
What is the link between ... ?

fast formulae for computing π, 1
π

. . .

irrationality of ζ(3)

Young tableaux of bounded height

(generalized) hypergeometric functions

Latin squares

the triple product identity of Jacobi

k-regular graphs

cost of searching in quadtrees, m-ary search trees

alternating sign matrices

consecutive records in permutations

non 3-crossing partitions

(lot of ) random walks in the (quarter) plane

automatic integration

”Calabi-Yau” parametrizations

enumeration and asymptotics in statistical mechanics (polyominoes, etc)

identities involving symmetric functions

...
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What is the link between ... ?

fast formulae for computing π, 1
π

. . .

irrationality of ζ(3) [Apéry, 1978]

Young tableaux of bounded height

(generalized) hypergeometric functions

Latin squares

the triple product identity of Jacobi

k-regular graphs

cost of searching in quadtrees, m-ary search trees [Hwang, Fuchs, Chern, 2006]

alternating sign matrices

consecutive records in permutations

non 3-crossing partitions

(lot of ) random walks in the (quarter) plane

automatic integration

”Calabi-Yau” parametrizations [Zudilin, Almkvist & al., 2008]

enumeration and asymptotics in statistical mechanics (polyominoes, etc)
[Guttmann & al., Di Francesco & al.]

identities involving symmetric functions

ALL OF THEM ARE HOLONOMIC OBJECTS !
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Holonomic = P-recursive sequences = D-finite functions

Sequence (an)n∈N is P-recursive := it satisfies a linear recurrence with polynomial
coefficients in n.

(2 + n)an+1 − (2 + 4n)an = 0

A(z) is D-finite (differentialy finite) := its derivatives span a vector space of finite
dimension.
⇐⇒ A(z) satisfies an ODE (= ordinary differential equation) with coefficients
polynomials in z .

1 + (2z − 1)A(z) + (4z2 − z)A′(z) = 0, A(z) =
∑
n≥0

anzn

These 2 notions are equivalent.
> 25% of the sequences in the Sloane EIS are P-recursive.
> 60% of the special functions in the Abramowitz-Stegun book are D-finite.
The importance of D-finite functions was established in the 80’s by
Stanley/Gessel/Lipshitz/Zeilberger (which also uses the word ”holonomic”).
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D-finiteness and holonomy

Holonomy is related to the growth rate of the coefficients of the Hilbert function,
[Bernstein 1971] :
A(z) =

∑
n∈N anzn is holonomic iff an := dimC{x iδj

zA(z), i + j = n} = O(nd).

(kind of minimal “noetherianity”... good, algorithms will terminate ! [Chyzak, 1998])

NB : Holonomy theory is in fact quite general (shift for sequences, differentiation,
integration, mahlerian substitutions, for one or several variables), using Ore algebra
and Groebner bases allows automatic proof of a lot of identities related to integrals or
sums (as in the book “A = B”).
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D-finite functions have a lot of closure properties...

Rational or hypergeometric functions are trivially D-finite (recurrence for the
coefficients !).

Proposition [Comtet, 70’s] : Algebraic functions are D-finite.
Proof : Differentiating P(z ,F (z)) = 0 and using Bezout identity between P and P ′

implies that F ′ belongs to C(z)⊕C(z)F ⊕· · ·⊕C(z)F d−1, then proceed by recurrence.

Proposition [folklore/Gessel/Stanley/Lipshitz/Zeilberger..., 80’s] Closure by

addition,

product (and therefore nested sums
∑m

j=1

∑n
k=1 fn,i . . .),

Hadamard product (anbn),

diagonal (fn,n,n,n,n), (cf generalisation of Delannoy numbers)

algebraic substitution,

Laplace/Borel (inverse) transform (n!an, an/n!),

shuffle (cf Pólya drunkard),

manipulation of symmetric functions.

⇒ A very good class for computer algebra !
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Holonomy ⇒ automatic proof of combinatorial identities

Ex. 1 : irrationality of ζ(3) =
∑

n≥1
1
n3 [Apéry, 1978] :

n∑
k=0

(
n

k

)2(
n + k

k

)2

=
n∑

k=0

(
n

k

)(
n + k

k

)
k∑

j=0

(
k

j

)3

Ex. 2 : Mehler’s identity for Hermite polynomials :

as
∑
n≥0

Hn(x)
zn

n!
= exp(z(2x−z)) then

∑
n≥0

Hn(x)Hn(y)
zn

n!
=

exp( 4z(xy−z(x2+y2))

1−4z2 )
√

1− 4z2

Advertising for useful programs proving/guessing combinatorial identities :
Combstruct and Gfun/Mgfun/Rate packages in Maple/Mathematica
[Flajolet/Salvy/Zimmermann/Chyzak/Krattenthaler].
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Computational complexity of the coefficients

Rational functions : O(d3 ln(n)) [using binary exponentiation on the associated matrix]
Algebraic functions : O(dn) [because they’re D-finite !]
Special functions from physics : O(n) time for computing n coefficients of their Taylor
expansions give the key for a fast plot of their graph !
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Why do a computer scientist care for asymptotics of an ?

