ = (∆ ⊗ ∆) ◦ ∆ since A is
cocommutative. For this very property, ∆ is an algebra endomorphism of A, and
taking the definition of the pseudo-coproducts F and G in account, we conclude

(F ? G) ◦∆(a) = (π ⊗ π) ◦ (A⊗ T ⊗ A) ◦ ((∆ ◦ f)⊗ (∆ ◦ g)) ◦∆(a)

= (π ⊗ π) ◦ (A⊗ T ⊗ A) ◦ ((∆⊗∆) ◦ (f ⊗ g)) ◦∆(a)

= ∆ ◦ π ◦ (f ⊗ g) ◦∆(a).

Moreover, by definition of the convolution, we have

(F ? G) ◦∆ = ∆ ◦ (f ? g),

as requested.

Remark. In the preceding calculations, we need to work with the elements a1, a2, a
for reminding us that the formulas generate coefficients in F(S).
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For the second part of the theorem no swaps occur, and the classical proof runs
through automatically. �

6. The Dynkin idempotent

Once again we shall follow the classical case, going into details only when swaps
occur.

In this section, the cocommutative bialgebra A is supposed to be connected, and
so it is a Hopf algebra with an antipode denoted by S. In the preceding section, we
defined an endomorphism D of A by Da = na, for a ∈ A of degree n. Let us consider
the convolution l = S ? D. The following theorems identify the primitives of A with
the image of l (F has characteristic 0).

Theorem 6.0.9. If a ∈ A is primitive, then l(a) = D(a).

Theorem 6.0.10. l(a) is primitive for all a ∈ A.

Proof of Theorems 6.0.9 and 6.0.10. For the first theorem, the classical proof can be
reproduced word by word.

As for the second one, the classical proof may also be reproduced up to a point. So
we quickly develop the argument again.

We are going to use Theorem 6.0.8 and prove that l is pseudo-primitive. Again, by
the same theorem and by the definition l = S ? D, we need to find pseudo-coproducts
of S and D such that their convolution product is l ⊗ ν + ν ⊗ l.

One still immediately checks that D ⊗ A + A⊗D is a pseudo-coproduct for D.
The fact that S ⊗ S is a pseudo-coproduct for S is an immediate consequence of

Proposition 2.3.3, item 4), and of the cocommutativity of the coalgebra A.
The end of the proof is straightforward : (S⊗S)?(D⊗A+A⊗D) = l⊗ν+ν⊗ l. �

We now proceed to the main result of this section. At this point we emphasize the
first occurrence (in Corollary 6.0.13) of a result (not only a proof) which differs in the
twisted case from the classical one.

Theorem 6.0.11. For elements a and b of non-zero degree in A, the following identity
holds: l(al(b)) = [l(a), l(b)].

We derive two corollaries right away.

Corollary 6.0.12. If a1, . . . , an are homogeneous primitive elements of A, then

l(a1, . . . , an) = deg(a1)[. . . [a1, a2], . . . , an].

Corollary 6.0.13. As an F(S)-module, the kernel of l is spanned by 1 and the elements
al(b) + bl(a)C|b|,|a|((2, 1)), a, b ∈ A.

Proof of Corollaries 6.0.12 and 6.0.13. Nothing is to be changed in the proof of Corol-
lary 6.0.12.

Theorem 6.0.11 shows that al(b)+ bl(a)C|b|,|a|((2, 1)) is in the kernel of l. Conversely,
consider a ∈ A of degree n. By abuse of notation and as already mentioned, we write
∆(a) = a(1) ⊗ a(2). By the cocommutativity of A, we can be more precise:

∆(a) = a⊗ 1 + 1⊗ a + a′(1) ⊗ a′(2) + a′(2) ⊗ a′(1)C|a′(2)|,|a′(1)|((2, 1)).
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Now l = S ? D; hence D = l ? S = π ◦ (A⊗ l) ◦∆. Let us apply this identity to a; we
get:

