What is the link between ...?

- fast formulae for computing $\pi, \frac{1}{\pi} \ldots$
- irrationality of $\zeta(3)$
- Young tableaux of bounded height
- (generalized) hypergeometric functions
- Latin squares
- the triple product identity of Jacobi
- k-regular graphs
- cost of searching in quadtrees, m-ary search trees
- alternating sign matrices
- consecutive records in permutations
- non 3-crossing partitions
- (lot of) random walks in the (quarter) plane
- automatic integration
- "Calabi-Yau" parametrizations
- enumeration and asymptotics in statistical mechanics (polyominoes, etc)
- identities involving symmetric functions
- ...

What is the link between ...?

- fast formulae for computing $\pi, \frac{1}{\pi} \ldots$
- irrationality of $\zeta(3)$ [Apéry, 1978]
- Young tableaux of bounded height
- (generalized) hypergeometric functions
- Latin squares
- the triple product identity of Jacobi
- k-regular graphs
- cost of searching in quadtrees, m-ary search trees [Hwang, Fuchs, Chern, 2006]
- alternating sign matrices
- consecutive records in permutations
- non 3-crossing partitions
- (lot of) random walks in the (quarter) plane
- automatic integration
- "Calabi-Yau" parametrizations [Zudilin, Almkvist \& al., 2008]
- enumeration and asymptotics in statistical mechanics (polyominoes, etc) [Guttmann \& al., Di Francesco \& al.]
- identities involving symmetric functions

New results on asymptotics of holonomic sequences

Cyril Banderier
CNRS, LIPN, Paris XIII (Villetaneuse, France) http ://lipn.fr/~banderier
based on work in progress with...
Felix Chern \& Hsien-Kuei Hwang, Taipei
SLC'62, Feb. 24, 2009

Holonomic $=$ P-recursive sequences $=$ D-finite functions

Sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is P-recursive $:=$ it satisfies a linear recurrence with polynomial coefficients in n.

$$
(2+n) a_{n+1}-(2+4 n) a_{n}=0
$$

$A(z)$ is D-finite (differentialy finite) $:=$ its derivatives span a vector space of finite dimension.
$\Longleftrightarrow A(z)$ satisfies an ODE (= ordinary differential equation) with coefficients polynomials in z.

$$
1+(2 z-1) A(z)+\left(4 z^{2}-z\right) A^{\prime}(z)=0, \quad A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

These 2 notions are equivalent.
$>25 \%$ of the sequences in the Sloane EIS are P-recursive.
$>60 \%$ of the special functions in the Abramowitz-Stegun book are D-finite.
The importance of D-finite functions was established in the 80's by Stanley/Gessel/Lipshitz/Zeilberger (which also uses the word "holonomic").

D-finiteness and holonomy

Holonomy is related to the growth rate of the coefficients of the Hilbert function, [Bernstein 1971] :
$A(z)=\sum_{n \in \mathbb{N}} a_{n} z^{n}$ is holonomic iff $a_{n}:=\operatorname{dim}_{\mathbb{C}}\left\{x^{i} \delta_{z}^{j} A(z), i+j=n\right\}=O\left(n^{d}\right)$.
(kind of minimal "noetherianity"... good, algorithms will terminate! [Chyzak, 1998])

NB: Holonomy theory is in fact quite general (shift for sequences, differentiation, integration, mahlerian substitutions, for one or several variables), using Ore algebra and Groebner bases allows automatic proof of a lot of identities related to integrals or sums (as in the book " $A=B$ ").

D-finite functions have a lot of closure properties...

Rational or hypergeometric functions are trivially D-finite (recurrence for the coefficients!).

Proposition [Comtet, 70's] : Algebraic functions are D-finite.
Proof: Differentiating $P(z, F(z))=0$ and using Bezout identity between P and P^{\prime} implies that F^{\prime} belongs to $\mathbb{C}(z) \oplus \mathbb{C}(z) F \oplus \cdots \oplus \mathbb{C}(z) F^{d-1}$, then proceed by recurrence.

