ASYMPTOTICS ON RANDOM DISCRETE OBJECTS

Michael Drmota

Institute of Discrete Mathematics and Geometry
Vienna University of Technology
A 1040 Wien, Austria
michael.drmota@tuwien.ac.at
http://www.dmg.tuwien.ac.at/drmota/

SLC 62, Heilsbronn, February 22-25, 2009

Contents

I. RANDOM TREES

II. RANDOM PLANAR GRAPHS

III. CONTINUOUS LIMITING OBJECTS

References

Books

Michael Drmota,
Random Trees, Springer, Wien-New York, 2009.

Philippe Flajolet and Robert Sedgewick,

Random Trees
Analytic Combinatorics, Cambridge University Press, 2009. (http://algo.inria.fr/flajolet/Publications/books.html)

Asymptotic analysis of random objects

Levels of complexity:

1. Asymptotic enumeration
2. Distribution of (shape) parameters
3. Asymptotic shape ($=$ continuous limiting object)

Contents 1

I. RANDOM TREES

- Catalan trees and Cayley trees
- Functional equations and algebraic singularities
- A combinatorial central limit theorem
- The degree distribution of random trees
- Unrooted trees
- Systems of functional equations
- Pattern in trees

Random Trees

Catalan trees

rooted, ordered (or plane) tree

Random Trees

Catalan trees. $g_{n}=$ number of Catalan trees of size $n ; G(x)=\sum_{n \geq 1} g_{n} x^{n}$

$$
G(x)=x\left(1+G(x)+G(x)^{2}+\cdots\right)=\frac{x}{1-G(x)}
$$

$$
G(x)=\frac{1-\sqrt{1-4 x}}{2} \Longrightarrow g_{n}=\frac{1}{n}\binom{2 n-2}{n-1} \sim \frac{4^{n-1}}{\sqrt{\pi} \cdot n^{3 / 2}}
$$

(Catalan numbers)

Random Trees

Catalan trees with singularity analysis (to be discussed later)

$$
\begin{aligned}
& G(x)=\frac{1-\sqrt{1-4 x}}{2}=\frac{1}{2}-\frac{1}{2} \sqrt{1-4 x} \\
& \Longrightarrow \quad g_{n} \sim-\frac{1}{2} \cdot \frac{4^{n} n^{-3 / 2}}{\Gamma\left(-\frac{1}{2}\right)}=\frac{4^{n-1}}{\sqrt{\pi} \cdot n^{3 / 2}}
\end{aligned}
$$

Random Trees

Number of leaves of Catalan trees

$g_{n, k}=$ number of Catalan trees of size n with k leaves.

$$
\begin{gathered}
G(x, u)=x u+x\left(G(x, u)+G(x, u)^{2}+\cdots=x u+\frac{x G(x, u)}{1-G(x, u)}\right. \\
\Longrightarrow \quad G(x, u)=\frac{1}{2}\left(1+(u-1) x-\sqrt{1-2(u+1) x+(u-1)^{2} x^{2}}\right) \\
\Longrightarrow \quad g_{n, k}=\frac{1}{n}\binom{n}{k}\binom{n-1}{k} \sim \frac{4^{n}}{\pi n^{2}} \exp \left(-\frac{\left(k-\frac{n}{2}\right)^{2}}{\frac{1}{4} n}\right) \quad \text { for } k \approx \frac{n}{2}
\end{gathered}
$$

Random Trees

Number of leaves of Catalan trees

$$
G(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}}
$$

for certain analytic function $g(x, u), h(x, u)$, and $\rho(u)$.

$$
\Longrightarrow \quad g_{n, k}=? ? ?
$$

Random Trees

Cayley Trees:

labelled, rooted, unordered (or non-plane) tree

Random Trees

Cayley Trees. $r_{n}=$ number of Cayley trees of size $n ; R(x)=\sum_{n \geq 1} r_{n} \frac{x^{n}}{n!}$

$$
R(x)=x\left(1+R(x)+\frac{R(x)^{2}}{2!}+\frac{R(x)^{3}}{3!}+\cdots\right)=x e^{R(x)}
$$