D(a) = na

= π ◦ (A⊗ l)(a⊗ 1 + 1⊗ a + a′(1) ⊗ a′(2) + a′(2) ⊗ a′(1)C|a′(2)|,|a′(1)|((2, 1)))

= π(A(a)⊗ l(1) + A(1)⊗ l(a) + A(a′(1))⊗ l(a′(2))

+ A(a′(2))⊗ l(a′(1))C|a′(2)|,|a′(1)|((2, 1))

= l(a) + a′(1)l(a
′
(2)) + a′(2)l(a

′
(1))C|a′(2)|,|a′(1)|((2, 1)),

and the corollary follows since n 6= 0. �

We turn now towards the proof of Theorem 6.0.11.

Proof of Theorem 6.0.11. Let us recall once more that we denote by T : A⊗A → A⊗A
the F(S)-module homomorphism (“the swap map”) given by

T (a⊗ b) = b⊗ aC|b|,|a|((2, 1)),

a, b ∈ A.
We have to show that l ◦ π ◦ (A⊗ l) and π ◦ (l⊗ l)(A⊗A−T ) coincide on A+⊗A+.
We use several facts. The first three ones are direct consequences of the structure of

a Hopf algebra and are listed in Section 2, the fourth one is obvious, and the last one
is proved in Theorem 6.0.10.

1) The coproduct ∆ is an algebra endomorphism.
2) The antipode S is an antiautomorphism.
3) S sends each primitive element to its additive inverse: S ◦ A = −A.
4) D is a derivative of the algebra A, i.e., D◦π = π◦(A⊗D+D◦A) and D◦ν = 0.
5) l is pseudo-primitive, i.e., ∆ ◦ l = (l ⊗ ν + ν ⊗ l) ◦∆.

The calculation goes as follows:

l ◦ π ◦ (A⊗ l)

= π ◦ (S ⊗D) ◦∆ ◦ π ◦ (A⊗ l)

= π ◦ (S ⊗D) ◦ (π ⊗ π) ◦ (A⊗ T ⊗ A) ◦ (∆⊗∆) ◦ (A⊗ l)

= π ◦ (π ⊗ π) ◦ (T ⊗ A⊗ A) ◦ (S ⊗ S ⊗ A⊗D + S ⊗ S ⊗D ⊗ A)

◦ (A⊗ T ⊗ A) ◦ (A⊗ A⊗ l ⊗ ν + A⊗ A⊗ ν ⊗ A) ◦ (∆⊗∆)

= π ◦ (π ⊗ π) ◦ (T ⊗ A⊗ A) ◦ (A⊗ T ⊗ A) ◦ (S ⊗ A⊗ S ⊗D + S ⊗D ⊗ S ⊗ A)

◦ (A⊗ A⊗ l ⊗ ν + A⊗ A⊗ ν ⊗ A) ◦ (∆⊗∆)

= π ◦ (π ⊗ π) ◦ (T ⊗ A⊗ A) ◦ (A⊗ T ⊗ A)

◦ (S ⊗ A⊗ ν ⊗ (D ◦ l) + S ⊗D ⊗ (−l)⊗ ν + S ⊗D ⊗ ν ⊗ l) ◦ (∆⊗∆).

We used that D ◦ ν = 0 to delete one term in the preceding formula; then three terms
remain. We provide the details for the computation of the first and the second one.
The third one is similar to the first one and is left to the reader. Notice that, as A is
a bialgebra, (ν ⊗ A) ◦∆ = 1⊗ A.
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Let us consider the first term:

π ◦ (π ⊗ π) ◦ (T ⊗ A⊗ A) ◦ (A⊗ T ⊗ A) ◦ (S ⊗ A⊗ ν ⊗ (D ◦ l)) ◦ (∆⊗∆)

= π ◦ (π ⊗ π) ◦ (T ⊗ A⊗ A) ◦ (A⊗ T ⊗ A) ◦ ((S ⊗ A ◦∆)⊗ 1⊗ (D ◦ l)).