Proposition [folklore/Gessel/Stanley/Lipshitz/Zeilberger..., 80's] Closure by

- addition,
- product (and therefore nested sums $\sum_{j=1}^{m} \sum_{k=1}^{n} f_{n, i} \ldots$),
- Hadamard product $\left(a_{n} b_{n}\right)$,
- diagonal ($f_{n, n, n, n, n}$), (cf generalisation of Delannoy numbers)
- algebraic substitution,
- Laplace/Borel (inverse) transform ($n!a_{n}, a_{n} / n!$),
- shuffle (cf Pólya drunkard),
- manipulation of symmetric functions.
\Rightarrow A very good class for computer algebra!

Holonomy \Rightarrow automatic proof of combinatorial identities

Ex. 1 : irrationality of $\zeta(3)=\sum_{n \geq 1} \frac{1}{n^{3}}$ [Apéry, 1978] :

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \sum_{j=0}^{k}\binom{k}{j}^{3}
$$

Ex. 2 : Mehler's identity for Hermite polynomials :
as $\sum_{n \geq 0} H_{n}(x) \frac{z^{n}}{n!}=\exp (z(2 x-z))$ then $\quad \sum_{n \geq 0} H_{n}(x) H_{n}(y) \frac{z^{n}}{n!}=\frac{\exp \left(\frac{4 z\left(x y-z\left(x^{2}+y^{2}\right)\right)}{1-4 z^{2}}\right)}{\sqrt{1-4 z^{2}}}$

Advertising for useful programs proving/guessing combinatorial identities : Combstruct and Gfun/Mgfun/Rate packages in Maple/Mathematica [Flajolet/Salvy/Zimmermann/Chyzak/Krattenthaler].

Computational complexity of the coefficients

Rational functions: $O\left(d^{3} \ln (n)\right)$ [using binary exponentiation on the associated matrix] Algebraic functions: $O(d n)$ [because they're D-finite !] Special functions from physics: $O(n)$ time for computing n coefficients of their Taylor expansions give the key for a fast plot of their graph!

Why do a computer scientist care for asymptotics of a_{n} ?

It is crucial for average case analysis of algorithms !
This is the message of Knuth in The art of computer programming :

$$
\begin{aligned}
& \text { algorithms }=\text { data structures }=\text { combinatorial structures } \\
& \text { recursivity }=\text { recurrence } \\
& \text { cost }=\text { asymptotics } \\
& \Rightarrow
\end{aligned}
$$

good programs $=$ good mathematical analysis of the hidden combinatorial structures.

Not only you can then decide which algorithm will almost always be the faster (on my laptop, I prefer $a_{n}=.5 n \ln n$ than $a_{n}=30 n \ln n$) but you can then tune some algorithms in an optimal way!

Recent applications: uniform random generation of combinarial objects! before until size 100, now, thanks to analytic combinatorics : until size 10^{6}, Boltzmann method [Flajolet \& al.]

The unreasonable efficiency of complex analysis

Hecke: "Es ist eine Tatsache, da β die genauere Kenntnis des Verhaltens einer analytischen Funktion in der Nähe ihrer singulären Stellen eine Quelle von arithmetischen Sätzen ist."

Hadamard: "The shortest path between two assertions in the real world goes through the complex world."

Moral :
insight on the singularities (landscape) of $A(z)=$ insight on the coefficients a_{n} 's

Asymptotics are related to the singularities

A singularity can be: a pole $1 / z$, a branching point $\ln (z), \sqrt{z}$, essential singularity $\exp (1 / z)$, a natural boundary point $\Pi_{k \geq 1} \frac{1}{1-z^{k}}, \ldots$
R dominant singularity (=radius of convergence) of $F(z)=\sum f_{n} z^{n}$
$\Longrightarrow F_{n}$ grows like $1 / R^{n}$.
Power of complex analysis gives much more!
Singularity analysis [Flajolet-Odlyzko] If $F(z) \sim A(z)$, then with $A(z)$

- algebraic : $(1-z)^{\alpha}=\sum_{k \geq 1}\binom{\alpha}{k}(-z)^{k}$ (kind of continuous version of Newton binomial formula) $f_{n} \sim C / \Gamma(-\alpha) R^{-n} n^{-1-\alpha}$
- Alg-log functions : $(1-z)^{\alpha} \ln ^{\beta} \frac{1}{1-z}: \quad f_{n} \sim n^{-\alpha-1} \ln (n)^{\beta}$

