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COMBINATORIAL DEFORMATIONS OF ALGEBRAS:

TWISTING AND PERTURBATIONS

G. H. E. DUCHAMP*, C. TOLLU*, K. A. PENSON† AND G. KOSHEVOY‡

Abstract. The framework used to prove the multiplicative deformation of the alge-
bra of Feynman–Bender diagrams is that of a twisted shifted dual law (in fact, doubly
twisted). We give here a clear interpretation of its two parameters. The crossing
parameter is a deformation of the tensor structure, whereas the superposition param-
eter is a perturbation of the shuffle coproduct which, in its turn, can be interpreted
as the diagonal restriction of a superproduct. Here, we systematically explain these
constructions in detail.
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1. Introduction

In [1], Bender, Brody, and Meister introduced a special field theory, then called
“Quantum Field Theory of Partitions”. This theory is based on the bilinear product
defined by

H(F, G) = F

(

z
d

dx

)

G(x)

∣
∣
∣
∣
x=0

. (1.1)

*LIPN - UMR 7030 CNRS - Université Paris 13 F-93430 Villetaneuse, France;
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If one expands this formula in the case when F and G are free exponentials, one obtains
a summation over all the (finite) bipartite1 graphs with multiple edges and no isolated
point [6] (the set of these diagrams will be called diag), a data structure which is
equivalent to classes of packed matrices [8] under permutations of rows and columns.

So, one has a Feynman-type expansion of the product formula
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=
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d∈diag

|d|=n

mult(d)Lα(d)
V

β(d), (1.2)

where mult(d) is the number of pairs (P1, P2) of (ordered) set partitions of {1, . . . , n}
which correspond to a diagram d, where |d| the number of edges in d, and

L
α(d) = Lα1

1 Lα2
2 · · · ; V

β(d) = V β1

1 V β2

2 · · · (1.3)

is the multiindex notation for the monomials in L ∪ V, i.e., αi = αi(d) (respectively
βj = βj(d)) is the number of white (respectively black) spots of degree i (respectively
j) in d.

The set diag endowed with the operation of disjoint union inherits the structure of
a monoid such that the arrow d 7→ Lα(d)Vβ(d) is a homomorphism (of monoids), and
then, by linear extension, one deduces an algebra homomorphism

C[diag] → Pol(C; L ∪ V) , (1.4)

where Pol(C; L ∪ V) is the Hopf algebra of (commutative) polynomials with complex
coefficients generated by the alphabet L ∪ V. For at least three models of Physics,
one can specialize L so that the canonical Hopf algebra structure of Pol(C; L ∪ V)
can be lifted, through (1.4). The resulting Hopf algebra (based on C[diag]) has been
denoted DIAG. To our great surprise, this Hopf algebra structure could be lifted at
the (noncommutative) level of the objects themselves instead of classes, resulting in
the construction of a Hopf algebra on (linear combinations of) “labelled diagrams” (the
monoid ldiag, see [6]). As these “labelled diagrams” are in one-to-one correspondence
with the packed matrices of MQSym, we get two (combinatorially natural) structures
of algebra (and coalgebra) on the vector space C[ldiag], and one could raise the question
of the existence of a continuous deformation between the two. The answer is positive
and can be performed through a three-parameter (two formal, or continuous, and one
boolean) Hopf deformation2 of LDIAG called LDIAG(qc, qs, qt) [6] such that

LDIAG(0, 0, 0) ≃ LDIAG ; LDIAG(1, 1, 1) ≃ MQSym . (1.5)

The rôle of the two parameters qc, qs (algebra parameters, whereas qt is a coalgebra
parameter) was discovered just counting crossings and superpositions in the twisted
labelled diagrams (see [6] for details). This simple statistics (counting crossings and
superpositions) yields an associative product on the diagrams. The first proof given
for the associativity was mainly computational, and it was actually a surprise that
associativity held. This raised the need to understand this phenomenon in a deeper
way and the question whether the two parameters (qc and qs) would be of different
nature. The aim of this paper is to answer this question and give a conceptual proof of

1The (bi)-partition of the vertices is understood to be ordered. In this case, the term bicoloured can
also be found in the literature.