Let us have a special look at the compositions of swaps:

π ◦ (π ⊗ π) ◦ (T ⊗ A⊗ A) ◦ (A⊗ T ⊗ A)(a⊗ b⊗ c⊗ d)

= π ◦ (π ⊗ π)(c⊗ a⊗ b⊗ d)C|c|,|a|,|b|,|d|((2, 1, 3, 4))C|a|,|c|,|b|,|d|((1, 3, 2, 4)).

Now — a simple, but fundamental remark — in the first term as in the third one the
element at the third spot, namely c, is equal to 1, and thus

C|c|,|a|,|b|,|d|((2, 1, 3, 4))C|a|,|c|,|b|,|d|((1, 3, 2, 4)) = 1

and

π ◦ (π ⊗ π) ◦ (T ⊗ A⊗ A) ◦ (A⊗ T ⊗ A)(a⊗ b⊗ 1⊗ d) = π ◦ (A⊗ π)(a⊗ b⊗ d).

Consequently, we have

π ◦ (π ⊗ π) ◦ (T ⊗ A⊗ A) ◦ (A⊗ T ⊗ A) ◦ ((S ⊗ A ◦∆)⊗ 1⊗ (D ◦ l))

= π ◦ (π ⊗ π)((S ⊗ A) ◦∆)⊗ 1⊗ (D ◦ l))

= (S ⊗ A⊗ (D ◦ l)) ◦ (∆⊗ A).

For the second term we calculate:

(S ⊗D ⊗ (−l)⊗ ν) ◦ (∆⊗∆)(a⊗ b)

= (S ⊗D) ◦∆(a)⊗ (−l)(b)⊗ 1

= ((S ⊗D)⊗ (−l)) ◦ (∆⊗ A⊗ 1)(a⊗ b)

= (T ′ ⊗ 1)((−l)⊗ S ⊗D)) ◦ (A⊗∆⊗ 1)T (a⊗ b)

C|a(1)|,|a(2)|,|b|((3, 1, 2))C|b|,|a(1)|,|a(2)|((3, 1, 2)),

where T ′(a ⊗ b ⊗ c) = b ⊗ c ⊗ aC|b|,|c|,|a|((3, 1, 2)). Of course, the product of the two
coefficients in the last equation is C|a(1)|,|a(2)|,|b|((3, 1, 2))C|b|,|a(1)|,|a(2)|((3, 1, 2)) = 1.

Now, the second term is

π ◦ (π ⊗ π) ◦ (T ⊗ A⊗ A)

◦ (A⊗ T ⊗ A)(T ′ ⊗ 1)((−l)⊗ S ⊗D)) ◦ (A⊗∆⊗ 1)T (a⊗ b)

= −π ◦ (A⊗ π)(l ⊗ S ⊗D) ◦ (A⊗∆) ◦ T.
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We go back to our main computation:

l ◦ π ◦ (A⊗ l) = π ◦ (A⊗ π) ◦ ((S ⊗ A⊗ (D ◦ l)) ◦ (∆⊗ A)

− (l ⊗ S ⊗D) ◦ (A⊗∆) ◦ T

+ (S ⊗D ⊗ l)) ◦ (∆⊗ A))

= π ◦ (π ⊗ A) ◦ (S ⊗ A⊗ (D ◦ l)) ◦ (∆⊗ A)

− π ◦ (A⊗ π) ◦ (l ⊗ S ⊗D) ◦ (A⊗∆) ◦ T

+ π ◦ (π ⊗ A) ◦ (S ⊗D ⊗ l) ◦ (∆⊗ A)

= π ◦ (π ◦ ((S ⊗ A) ◦∆)⊗ (D ◦ l))

− π ◦ ((l ⊗ (π ◦ (S ⊗D) ◦∆)) ◦ T )

+ π ◦ ((π ◦ (S ⊗D) ◦∆)⊗ l)

= π ◦ (ν ⊗ (D ◦ l)− (l ⊗ l) ◦ T + l ⊗ l),

where we used the associativity of the product π◦(A⊗π) = π◦(π⊗A) and the defining
identities of S and l, namely S ? A = ν and S ? D = l. �
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