$\Longrightarrow r_{n}=n^{n-1} \ldots$ by Lagrange inversion

Random Trees

Number of leaves of Cayley trees

$r_{n, k}=$ number of Cayley trees of size n with k leaves.

$$
R(x, u)=x u+x\left(R(x, u)+\frac{R(x, u)^{2}}{2!}+\frac{R(x, u)^{3}}{3!}+\cdots\right)=x e^{R(x, u)}+x(u-1)
$$

$$
\Longrightarrow \quad R(x, u)=? ? ?
$$

Functional equations

Catalan trees: $G(x, u)=x u+x G(x, u) /(1-G(x, u))$
Cayley trees: $R(x, u)=x e^{R(x, u)}+x(u-1)$

Recursive structure leads to functional equation for gen. func.:

$$
A(x, u)=\Phi(x, u, A(x, u))
$$

Functional equations

Linear functional equation: $\Phi(x, u, a)=\Phi_{0}(x, u)+a \Phi_{1}(x, u)$

$$
\Longrightarrow \quad A(x, u)=\frac{\Phi_{0}(x, u)}{1-\Phi_{1}(x, u)}
$$

Usually these kinds of generating functions are easy to handle, since they are explicit.

Functional equations

Non-linear functional equations: $\Phi_{a a}(x, u, a) \neq 0$.

Suppose that $A(x, u)=\Phi(x, u, A(x, u))$, where $\Phi(x, u, a)$ has a power series expansion at ($0,0,0$) with non-negative coefficients and $\Phi_{a a}(x, u, a) \neq 0$.

Let $x_{0}>0, a_{0}>0$ (inside the region of convergence) satisfy the system of equations:

$$
a_{0}=\Phi\left(x_{0}, 1, a_{0}\right), \quad 1=\Phi_{a}\left(x_{0}, 1, a_{0}\right)
$$

Then there exists analytic function $g(x, u), h(x, u)$, and $\rho(u)$ such that locally

$$
A(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} .
$$

Functional equations

Idea of the Proof.

Set $F(x, u, a)=\Phi(x, u, a)-a$. Then we have

$$
\begin{aligned}
F\left(x_{0}, 1, a_{0}\right) & =0 \\
F_{a}\left(x_{0}, 1, a_{0}\right) & =0 \\
F_{x}\left(x_{0}, 1, a_{0}\right) & \neq 0 \\
F_{a a}\left(x_{0}, 1, a_{0}\right) & \neq 0
\end{aligned}
$$

Weierstrass preparation theorem implies that there exist analytic functions $H(x, u, a), p(x, u), q(x, u)$ with $H\left(x_{0}, 1, a_{0}\right) \neq 0, p\left(x_{0}, 1\right)=q\left(x_{0}, 1\right)=$ 0 and

$$
F(x, u, a)=H(x, u, a)\left(\left(a-a_{0}\right)^{2}+p(x, u)\left(a-a_{0}\right)+q(x, u)\right) .
$$

Functional equations

$$
F(x, u, a)=0 \Longleftrightarrow\left(a-a_{0}\right)^{2}+p(x, u)\left(a-a_{0}\right)+q(x, u)=0 .
$$

Consequently

$$
\begin{aligned}
A(x, u) & =a_{0}-\frac{p(x, u)}{2} \pm \sqrt{\frac{p(x, u)^{2}}{4}-q(x, u)} \\
& =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}}
\end{aligned}
$$

where we write

$$
\frac{p(x, u)^{2}}{4}-q(x, u)=K(x, u)(x-\rho(u))
$$

which is again granted by the Weierstrass preparation theorem and we set

$$
g(x, u)=a_{0}-\frac{p(x, u)}{2} \quad \text { and } \quad h(x, u)=\sqrt{-K(x, u) \rho(u)}
$$