2This algebra deformation has received recently another realisation in terms of biwords [9].
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associativity by developing four building blocks which are general and separately easy
to test: addition of a group-like element to a coassociative coalgebra, shifting lemma,
codiagonal deformation of a semigroup, and extension of a colour factor to words.

The essential ingredient in the two last operations is what has become nowadays a
useful tool, the coloured product of algebras, for which we give some new results.

Acknowledgements. The authors are pleased to acknowledge the hospitality of
institutions in Moscow and New York. Special thanks are due to Catherine Borgen for
having created a fertile atmosphere in Exeter (UK) where the first and last parts of this
manuscript were prepared. We also acknowledge support from the French Ministry of
Science and Higher Education under Grant ANR PhysComb. We are grateful to Jim
Stasheff for having raised the question of the different natures of the parameters qc and
qs.

2. The deformed algebra LDIAG(qc, qs)

2.1. Review of the construction of the algebra. The complete story of the algebra
of Feynman–Bender diagrams which arose in Combinatorial Physics in 2005 can be
found in [6], and a fragment of it, as well as a realisation using an alternative data
structure, in [9].

Recall that (classical) shuffle products (of words) can be expressed in two ways:

a) by a recursion;
b) by a summation on (and by means of) some permutations.

Here, we will trace back the construction of the deformed product between two dia-
grams, starting from an analog of (b) (using however the symmetric semigroup instead
of the symmetric group, see below) and going gradually to (a) following the first de-
scription of the deformed case which was graphical (and was discovered as such in
[6]).

The diagrams on which the product has to be performed are plane bipartite graphs
(vertices being called black and white spots) with multiple ordered edges; they look as
follows:

m m m m

} } }

1 2 3 4

1 2 3

Fig 1. — Labelled diagram of format 3 × 4.
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One can define more formally this data structure using the equivalent notion of a
weight function. Here, it is a function ω : N+ × N+ → N (as in [9]) with support

supp(ω) = {(i, j) ∈ N
+ × N

+ | w(i, j) 6= 0} (2.1)

having projections of the form pr1(supp(ω)) = [1 . . . p]; pr2(supp(ω)) = [1 . . . q] for
some p, q ∈ N+. This last description can be rephrased without pri by observing that p
(respectively q) is the last i such that there exists a j ∈ N+ with ω(i, j) 6= 0 (respectively
q is the last j such that there exists an i ∈ N+ with ω(i, j) 6= 0). In this way our graphs
are in one-to-one correspondence with such weight functions.

j 2 3 1 2 3 3 4
i 1 1 2 2 2 3 3

ω(i, j) 2 1 1 1 3 1 2

Fig 2. — The weight function (when not 0) of the diagram in Fig 1. Here p = 3 and q = 4.

We are now in the position to describe the (deformed) product of our diagrams by
means of the symmetric semigroup (whereas the symmetric group would only provide
crossings as it occurs with the shuffle product).

The symmetric semigroup on a finite set F (denoted here SSGF ) is the set of endofunc-
tions F → F . In order to preserve the requirement that black spots are labelled from
1 to some integer, we have to require that the mapping acting on the diagram d with
n black spots has an image of the type [1 . . .m] for some m ≤ n. The result, denoted
by d.f , has m black spots such that the black spot of (former) label “i” bears the new
label f(i).

If we consider any onto mapping [1 . . . p] → [1 . . . r], the diagram d.f = d′ has the
weight function ω′ defined by

ω′(i, k) =
∑

f(j)=i

ω(j, k) , (2.2)

which can be easily checked to be admissible in our context.

Before giving the expression of the deformed product, we must define local partial
degrees. For a black spot with label “l”, we denote by bks(d, l) its degree (number of
adjacent edges). For d1 (respectively d2) with p (respectively q) black spots, let [d1|d2]L
be their concatenation (non-deformed product). Then the deformed product of d1 by
d2 reads

[d1|d2]L(qc,qs) =
∑

f∈Shs(p,q)

( ∏

i<j

f(i)>f(j)

qbks(d1,i).bks(d2,j)
c

)( ∏

i<j

f(i)=f(j)

qbks(d1,i).bks(d2,j)
s

)