Dominant singularities: one has to add the contribution of each of them.

$$
F(z)=1 /\left(1-z^{2}\right) \Longrightarrow f_{n}=1^{n}+(-1)^{n}
$$

Frobenius method

Classifications of singularities for differential equations Fuchs 1866, Fabry 1885.
Poincaré expansions of P-recursive sequences Birkhoff and his student Trjitzinsky 1932
Trjitzinsky-Birkhoff method " ressurected" by Wimp \& Zeilberger 1985
$f_{n} \sim n!^{r} \exp \left(n^{q}\right) n^{\alpha} \ln n^{h}$ with $r, q \in \mathbb{Q}, \alpha \in \mathbb{C}, h \in \mathbb{N}$
non rigourous matched asymptotics : plug and identify...
Frobenius method Frobenius 1873, Wasow: If F is D-finite, then
$F(z) \sim$ linear combination of $\exp \left(z^{r}\right) z^{\alpha} \ln (z)^{i} A\left(z^{s}\right)$ with
$r \in \mathbb{Q}, i \in \mathbb{N}, \alpha, s \in \mathbb{C}, A \in \mathbb{Q}[[z]]$.
The GF approach has some advantages : $f_{n}=n^{\sqrt{17}}$ is not holonomic but is the asymptotic of some holonomic sequence (Quadtrees).
$\ln (n), p_{n}, \pi(n)$ are not holonomic [via GF]. [Flajolet/Gerhold/Salvy, 2005]. Bernoulli numbers. Bell numbers $\exp (\exp (x)-1)$. Cayley tree function $C(z)=z \exp (C(z))$. irreducible polynomials on a finite field (=Lyndon words). ("en passant" : not context free).

regular and irregular singularities of DE

regular singularity (=Fuchsian) : degree of the indicial equation equals the order of the ODE
irregular singularity: degree of the indicial equation smaller than the order of the ODE
$\partial_{z}^{10}+\cdots+z^{10} F(z)$: regular
$\partial_{z}^{10}+\cdots+z^{11} F(z)$: irregular
roots differ by integer : "resonance" implies In

Famous open problem: Frobenius method gives a linear combination, but with which coefficients, i.e. it is unknown if we can get the value of K in $a_{n} \sim K A^{n} n^{\alpha}$!!! One solution : numerical approximation! Another solution : Banderier-Chern-Hwang

Sequence accelaration schemes

A first trick (if no "resonance") gives the follow pattern for most of D-finite sequences : $c_{n}:=\frac{f_{n}^{2}}{n^{\alpha f_{2 n}}}=K+K_{1} / n+K_{2} / n^{2}+\ldots$.
Aitken Δ^{2} method doubles the precision ! : $b_{n}:=c_{n}-\frac{\left(c_{n+1}-c_{n}\right)^{2}}{c_{n+1}-2 c_{n}+c_{n-1}}=K+\frac{K_{1}}{2 n}+\ldots$ iterated Aitken: $\lg (n)$ iterations leads to $O\left(1 / n^{2}\right)$.
This often allows to go from 3-4 correct digits to ~ 8 digits.
For some specific sequences, it is possible to get more :
Richardson (clever linear combinations), generalized Richardson, (when applied to integrals $=$ Romberg, ...links with Simpson).
This often allows to get ~ 20 digits. It is possible to get more? yes : the Acinonyx Jubatus algorithm.

The cheetah algorithm

acinonyx jubatus, aka cheetah.

$$
K=\sum_{i=1}^{n}(-1)^{d-i} \frac{i^{d}}{i!(d-i)!} a(i)+O\left(1 / n^{n}\right)
$$

This accelaration scheme needs to be adapted if "resonance". This acceleration scheme is impressive when other singularities are "far away".