Random Trees

Catalan Trees $G(x, u)=x u+\frac{x G(x, u)}{1-G(x, u)}$

$$
\left.\begin{array}{c}
\Longrightarrow \quad G(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
G(x, 1)
\end{array}\right)=G(x)=g(x, 1)-h(x, 1) \sqrt{1-\frac{x}{\rho(1)}}, \quad \rho(1)=\frac{1}{4} .
$$

Cayley Trees $T(x, u)=x e^{T(x, u)}+x(u-1)$

$$
\begin{aligned}
& \Longrightarrow \quad T(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
& T(x, 1)=T(x)=g(x, 1)-h(x, 1) \sqrt{1-\frac{x}{\rho(1)}}, \quad \rho(1)=\frac{1}{e}
\end{aligned}
$$

Algebraic Singularities

Singular expansion

$$
\begin{aligned}
A(x)= & g(x)-h(x) \sqrt{1-\frac{x}{\rho}} \\
= & \left(g_{0}+g_{1}(x-\rho)+g_{2}(x-\rho)^{2}+\cdots\right) \\
& +\left(h_{0}+h_{1}(x-\rho)+h_{2}(x-\rho)^{2}+\cdots\right) \sqrt{1-\frac{x}{\rho}} \\
= & a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)^{\frac{2}{2}}+a_{3}\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}+\cdots \\
= & a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)+O\left(\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}\right)
\end{aligned}
$$

Algebraic Singularities

Singular expansion

$$
\begin{aligned}
A(x)= & g(x)-h(x) \sqrt{1-\frac{x}{\rho}} \\
= & \left(g_{0}+g_{1}(x-\rho)+g_{2}(x-\rho)^{2}+\cdots\right) \\
& +\left(h_{0}+h_{1}(x-\rho)+h_{2}(x-\rho)^{2}+\cdots\right) \sqrt{1-\frac{x}{\rho}} \\
= & a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)^{\frac{2}{2}}+a_{3}\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}+\cdots \\
= & a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)+O\left(\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}\right)
\end{aligned}
$$

Algebraic Singularities

Singularity Analysis

Lemma 1 Suppose that

$$
y(x)=\left(1-\frac{x}{x_{0}}\right)^{-\alpha}
$$

Then

$$
y_{n}=(-1)^{n}\binom{-\alpha}{n} x_{0}^{-n}=\frac{n^{\alpha-1}}{\Gamma(\alpha)} x_{0}^{-n}+\mathcal{O}\left(n^{\alpha-2} x_{0}^{-n}\right)
$$

Remark: This asymptotic expansion is uniform in α if α varies in a compact region of the complex plane.

Algebraic Singularities

Singularity Analysis

Lemma 2 (Flajolet and Odlyzko) Let

$$
y(x)=\sum_{n \geq 0} y_{n} x^{n}
$$

be analytic in a region

$$
\begin{aligned}
& \Delta=\left\{x:|x|<x_{0}+\eta,\left|\arg \left(x-x_{0}\right)\right|>\delta\right\}, \\
& x_{0}>0, \eta>0,0<\delta<\pi / 2
\end{aligned}
$$

Suppose that for some real α

$$
y(x)=\mathcal{O}\left(\left(1-x / x_{0}\right)^{-\alpha}\right) \quad(x \in \Delta)
$$

Then

$$
y_{n}=\mathcal{O}\left(x_{0}^{-n} n^{\alpha-1}\right)
$$

Algebraic Singularities

Δ-region

Algebraic Singularities

Singularity Analysis

Suppose that

$$
\begin{aligned}
A(x) & =g(x)-h(x) \sqrt{1-\frac{x}{\rho}} \\
& =a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)+O\left(\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}\right)
\end{aligned}
$$

for $x \in \Delta$ then

$$
a_{n}=\left[x^{n}\right] A(x)=\frac{h(\rho)}{2 \sqrt{\pi}} \rho^{-n} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{n}\right)\right)
$$