[d1|d2]L.f,

(2.3)
where Shs(p, q) is the set of mappings f ∈ SSG[1...p+q] with image an interval of type
[1 . . .m] (with max{p, q} ≤ m ≤ p + q), and such that

f(1) < f(2) < · · · < f(p) ; f(p + 1) < f(p + 2) < · · · < f(p + q) . (2.4)

This condition, similar to that of the shuffle product, guarantees that the black spots of
the diagrams are kept in order during the process of shuffling with superposition (hence
the name Shs).
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2.2. Coding and the recursive definition. The graphical and symmetric-semigroup-
indexed description of the deformed product neither gives immediately a recursive def-
inition nor an explanation of “why” the product is associative. We will, on our way
to understand this (as well as the different natures of its parameters), proceed in three
steps:

• encoding the diagrams by words of monomials,
• presenting the product as a shifted law,
• give a recursive definition of the (non-shifted) law.

The code used here relies on monomials over a commutative alphabet of variables
X = {xi}i≥1. As in [6], we let MON(X) denote the monoid of monomials {Xα}α∈N(X)

(indeed, the free commutative monoid over X) and MON
+(X) = {Xα}α∈N(X)−{0} the

semigroup of its non-unit elements (the free commutative semigroup over X).

Note that each weight function ω ∈ N(N+×N
+) yields an equivalent “word of monomi-

als3” W (ω) = w1.w2. · · · .wp such that

W (ω)[i] = wi =

∞∏

j=1

x
ω(i,j)
j . (2.5)

The correspondence code : N
(N+×N+) → (MON

+(X))∗ is one-to-one and provides at
once a way to code each labelled diagram through its weight function as a word of
monomials. Conversely, a word W ∈ (MON

+(X))∗ is the code of a diagram (i.e., the
image by code of the weight function of a diagram) if and only if

indexes(Alph(W )) = [1 . . .m] (2.6)

(where indexes(Alph(W )) is the set of i ∈ N+ such that an xi is involved in W ). Due to
the special indexation of its alphabet, the monoid (MON

+(X))∗ comes equipped with
a set of endomorphisms, the translations Tn defined on the variables by Tn(xi) = xi+n

and extended to MON
+(X), to (MON

+(X))∗ and then to K〈MON
+(X)〉.

Note that the code of a concatenation reads

code([d1|d2]L) = code(d1).Tmax(indexes(Alph(code(d1))))(code(d2)) . (2.7)

Therefore, the function “code” being below extended by linearity, the reader may check
easily that one can compute recursively the deformed product on the codes by

code([d1|d2]L) = code(d1) ↑ Tmax(indexes(Alph(code(d1))))(code(d2)), (2.8)

where the bilinear product ↑ is recursively defined on the words by
{

1(MON
+(X))∗ ↑ w = w ↑ 1(MON

+(X))∗ = w

au ↑ bv = a(u ↑ bv) + q
|au||b|
c b(au ↑ v) + q

|u||b|
c q

|a||b|
s (a · b)(u ↑ v)

, (2.9)

where a · b (medium · dot) denotes the (monomial, commutative) product of a and b
within MON

+(X).
It is this last recursion that we will decompose and analyse below in order to get a

better understanding of the parameters.

The associativity of the product (2.9) is a consequence of the following proposition.

3The low point . here is used to emphasize concatenation which is elsewhere denoted by simple
juxtaposition of letters.
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Proposition 2.1 ([6, Prop. 5.1]). Let (S, .) be a semigroup graded by a degree function
| |d : S → N (i.e., a homomorphism to (N, +)) and S∗ the set of lists (denoted by words
a1a2 · · ·ak) with letters in S (including the empty list 1S∗).

Let qc, qs ∈ K be two elements in a (commutative) ring K. We define on K〈S〉 =
K[S∗] a new product ↑ by

w ↑ 1S∗ = 1S∗ ↑ w = w
au ↑ bv = a(u ↑ bv) + q|au|d|b|d

c b(au ↑ v) + q|u|d|b|dc q|a|d|b|ds (a.b)(u ↑ v), (2.10)

where the weights are extended additively to lists (words) by

∣
∣
∣a1a2 · · ·ak

∣
∣
∣
d

=
k∑

i=1

|ai|d .

Then the new product ↑ is graded, associative, with 1S∗ as its unit.