NB : This shemes is also working if K_{1}, K_{2}, \ldots are large! $b_{n}=K+K_{1} / n+K_{2} / n^{2}+\ldots$

An explicit formula for the constant

$$
\begin{gathered}
K=\frac{1}{P_{0}^{\prime}(\alpha)} \sum_{j \geq 0} B_{j} r^{*}(\alpha+j) \\
B_{j}=\sum_{k=1}^{d} \frac{P_{k}(\alpha+k)}{P_{0}(\alpha+k)} B_{j-k} \quad B_{0}=1
\end{gathered}
$$

key ideas : non homogeneous differential equations, change of variables + Cauchy-Euler type, "inverting" the equation by integration, Mellin integral :

$$
r^{*}(s)=\int_{0}^{1}(1-x)^{s-1} r(x) d x
$$

Using $A=B$ techniques often allows to evaluate this sum ! Since 1930, it was an open problem (thought to be undecidable) to get the constant K, and we can now prove formulae like $K=2 / \pi, K=\Gamma(1 / 3), \ldots$ for infinitely many cases! And we have fast numerical schemes for the remaining cases!

Walks on the honeycomb lattice

Theorem (Banderier 2008)

hexagonal lattice : nice links with Calabi-Yau \& number theory.
xy-Manhattan lattice : on \mathbb{Z}^{2} : EllipticK on \mathbb{N}^{2}; excursions $=C_{n}^{2}=$ "bishop moves on $\mathbb{N}^{2 "}$ see also [Mishna \& Bousquet-Mélou 2008].
x-Manhattan lattice : on \mathbb{Z}^{2} : Heun general function

$$
e^{\mathbb{N}}(4 n)=\sum_{k=1}^{n} \sum_{i=k}^{n}\binom{n-1}{i-1}\binom{n}{i-1}\binom{i-1}{k-1}\binom{i}{k-1} /(i k)
$$

triangular lattice :

$$
e^{\mathbb{Z}}(2 n)=\sum_{k=0}^{n}\binom{2 k}{k}\binom{n}{k}^{2} \quad e^{\mathbb{N}}(2 n)=\sum_{k=0}^{n}\binom{2 k}{k}\binom{n}{k}\binom{n+1}{k} /(k+1)^{2}
$$

Calabi-Yau equations and number theory

Calabi (1954) conjecture existence of a given Einstein-Kähler metric on compact complex manifolds proven by Yau in 1978. Key step for superstring theory/mirror symmetries (perhaps confirmed by the LHC in the CERN). Huge activities for understanding those equations (kind of generalisation of elliptic curves).... [image].

Intriguing links with number theory : $a_{n}=$ number of solutions in $\mathbb{Z} / n \mathbb{Z}$. An associated L-function leads to function whose inverse has some nice properties (rationality/D-finiteness...).

In number theory, those functions first appeared in the work of Beukers (kind of generalisation of the work of Apéry for irrationality of $\zeta(k))$.

Zagier, Zudilin and Almkvist (2008) give a large list of "Calabi-Yau" equations (\approx D-finite equations).

Few digits of Flajolet's constant...

asymptotics for walks on hexagonal lattice... $K=$ a constant which is not in the Plouffe invertor, and for which the Maple "identify(x, all=true)" command finds nothing (LLL/Bailey and Ferguson's PSLQ (Partial Sum of Least Squares) algorithm). $\mathrm{K}=1.32955319062990875968415374751767439529213577661488351801455178605811839$ 0198623412260695169439409364110631740615844724789164424098387720984338669 7498880650413104980702895723471826251071043678119741704206383060189858651 05503354396586243644607903280088302664637101353666792743998428953080760 48527974749038819240619236694384863843287228218307203144500972326041594 4117911307016350904025227449807186157980691036817380097177653579150873521 06234174484960448338736546728448100954759692974580712081666126294304734 995251002368260783121775874701969443747500756424053619829482170181906130 737803156649965810879278147434747755184684561983891466779222102946516831 13837028258503747445332236423034195944922226533542619501409547423552914 358927308618120122473794813410866463528056842814044415899130055907591021 14444637423575650869592828910304574627906218425736722151181354508324530 67627348469454491894639109969781433413545533190824588051168904855456143 $6958382232810160002907366818623076194013104839856789344252172963870 \ldots$. (and 10000 more digits!)