Algebraic Singularities

Singularity Analysis

Suppose that

$$
\begin{aligned}
A(x, u) & =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
& =a_{0}(u)+a_{1}(u)\left(1-\frac{x}{\rho(u)}\right)^{\frac{1}{2}}+a_{2}(u)\left(1-\frac{x}{\rho(u)}\right)+O\left(\left(1-\frac{x}{\rho(u)}\right)^{\frac{3}{2}}\right)
\end{aligned}
$$

for $x \in \Delta=\Delta(u)$ then

$$
a_{n}(u)=\left[x^{n}\right] A(x, u)=\frac{h(\rho(u), u)}{2 \sqrt{\pi}} \rho(u)^{-n} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{n}\right)\right) .
$$

Probabilistic Model

$a_{n} \ldots$ number of objects of size n
$a_{n, k} \ldots$ number of objects of size n, where a certain parameter has value k

If all objects of size n are considered to be equally likely then the parameter can be considered as a random variable X_{n} with distribution

$$
\mathbb{P}\left\{X_{n}=k\right\}=\frac{a_{n k}}{a_{n}} .
$$

Probabilistic Model

Generating functions and the probability generating function

$$
\begin{aligned}
A(x, u) & =\sum_{n, k} a_{n, k} x^{n} u^{k} \\
\Longrightarrow \mathbb{E} u^{X_{n}} & =\sum_{k \geq 0} \mathbb{P}\left\{X_{n}=k\right\} u^{k} \\
& =\sum_{k \geq 0} \frac{a_{n k}}{a_{n}} u^{k} \\
& =\frac{\left[x^{n}\right] A(x, u)}{\left[x^{n}\right] A(x, 1)}=\frac{a_{n}(u)}{a_{n}}
\end{aligned}
$$

Probabilistic Model

Generating functions and the probability generating function

$$
\begin{aligned}
A(x, u) & =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
\Longrightarrow \mathbb{E} u^{X_{n}} & =\frac{\left[x^{n}\right] A(x, u)}{\left[x^{n}\right] A(x, 1)} \\
& =\frac{\frac{h(\rho(u), u)}{2 \sqrt{\pi}} \rho(u)^{-n} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{n}\right)\right)}{\frac{h(\rho(1), 1)}{2 \sqrt{\pi}} \rho(1)^{-n} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{n}\right)\right)} \\
& =\frac{h(\rho(u), u)}{h(\rho(1), 1)}\left(\frac{\rho(1)}{\rho(u)}\right)^{n}\left(1+O\left(\frac{1}{n}\right)\right) .
\end{aligned}
$$

Probabilistic Model

Quasi-Power Theorem (Hwang)

Let X_{n} be a sequence of random variables with the property that

$$
\mathbb{E} u^{X_{n}}=A(u) \cdot B(u)^{\lambda_{n}} \cdot\left(1+O\left(\frac{1}{\phi_{n}}\right)\right)
$$

holds uniformly in a complex neighborhood of $u=1, \lambda_{n} \rightarrow \infty$ and $\phi_{n} \rightarrow \infty$, and $A(u)$ and $B(u)$ are analytic functions in a neighborhood of $u=1$ with $A(1)=B(1)=1$. Set

$$
\begin{gathered}
\mu=B^{\prime}(1) \text { and } \sigma^{2}=B^{\prime \prime}(1)+B^{\prime}(1)-B^{\prime}(1)^{2} . \\
\Longrightarrow \\
\mathbb{E} X_{n}=\mu \lambda_{n}+O\left(1+\lambda_{n} / \phi_{n}\right), \quad \mathbb{V} X_{n}=\sigma^{2} \lambda_{n}+O\left(1+\lambda_{n} / \phi_{n}\right),
\end{gathered}
$$

$$
\frac{X_{n}-\mathbb{E} X_{n}}{\sqrt{\mathbb{V} X_{n}}} \xrightarrow{\mathrm{~d}} N(0,1) \quad\left(\sigma^{2} \neq 0\right) .
$$