The questions that have arisen in the introduction can now be reformulated as follows:

Q1) Are qc and qs of the same nature?
Q2) If no, can the associativity be explained, step by step, by constructions which

will show their different natures?

Here, by “nature,” it is understood that qc and qs, although at the level of statistics
they seem to play a similar rôle, could be distinguished by general algebra. Indeed, in
the sequel, we attempt to show that qc is of geometric nature (deformation at the level
of the tensor structure), whereas qs is of perturbative nature (perturbation of the Lie
coproduct).

With this aim in mind, we need to recall a now classical tool, the coloured product
of two algebras.

3. Colour factors and products

Colour factors were introduced by R. Ree [14], and the theory was developed or used
in [7, 5, 12, 16]. See also [2]4.

Let A =
⊕

α∈D
Aα and B =

⊕

β∈D

Bβ be two D-graded associative K-algebras5 (D is a

commutative semigroup whose law is denoted additively). Readers that are not familiar
with graded algebras can think of D = N(X), the free commutative monoid over X, and
Aα = K[X]α, the space of homogeneous polynomials of multidegree α.

Given a mapping χ : D ×D −→ K, we define an algebra product on A⊗ B by

(x1 ⊗ y1)(x2 ⊗ y2) = χ(β1, α2)(x1x2 ⊗ y1y2) (3.1)

for (xi) ∈ Aαi
and (yi) ∈ Bβi

(i = 1, 2).
Equating the expressions that we obtain for ((x1 ⊗ y1)(x2 ⊗ y2)) (x3 ⊗ y3) and

(x1 ⊗ y1) ((x2 ⊗ y2)(x3 ⊗ y3)) by using (3.1), we are led to the following proposition.

Proposition 3.1 ([16]). Let χ : D ×D −→ K. The following are equivalent:

4In fact, some of them (“Facteurs de commutation”, with values in {−1, 1} and an [anti]symmetry
condition) are already considered in the edition of 1970 of [2]. See Section 10 (Dérivations) of Chap-
ter III.

5Not necessarily with unit.
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i) For A, B D-graded associative algebras, the product defined by (3.1) is associa-
tive.

ii) For all α1, α2, α3, β1, β2, β3) ∈ D we have

χ(β1, α2)χ(β1 + β2, α3) = χ(β2, α3)χ(β1, α2 + α3). (3.2)

Definition 3.2. Every mapping χ : D×D −→ K which fulfills the equivalent conditions
of Proposition 3.1 will be called a colour (twisting) factor.

Remarks 3.3. I) If χ is bilinear, which means in this context that the following equations
are satisfied (for all α, α′, β, β ′ ∈ D):

χ(α + α′, β) = χ(α, β)χ(α′, β)

χ(α, β + β ′) = χ(α, β)χ(α, β ′), (3.3)

then the two sides of (3.2) amount to

χ(β1, α2)χ(β1, α3)χ(β2, α3) =
∏

1≤i<j≤3

χ(βi, αj), (3.4)

and hence χ is a colour factor6. But the full class of colour factors is much larger than
solutions of Eq. (3.3). Just observe that Eq. (3.2) is homogeneous in the classical sense,
i.e., for all λ ∈ K, if χ fulfills (3.2), then after rescaling by λ it still does. Hence, for
example, any constant function on D × D is a colour factor. This shows the existence
of colour factors that are not bilinear.

II) The converse part of Proposition 3.1 (i.e., ii) =⇒ i)) can be easily proved by
considering (free) semigroup algebras K[D].

Notes 3.4. I) The colour product of two algebras A =
⊕

α∈D
Aα and B =

⊕

β∈D

Bβ comes

also as a graded algebra by

(A⊗B)γ =
⊕

α+β=γ

Aα ⊗ Bβ . (3.5)

The usual identification

(A⊗ B) ⊗ C ≃ A⊗ (B ⊗ C) (3.6)

holds for coloured products.

II) Moreover, if A
f
→ A′ (respectively B

g
→ B′) are two homomorphisms of (graded)

algebras (over the same semigroup of degrees D), then A⊗B
f⊗g
−→ A′ ⊗B′ is an algebra

homomorphism (the colour products being taken with respect to the same colour factor).