It is crucial for average case analysis of algorithms !

This is the message of Knuth in The art of computer programming :

algorithms = data structures = combinatorial structures
recursivity = recurrence

cost = asymptotics
⇒

good programs = good mathematical analysis of the hidden combinatorial structures.

Not only you can then decide which algorithm will almost always be the faster (on my
laptop, I prefer an = .5n ln n than an = 30n ln n) but you can then tune some
algorithms in an optimal way !

Recent applications : uniform random generation of combinarial objects !
before until size 100, now, thanks to analytic combinatorics : until size 106,
Boltzmann method [Flajolet & al.]
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The unreasonable efficiency of complex analysis

Hecke : “Es ist eine Tatsache, daβ die genauere Kenntnis des Verhaltens einer
analytischen Funktion in der Nähe ihrer singulären Stellen eine Quelle von
arithmetischen Sätzen ist.”

Hadamard : “The shortest path between two assertions in the real world goes through
the complex world.”

Moral :
insight on the singularities (landscape) of A(z) = insight on the coefficients an’s
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Asymptotics are related to the singularities

A singularity can be : a pole 1/z , a branching point ln(z),
√

z , essential singularity

exp(1/z), a natural boundary point Πk≥1
1

1− zk
, ...

R dominant singularity (=radius of convergence) of F (z) =
∑

fnzn

=⇒ Fn grows like 1/Rn.

Power of complex analysis gives much more !

Singularity analysis [Flajolet-Odlyzko] If F (z) ∼ A(z), then with A(z)

algebraic : (1− z)α =
∑

k≥1

(
α
k

)
(−z)k (kind of continuous version of Newton

binomial formula) fn ∼ C/Γ(−α)R−nn−1−α

Alg-log functions : (1− z)α lnβ 1
1−z

: fn ∼ n−α−1 ln(n)β

Dominant singularities : one has to add the contribution of each of them.

F (z) = 1/(1− z2) =⇒ fn = 1n + (−1)n
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Frobenius method

Classifications of singularities for differential equations Fuchs 1866, Fabry 1885.
Poincaré expansions of P-recursive sequences Birkhoff and his student Trjitzinsky 1932

Trjitzinsky-Birkhoff method ”ressurected” by Wimp & Zeilberger 1985
fn ∼ n!r exp(nq)nα ln nh with r , q ∈ Q, α ∈ C, h ∈ N
non rigourous matched asymptotics : plug and identify...

Frobenius method Frobenius 1873, Wasow : If F is D-finite, then
F (z) ∼ linear combination of exp(z r )zα ln(z)i A(z s) with
r ∈ Q, i ∈ N, α, s ∈ C,A ∈ Q[[z]].

The GF approach has some advantages : fn = n
√

17 is not holonomic but is the
asymptotic of some holonomic sequence (Quadtrees).
ln(n), pn, π(n) are not holonomic [via GF]. [Flajolet/Gerhold/Salvy, 2005]. Bernoulli
numbers. Bell numbers exp(exp(x)− 1). Cayley tree function C(z) = z exp(C(z)).
irreducible polynomials on a finite field (=Lyndon words). (“en passant” : not context
free).
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regular and irregular singularities of DE

regular singularity (=Fuchsian) : degree of the indicial equation equals the order of the
ODE
irregular singularity : degree of the indicial equation smaller than the order of the ODE

∂10
z + · · ·+ z10F (z) : regular
∂10

z + · · ·+ z11F (z) : irregular

roots differ by integer : ”resonance” implies ln

Famous open problem : Frobenius method gives a linear combination, but with which
coefficients, i.e. it is unknown if we can get the value of K in an ∼ KAnnα ! ! !
One solution : numerical approximation ! Another solution : Banderier-Chern-Hwang
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Sequence accelaration schemes

A first trick (if no ”resonance”) gives the follow pattern for most of D-finite

sequences : cn :=
f 2
n

nαf2n
= K + K1/n + K2/n2 + . . . .