Probabilistic Model

Sums of independent random variables
$X_{n}=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$, where ξ_{j} are i.i.d.

$$
\begin{aligned}
& B(u)=\mathbb{E} u^{\xi_{j}} \\
& \Longrightarrow \mathbb{E} u^{X_{n}}=\mathbb{E} u^{\xi_{1}+\xi_{2}+\cdots+\xi_{n}} \\
&=\mathbb{E} u^{\xi_{1}} \cdot \mathbb{E} u^{\xi_{2}} \cdots \mathbb{E} u^{\xi_{n}} \\
&=B(u)^{n}
\end{aligned}
$$

Probabilistic Model

COMBINATORIAL CENTRAL LIMIT THEOREM

Suppose that a sequence of random variables X_{n} has distribution

$$
\mathbb{P}\left\{X_{n}=k\right\}=\frac{a_{n k}}{a_{n}}
$$

where the generating function $A(x, u)=\sum_{n, k} a_{n, k} x^{n} u^{k}$ satisfies a functional equation of the form $A(x, u)=\Phi(x, u, A(x, u))$, where $\Phi(x, u, a)$ has a power series expansion at ($0,0,0$) with non-negative coefficients and $\Phi_{a a}(x, u, a) \neq 0$.

Let $x_{0}>0, a_{0}>0$ (inside the region of convergence) satisfy the system of equations:

$$
a_{0}=\Phi\left(x_{0}, 1, a_{0}\right), \quad 1=\Phi_{a}\left(x_{0}, 1, a_{0}\right) .
$$

Probabilistic Model

COMBINATORIAL CENTRAL LIMIT THEOREM (cont.)

 Set$$
\begin{aligned}
\mu= & \frac{\Phi_{u}}{x_{0} \Phi_{x}} \\
\sigma^{2}= & \mu+\mu^{2}+\frac{1}{x_{0} \Phi_{x}^{3} \Phi_{a a}}\left(\Phi_{x}^{2}\left(\Phi_{a a} \Phi_{u u}-\Phi_{a u}^{2}\right)-2 \Phi_{x} \Phi_{u}\left(\Phi_{a a} \Phi_{x u}-\Phi_{a x} \Phi_{a u}\right)\right. \\
& \left.+\Phi_{u}^{2}\left(\Phi_{a a} \Phi_{x x}-\Phi_{a x}^{2}\right)\right)
\end{aligned}
$$

(where all partial derivatives are evaluated at the point $\left(x_{0}, a_{0}, 1\right)$)

Then we have

$$
\mathbb{E} X_{n}=\mu n+O(1) \quad \text { and } \quad \operatorname{Var} X_{n}=\sigma^{2} n+O(1)
$$

and if $\sigma^{2}>0$ then

$$
\frac{X_{n}-\mathbb{E} X_{n}}{\sqrt{\operatorname{Var} X_{n}}} \rightarrow N(0,1)
$$

Random Trees

Leaves in Catalan trees

The number of leaves in Catalan trees of size n satisfy a central limit theorem with mean $\sim \frac{1}{2} n$ and variance $\sim \frac{1}{8} n$

Leaves in Cayley trees

The number of leaves in Cayley trees of size n satisfy a central limit theorem with mean $\sim \frac{1}{e} n$ and variance $\sim\left(\frac{1}{e^{2}}+\frac{1}{e}\right) n$

Random Trees

Nodes of out-degree d in Catalan trees

The number $X_{n}^{(d)}$ of nodes with out-degree d in Catalan trees of size n satisfy a central limit theorem with mean $\sim \mu_{d} n$ and variance $\sim \sigma_{d}^{2} n$, where

$$
\mu_{d}=\frac{1}{2^{d+1}} \quad \text { and } \quad \sigma_{d}^{2}=\frac{1}{2^{d+1}}+\frac{1}{2^{2(d+1)}}-\frac{(d-1)^{2}}{2^{2 d+3}}
$$