6These bilinear mappings are also called bicharacters in the literature [14].
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4. Special classes of laws

4.1. Dual laws.

4.1.1. Algebras and coalgebras in duality. An algebra (A, µ) and a coalgebra (C, ∆) are
said to be in duality if and only if there is a non-degenerate pairing 〈−|−〉 such that
for all x, y ∈ A, z ∈ C

〈µ(x, y)|z〉 = 〈x ⊗ y|∆(z)〉⊗2. (4.1)

In the following, a product K〈A〉 ⊗ K〈A〉
∗

−→ K〈A〉 on the free algebra which is the
dual of a comultiplication will be called dual law, the pairing being given on the basis
of words by 〈u|v〉 = δu,v.

Our first examples are essential in modern and not-so-modern research (cf. [13, 15]).
First of all, we have the dual of the Cauchy product

∆Cauchy(w) =
∑

uv=w

u ⊗ v . (4.2)

In contrast to (4.2), which is not an algebra homomorphism7

K〈A〉 −→ K〈A〉 ⊗ K〈A〉 , (4.3)

one has three very well-known examples being so, namely duals of the shuffle , the
Hadamard ⊙ and the infiltration product ↑. As they are homomorphisms between the
algebras (4.3), they are well defined by their values on the letters; namely, we have

∆ (x) = x ⊗ 1 + 1 ⊗ x ; ∆⊙(x) = x ⊗ x ; ∆↑(x) = x ⊗ 1 + 1 ⊗ x + x ⊗ x , (4.4)

respectively. One can prove that the deformations ∆q = ∆ (x) + q∆⊙(x) are also
coassociative, and that they are the unique solutions of the problem of bialgebra co-
multiplications on K〈A〉 that are compatible with subalphabets [10].

In the sequel, we will make use of the following lemma several times, the proof of which
is left to the reader.

Lemma 4.1. Let A be an algebra and C be a coalgebra in (non-degenerate) duality.
Then A is associative if and only if C is coassociative.

4.1.2. Duality between group-like elements and units. Let (C, ∆) be a coalgebra with
counit ǫ : C → K. We call an element u group-like if it satisfies

ǫ(u) = 1 ; ∆(u) = u ⊗ u . (4.5)

One then has C = ker(ǫ) ⊕ K.u and

∆(y) = ∆+(y) + y ⊗ u + u ⊗ y − ǫ(y)u ⊗ u , (4.6)

where ∆+ is a comultiplication on C for which ker(ǫ) = C+ is a subcoalgebra (i.e.,
∆+(C+) ⊂ C+ ⊗ C+; cf. [3]).

Proposition 4.2. Let (C, ∆, ǫ) be a coalgebra with counit, u a group-like element in C,
and (C+, ∆+) be as in (4.6). On the other hand, let A be an algebra and A(1) = A⊕K.v
be the algebra with unit constructed from A by adjunction of the unit v. Then, if C+

and A are in duality by 〈 | 〉, so are C and A(1) by 〈 | 〉•, the latter being defined by

〈x + αv|y + βu〉• = 〈x|y〉 + βα (4.7)

7Unless A = ∅.
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for x ∈ A and y ∈ C+ = ker(ǫ).

Proof. Let

〈(x1 + α1v) ⊗ (x2 + α2v)|∆(y + βu)〉⊗2
•

= 〈(x1 + α1v) ⊗ (x2 + α2v)|∆+(y) + y ⊗ u + u ⊗ y + βu ⊗ u)〉⊗2
• . (4.8)

However, according to the fact that

〈xi|u〉 = 〈x1 ⊗ v|∆+(y)〉 = 〈v ⊗ x2|∆
+(y)〉 = 〈v ⊗ v|∆+(y)〉 = 〈v|y〉 = 0,

one concludes from (4.8) that

〈(x1 + α1v) ⊗ (x2 + α2v)|∆(y + βu)〉⊗2
•

= 〈x1 ⊗ x2|∆
+(y)〉⊗2 + α2〈x1|y〉+ α1〈x2|y〉+ α1α2β

= 〈x1x2 + α2x1 + α1x2 + α1α2v|y + βu〉• = 〈(x1 + α1v)(x2 + α2v)|y + βu〉•,

which proves the claim. �

4.2. Deformed laws. Let S be a semigroup graded by a semigroup of degrees D and
A = K[S] its algebra. A colour factor χ : D × D → K being given, we endow the
algebra A ⊗ A with the coloured tensor product structure. Notice that the diagonal
subspace DS =