Aitken ∆2 method doubles the precision ! : bn := cn − (cn+1−cn)2

cn+1−2cn+cn−1
= K + K1

2n
+ . . .

iterated Aitken : lg(n) iterations leads to O(1/n2).
This often allows to go from 3-4 correct digits to ∼ 8 digits.
For some specific sequences, it is possible to get more :
Richardson (clever linear combinations), generalized Richardson, (when applied to
integrals = Romberg, ...links with Simpson).
This often allows to get ∼ 20 digits. It is possible to get more ?
yes : the Acinonyx Jubatus algorithm.
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The cheetah algorithm

acinonyx jubatus, aka cheetah.

K =
n∑

i=1

(−1)d−i id

i !(d − i)!
a(i) + O(1/nn)

This accelaration scheme needs to be adapted if ”resonance”. This acceleration
scheme is impressive when other singularities are ”far away”.

NB : This shemes is also working if K1,K2, . . . are large ! bn = K + K1/n + K2/n2 + . . .
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An explicit formula for the constant

K =
1

P ′0(α)

∑
j≥0

Bj r
∗(α + j)

Bj =
d∑

k=1

Pk(α + k)

P0(α + k)
Bj−k B0 = 1

key ideas : non homogeneous differential equations, change of variables +
Cauchy-Euler type, ”inverting” the equation by integration, Mellin integral :

r∗(s) =

∫ 1

0

(1− x)s−1r(x)dx

Using A=B techniques often allows to evaluate this sum ! Since 1930, it was an open
problem (thought to be undecidable) to get the constant K , and we can now prove
formulae like K = 2/π,K = Γ(1/3), . . . for infinitely many cases ! And we have fast
numerical schemes for the remaining cases !
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Walks on the honeycomb lattice

Theorem (Banderier 2008)

hexagonal lattice : nice links with Calabi-Yau & number theory.
xy-Manhattan lattice : on Z2 : EllipticK on N2 ; excursions = C 2

n = ”bishop moves on
N2” see also [Mishna & Bousquet-Mélou 2008].
x-Manhattan lattice : on Z2 : Heun general function

eN(4n) =
n∑

k=1

n∑
i=k

(
n − 1

i − 1

)(
n

i − 1

)(
i − 1

k − 1

)(
i

k − 1

)
/(ik)

triangular lattice :

eZ(2n) =
n∑

k=0

(
2k

k

)(
n

k

)2

eN(2n) =
n∑

k=0

(
2k

k

)(
n

k

)(
n + 1

k

)
/(k + 1)2
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Calabi-Yau equations and number theory

Calabi (1954) conjecture existence of a given Einstein-Kähler metric on compact
complex manifolds proven by Yau in 1978. Key step for superstring theory/mirror
symmetries (perhaps confirmed by the LHC in the CERN). Huge activities for
understanding those equations (kind of generalisation of elliptic curves).... [image].

Intriguing links with number theory : an= number of solutions in Z/nZ.
An associated L-function leads to function whose inverse has some nice properties
(rationality/D-finiteness...).

In number theory, those functions first appeared in the work of Beukers (kind of
generalisation of the work of Apéry for irrationality of ζ(k)).

Zagier, Zudilin and Almkvist (2008) give a large list of ”Calabi-Yau” equations ( ≈
D-finite equations).
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Few digits of Flajolet’s constant...

asymptotics for walks on hexagonal lattice... K=a constant which is not in the Plouffe
invertor, and for which the Maple ”identify(x,all=true)” command finds nothing
(LLL/Bailey and Ferguson’s PSLQ (Partial Sum of Least Squares) algorithm).
K=1.32955319062990875968415374751767439529213577661488351801455178605811839
0198623412260695169439409364110631740615844724789164424098387720984338669
7498880650413104980702895723471826251071043678119741704206383060189858651
05503354396586243644607903280088302664637101353666792743998428953080760
48527974749038819240619236694384863843287228218307203144500972326041594
4117911307016350904025227449807186157980691036817380097177653579150873521
06234174484960448338736546728448100954759692974580712081666126294304734
995251002368260783121775874701969443747500756424053619829482170181906130
737803156649965810879278147434747755184684561983891466779222102946516831
13837028258503747445332236423034195944922226533542619501409547423552914
358927308618120122473794813410866463528056842814044415899130055907591021
14444637423575650869592828910304574627906218425736722151181354508324530
67627348469454491894639109969781433413545533190824588051168904855456143
6958382232810160002907366818623076194013104839856789344252172963870. . .(and
10000 more digits !)
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