Random Trees

Nodes of out-degree d in Cayley trees

The number of nodes with out-degree d in Cayley trees of size n satisfy a central limit theorem with mean $\sim \mu_{d} n$ and variance $\sim \sigma_{d}^{2} n$, where

$$
\mu_{d}=\frac{1}{e d!} \quad \text { and } \quad \sigma_{d}^{2}=\frac{1+(d-1)^{2}}{e^{2}(d!)^{2}}+\frac{1}{e d!}
$$

Random Trees

Degree distribution for Catalan trees

$p_{n, d} \ldots$ probability that a random node in a random Catalan tree of size n has out-degree d :

$$
\begin{gathered}
\mathbb{E} X_{n}^{(d)}=n p_{n, d} \\
p_{d}:=\lim _{n \rightarrow \infty} p_{n, d}=\frac{1}{2^{d+1}}=\mu_{d}
\end{gathered}
$$

Probability generating function of the out-degree distribution:

$$
p(w):=\sum_{d \geq 0} p_{d} w^{d}=\frac{1}{2-w}
$$

Random Trees

Degree distribution for Cayley trees

$p_{n, d} \ldots$ probability that a random node in a random Cayley tree of size n has out-degree d :

$$
\begin{gathered}
\mathbb{E} X_{n}^{(d)}=n p_{n, d} \\
p_{d}:=\lim _{n \rightarrow \infty} p_{n, d}=\frac{1}{e d!}=\mu_{d}
\end{gathered}
$$

Probability generating function of the out-degree distribution:

$$
p(w):=\sum_{d \geq 1} p_{d} w^{d}=e^{w-1}
$$

Random Trees

Maximum degree

$\Delta_{n} \ldots$ maximum out-degree
$X_{n}^{(>d)}=X_{n}^{(d+1)}+X_{n}^{(d+2)}+\cdots \ldots$ number of nodes of out-degree $>d$.

$$
\Delta_{n}>d \Longleftrightarrow X_{n}^{(>d)}>0
$$

Random Trees

First moment method

X ... a discrete random variable on non-negative integers.

$$
\Longrightarrow \quad \mathbb{P}\{X>0\} \leq \min \{1, \mathbb{E} X\}
$$

Proof

$$
\mathbb{E} X=\sum_{k \geq 0} k \mathbb{P}\{X=k\} \geq \sum_{k \geq 1} \mathbb{P}\{X=k\}=\mathbb{P}\{X>0\}
$$

Random Trees

Second moment method

X is a non-negative random variable with finite second moment.

$$
\Longrightarrow \quad \mathbb{P}\{X>0\} \geq \frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left(X^{2}\right)}
$$

Proof

$$
\mathbb{E} X=\mathbb{E}\left(X \cdot 1_{[X>0]}\right) \leq \sqrt{\mathbb{E}\left(X^{2}\right)} \sqrt{\mathbb{E}\left(1_{[X>0]}^{2}\right)}=\sqrt{\mathbb{E}\left(X^{2}\right)} \sqrt{\mathbb{P}\{X>0\}}
$$

Random Trees

Tail estimates and expected value

- $\mathbb{P}\left\{\Delta_{n}>d\right\} \leq \min \left\{1, \mathbb{E} X_{n}^{(>d)}\right\}$
- $\mathbb{P}\left\{\Delta_{n}>d\right\} \geq \frac{\left(\mathbb{E} X_{n}^{(>d)}\right)^{2}}{\mathbb{E}\left(X_{n}^{(>d)}\right)^{2}}$

$$
\Longrightarrow \mathbb{P}\left\{\Delta_{n} \leq d\right\} \leq 1-\frac{\left(\mathbb{E} X_{n}^{(>d)}\right)^{2}}{\mathbb{E}\left(X_{n}^{(>d)}\right)^{2}}=\frac{\operatorname{Var} X_{n}^{(>d)}}{\mathbb{E}\left(X_{n}^{(>d)}\right)^{2}}
$$