⊕

x∈S Kx ⊗ x is a subalgebra since

(x ⊗ x)(y ⊗ y) = χ(x, y) xy ⊗ xy . (4.9)

Transferring (4.9) back to A by means of the isomorphism of vector spaces, A → DS,
one sees immediately that the deformed product on A given by

x.χy = χ(x, y) xy (4.10)

(for x, y ∈ D) is associative.
From now on, we suppose that the semigroup D satisfies condition [D] of Bourbaki

[2], which means that, for all z ∈ D, the number of solutions (x, y) ∈ D2 of the equation
xy = z is finite. This condition is satisfied by almost all the graded semigroups used
by combinatorialists, in particular by the semigroups (N, +), (N+,×), (N(X), +).

If A is endowed with the scalar product for which the basis (s)s∈S is orthonormal,
the pairing is non-degenerate and the dual comultiplication is given by

∆(z) =
∑

xy=z

χ(x, y) x ⊗ y . (4.11)

The construction together with Lemma 4.1 proves that this comultiplication on A is
coassociative.

4.3. Shifted laws. We begin by a very general version of the “shifting lemma” (more
general than the one given and needed in [6]).

We start from an algebra A decomposed (as a vector space) into the direct sum

A =
⊕

α∈D

Aα

over D, a semigroup. We denote by Endα(A) the algebra homomorphisms A → A
(then multiplicative) which “shift by α” (i.e., φ ∈ Endα(A) if and only if, for all β ∈ D,
one has φ(Aβ) ⊂ Aα+β). This situation is typical of “shift of indices” in free algebras.
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For example, let Y = {yj}j≥1 = {y1, y2, . . . , yk, . . . } be an infinite alphabet, D be its
indexing semigroup (N+, +) and A be the algebra K〈Y 〉. For every monomial (word)
w let d(w) be the maximal index j of a letter yj occurring in w. With K〈Y 〉j :=
⊕

d(w)=j K.w, one gets a direct sum decomposition

K〈Y 〉 =
⊕

j≥1

K〈Y 〉j , (4.12)

for which K〈Y 〉 is not a graded algebra (it is, in fact for the sup law in N+, but we
aim here at constructing a graded algebra for the addition of degrees). The change of
variables Tn(yj) := yj+n defines an algebra homomorphism Tn ∈ Endn(A). The algebra
product is the usual concatenation, whereas the shifted law reads

w1 conc w2 := w1Tn(w2),

where n = max{j ≥ 1||w1|yj
6= 0}.

One can easily check that the following spaces are subalgebras of (K〈Y 〉, conc):

(1) the space generated by packed words (i.e., the words whose alphabet indices are
of the form [1 . . . q]);

(2) the space generated by injective words (each letter occurs at most once);
(3) the space generated by permutation words (packed and injective, see [7]);
(4) the space generated by increasing (respectively strictly increasing) words; i.e.,

w = yj1yj2 · · · yjk
such that the function r → jr is increasing (respectively strictly

increasing);
(5) the space generated by disconnected words (i.e., w = yj1yj2 · · · yjk

such that
there exists an index r < k with yjr+1 not occurring in w).

The following lemma gives general conditions for such shifted laws to be associative.

Lemma 4.3. Let A be an algebra (whose multiplicative law will be denoted by ⋆) and
A =

⊕

α∈D Aα a decomposition of A as a direct sum over D, a semigroup (A is then
graded, but only as a vector space). Let α 7→ Tα: D → Endgr(A) be a semigroup
homomorphism such that Tα ∈ Endα(A). Explicitly, for all α, β ∈ D, x ∈ Aβ, we have

Tα(x) ∈ Aα+β and Tα ◦ Tβ = Tα+β . (4.13)

We suppose that the shifted law defined for x ∈ Aα and y ∈ A by

x ⋆̄ y = x ⋆ Tα(y) (4.14)

is graded for the decomposition

A =
⊕

α∈D

Aα

(i.e., if x ∈ Aα and y ∈ Aβ then x ⋆̄ y ∈ Aα+β). Then, if the law ⋆ is associative, so
is the law ⋆̄.

Proof. One only needs to prove the identity of associativity of ⋆̄ for homogeneous el-
ements. Suppose that ⋆ is associative. Then, for x ∈ Aα, y ∈ Aβ, and z ∈ A, one
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has

x⋆̄(y⋆̄z) = x ⋆ Tα(y⋆̄z) = x ⋆ Tα(y ⋆ Tβ(z))) = x ⋆ (Tα(y) ⋆ Tα(Tβ(z)))

= x ⋆ (Tα(y) ⋆ Tα+β(z)) = (x ⋆ Tα(y)) ⋆ Tα+β(z) = (x ⋆̄ y)
︸ ︷︷ ︸

∈Aα+β

⋆ Tα+β(z) = (x⋆̄y)⋆̄z.

�

5. Application to the structure of LDIAG(qc, qs)

5.1. Associativity of LDIAG(qc, qs) using the previous tools. As was stated in
Section 2.2, we just have to prove Proposition 2.1, and we keep the notations of it. We
first observe, from Section 4.2, that, for a semigroup S of type (D)8, graded by a degree
function | |d : S → N, the comultiplication ∆1 : K[S] → K[S] ⊗ K[S] given for s ∈ S
by

∆1(s) =
∑

rt=s

q|r|d|t|ds r ⊗ t (5.1)

is coassociative.
Now we endow K〈S〉 ⊗ K〈S〉 with the structure of coloured product given by the

bicharacter on S∗

χ(u, v) =
∏

1≤i≤|u|

1≤j≤|v|

q|u[i]|d|v[j]|d
c . (5.2)

One defines a mapping ∆ : S → K〈S〉 ⊗ K〈S〉 by

∆(s) = s ⊗ 1S∗ + 1S∗ ⊗ s + ∆1(s), (5.3)

which is extended to an algebra homomorphism ∆ : K〈S〉 → K〈S〉 ⊗K〈S〉. Note that
V =

⊕

x∈S∪{1S∗} K.x = KS ⊕ K.1S∗ is a subcoalgebra for ∆, and the coalgebra V is,
by Section 4.1.2, still coassociative. Now one has to prove that the following rectangle
is commutative:

K〈S〉
∆

//

∆
��

K〈S〉 ⊗ K〈S〉

Id⊗∆
��

K〈S〉 ⊗ K〈S〉
∆⊗Id

// K〈S〉 ⊗ K〈S〉 ⊗ K〈S〉

. (5.4)

By Note (3.4).II), all the arrows are algebra homomorphisms, and, in particular, the
composites (Id ⊗ ∆) ◦ ∆ and (∆ ⊗ Id) ◦ ∆, which, as we just proved, coincide on S
(coassociativity of the subcoalgebra V ). This shows that the rectangle (5.4) is commu-
tative.

End of the duality. We denote by ↓ the law which is dual to ∆. This law, being
dual to a coassociative comultiplication, is associative. We prove that it satisfies the

8After [2], a semigroup S of type (D) is such that the product mapping S ×S → S has finite fibers.
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same recursion as in Proposition 2.1, so ↓=↑. It is sufficient to prove the recursion for
non-empty factors. One has

au ↓ bv =
∑

w∈S+

〈au ↓ bv|w〉w

=
∑

x∈S
w1∈S∗

〈au ↓ bv|xw1〉xw1

=
∑

x∈S
w1∈S∗

〈au ⊗ bv|∆(x)∆(w1)〉xw1

=
∑

x∈S
w1∈S∗

〈au ⊗ bv|(x ⊗ 1 + 1 ⊗ x +
∑

yz=x

χ(y, z)y ⊗ z)∆(w1)〉xw1

=
∑

x∈S
w1∈S∗

〈au ⊗ bv|(x ⊗ 1)∆(w1)〉xw1 +
∑

x∈S
w1∈S∗

〈au ⊗ bv|(1 ⊗ x)∆(w1)〉xw1

+
∑

x∈S
w1∈S∗

〈au ⊗ bv|(
∑

yz=x

χ(y, z)y ⊗ z)∆(w1)〉xw1

=
∑

x=a
w1∈S∗

〈au ⊗ bv|(x ⊗ 1)∆(w1)〉xw1 +
∑

x∈S
w1∈S∗

〈au ⊗ bv|(1 ⊗ x)
∑

i,j

βijwi ⊗ wj〉xw1

+
∑

x∈S
w1∈S∗

〈au ⊗ bv|(
∑

yz=x

χ(y, z)y ⊗ z)
∑

i,j

βijwi ⊗ wj〉xw1

= a(u ↓ bv) + q|au|d|b|d
c b(au ↓ v) + q|u|d|b|dc q|a|d|b|ds (a.b)(u ↓ v) ,

which proves the claim.