- $\mathbb{E} \Delta_{n}=\sum_{d \geq 0} \mathbb{P}\left\{\Delta_{n}>d\right\}$

Random Trees

Maximum degree of Catalan trees

$$
\begin{aligned}
& \mathbb{E} X_{n}^{(>d)} \sim \frac{n}{2^{d+1}}, \quad \operatorname{Var}\left(X_{n}^{(>d)}\right)^{2} \sim n\left(\frac{1}{2^{d+1}}+\frac{1}{2^{2(d+1)}}-\frac{(d-1)^{2}}{2^{2 d+3}}\right) \\
& \Longrightarrow \mathbb{P}\left\{\Delta_{n}>d\right\} \leq \min \left\{1, \frac{n}{\left.2^{d+1}\right\}}\right. \\
& \mathbb{P}\left\{\Delta_{n} \leq d\right\}=1-\mathbb{P}\left\{\Delta_{n}>d\right\} \\
& \leq \frac{1}{n} \frac{\frac{1}{2^{d+1}}+\frac{1}{2^{2(d+1)}}-\frac{(d-1)^{2}}{2^{2 d+3}}}{\frac{1}{2^{2(d+1)}}} \sim \frac{2^{d+1}}{n}
\end{aligned}
$$

$\Longrightarrow \quad \Delta_{n}$ is concentrated at $\log _{2} n$

Random Trees

Maximum degree of Catalan trees (Carr, Goh and Schmutz)

$$
\mathbb{P}\left\{\Delta_{n} \leq k\right\}=\exp \left(-2^{-\left(k-\log _{2} n+1\right)}\right)+o(1)
$$

$$
\mathbb{E} \Delta_{n}=\log _{2} n+O(1)
$$

Random Trees

Unrooted trees

$p_{n} \ldots$ number of different embeddings of unrooted trees of size n in the plane, $P(x)=\sum_{n \geq 1} p_{n} x^{n}$:

$$
P(x)=x \sum_{k \geq 0} Z_{\mathfrak{C}_{k}}\left(G(x), G\left(x^{2}\right), \ldots, G\left(x^{k}\right)\right)-\frac{1}{2} G(x)^{2}+\frac{1}{2} G\left(x^{2}\right)
$$

where $G(x)=x /(1-G(x))=(1-\sqrt{1-4 x}) / 2$ and

$$
Z_{\mathfrak{C}_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\frac{1}{k} \sum_{d \mid k} \varphi(d) x_{d}^{k / d}
$$

is the cycle index of the cyclic group \mathfrak{C}_{k} of k elements

Random Trees

Unrooted trees

Cancellation of the $\sqrt{1-4 x}$-term:

$$
\begin{gathered}
G(x)=\frac{1-\sqrt{1-4 x}}{2}
\end{gathered} \begin{gathered}
\Longrightarrow P(x)=a_{0}+a_{2}(1-4 x)+\frac{1}{6}(1-4 x)^{3 / 2}+\cdots \\
\Longrightarrow p_{n}=\frac{1}{8 \sqrt{\pi}} 4^{n} n^{-5 / 2}\left(1+O\left(n^{-1}\right)\right)
\end{gathered}
$$

Random Trees

Degree distribution of unrooted trees

$X_{n}^{(d)} \ldots$ number of nodes of degree d in trees of size n

$$
\begin{aligned}
P(x, u) & =x \sum_{k \neq d} Z_{\mathfrak{C}_{k}}\left(G(x, u), G\left(x^{2}, u^{2}\right), \ldots, G\left(x^{k}, u^{k}\right)\right) \\
& +x u Z_{\mathfrak{C}_{d}}\left(G(x, u), G\left(x^{2}, u^{2}\right), \ldots, G\left(x^{d}, u^{d}\right)\right) \\
& -\frac{1}{2} G(x, u)^{2}+\frac{1}{2} G\left(x^{2}, u^{2}\right)
\end{aligned}
$$

where

$$
G(x, u)=\frac{x}{1-G(x, u)}+x(u-1) G(x, u)^{d-1}
$$

Random Trees

Degree distribution of unrooted trees

Cancellation of the $\sqrt{1-4 x}$-term:

$$
\begin{aligned}
G(x, u) & =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
\Longrightarrow \quad P(x, u) & =a_{0}(u)+a_{2}(u)\left(1-\frac{x}{\rho(u)}\right)+a_{3}(u)\left(1-\frac{x}{\rho(u)}\right)^{\frac{3}{2}}+\cdots
\end{aligned}
$$