5.2. Structure of LDIAG(qc, qs). This section is devoted to the thorough study of
the structure of LDIAG(qc, qs), using that of the algebra of (MON

+(X))∗ endowed
with the shifted law ↑̄.

We first investigate the structure of the monoid ((MON
+(X))∗, ⋆̄), extending to some

extent Proposition 3.1 of [6]. For a general monoid, (M, ⋆, 1M), the irreducible elements
are the elements x 6= 1M such that x = y ⋆ z implies 1M ∈ {y, z}. The set of these
elements will be denoted by irr(M). For convenience, in the following statement, M
stands for the monoid ((MON

+(X))∗, ⋆̄), M+ = M − {1M}, and Mc is the submonoid
of codes of diagrams (i.e., words which satisfy Eq. (2.6)).

The monoid M is free. An element w = m1.m2. · · · .ml ∈ M+ (hence l = |w| > 0) is
reducible if and only if there exists 0 < k < l such that

(

indices(Alph(m1.m2. · · · .mk))
)

≺
(

indices(Alph(mk+1.mk+2. · · · .ml))
)

, (5.5)

where, for two nonempty subsets X, Y ⊂ N+, one writes ≺ for the relation of majora-
tion, i.e.,

(∀(x, y) ∈ X × Y )(x < y) . (5.6)
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One checks readily that the monoid Mc is generated by the subalphabet irr(M) ∩ Mc,
and therefore it is free.

Now we need a classical tool of general algebra (see [4, Ch. III] for details). Let
(A, µ) be an algebra endowed with an increasing exhaustive filtration (An)n∈N (i.e.,
two-sided ideals such that An ⊂ An+1 and

⋃

n∈N
An = A). It is classical to construct

the associated graded algebra Gr(A) =
⊕

n≥0 An/An−1 by passing the law to quotients,
i.e., µ̄p,q : Ap/Ap−1⊗Aq/Aq−1 → Ap+q/Ap+q−1 (one sets A−1 = {0}). A classical lemma
(and easy exercise) states that, if the associated graded algebra is free, so is A.

Now, returning to (K〈MON
+(X)〉, ↑̄) (↑̄ is the shifted deformed law), one constructs

a filtration by the number of irreducible components of a word of monomials (call it
l(w) for w ∈ MON

+(X)). From (2.10), one gets

w1↑̄w2 = w1⋆̄w2 +
∑

l(w)<l(w1)+l(w2)

Pw(qc, qs)w, (5.7)

with Pw ∈ K[qc, qs] (indeed, ↑̄ is the same law as in (2.10) but shifted). Consequently,
the associated graded algebra is, by a triangularity argument, free. One can then state
the following structure theorem.

Theorem 5.1. The algebra K〈MON
+(X)〉, endowed with the shifted deformed law ↑̄,

is free on the irreducible words. Furthermore, the algebra LDIAG(qc, qs), isomorphic
to a subalgebra generated by irreducible words, is free for every choice of (qc, qs).

6. Conclusion

To summarize, we can state that the deformed algebra LDIAG(qc, qs), which orig-
inates from a special quantum field theory [1], is free, and its law can be constructed
from very general procedures: it is a shifted twisted law. Before shifting, one can
observe that the law is, in fact, dual to a comultiplication on a free algebra. This
comultiplication is a perturbation, with qs (the superposition parameter) of the shuffle
comultiplication on this free algebra. The parameter qs is obtained by addition of a
perturbating factor which is just dual to a (diagonally) deformed law of a semigroup,
whereas the crossing parameter qc is obtained by extending a colour factor of an algebra
to the tensor structure (i.e., to words).
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