$\Longrightarrow X_{n}^{(d)}$ satisfies a central limit theorem with mean $\sim \mu_{d-1} n$ and variance $\sim \sigma_{d-1}^{2} n$, where

$$
\mu_{d}=\frac{1}{2^{d+1}} \quad \text { and } \quad \sigma_{d}^{2}=\frac{1}{2^{d+1}}+\frac{1}{2^{2(d+1)}}-\frac{(d-1)^{2}}{2^{2 d+3}}
$$

Random Trees

Degree distribution of unrooted trees

$p_{n, d} \ldots$ probability that a random node in a tree of size n has degree d :

$$
\begin{gathered}
\mathbb{E} X_{n}^{(d)}=n p_{n, d} \\
p_{d}=\lim _{n \rightarrow \infty} p_{n, d}=\mu_{d-1}=\frac{1}{2^{d}}
\end{gathered}
$$

Probability generating function of the degree distribution:

$$
p(w)=\sum_{d \geq 1} p_{d} w^{d}=\frac{w}{2-w}
$$

Random Trees

Maximum degree for unrooted trees

$\Delta_{n} \ldots$ maximum degree of unrooted trees of size n

$$
\Delta_{n} \text { is concentrated at } \log _{2} n
$$

$$
\mathbb{E} \Delta_{n}=\log _{2} n+O(1)
$$

Random Trees

Unrooted labelled trees

$t_{n}=r_{n} / n=n^{n-2} \ldots$ number of different unrooted labelled trees of
size $n: T(x)=\sum_{n \geq 1} t_{n} \frac{x^{n}}{n!}$:

$$
T(x)=x e^{R(x)}-\frac{1}{2} R(x)^{2},
$$

where $R(x)=x e^{R(x)}$

Cancellation of the $\sqrt{1-e x}$-term:
$R(x)=g(x)-h(x) \sqrt{1-e x} \quad \Longrightarrow \quad T(x)=a_{0}+a_{2}(1-4 x)+\frac{1}{6}(1-e x)^{3 / 2}+\cdots$

Random Trees

Degree distribution of unrooted labelled trees

$X_{n}^{(d)} \ldots$ number of nodes of degree d in trees of size n

$$
T(x, u)=x e^{R(x, u)}+x(u-1) \frac{R(x, u)^{d}}{d!}-\frac{1}{2} R(x, u)^{2}
$$

where

$$
R(x, u)=x e^{R(x, u)}+x(u-1) \frac{R(x, u)^{d-1}}{(d-1)!}
$$

Random Trees

Degree distribution of unrooted labelled trees

Cancellation of the $\sqrt{1-4 x}$-term:

$$
\begin{aligned}
R(x, u) & =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} \\
\Longrightarrow \quad T(x, u) & =a_{0}(u)+a_{2}(u)\left(1-\frac{x}{\rho(u)}\right)+a_{3}(u)\left(1-\frac{x}{\rho(u)}\right)^{\frac{3}{2}}+\cdots
\end{aligned}
$$

$\Longrightarrow X_{n}^{(d)}$ satisfies a central limit theorem with mean $\sim \mu_{d-1} n$ and variance $\sim \sigma_{d-1}^{2} n$, where

$$
\mu_{d}=\frac{1}{e d!} \quad \text { and } \quad \sigma_{d}^{2}=\frac{1+(d-1)^{2}}{e^{2}(d!)^{2}}+\frac{1}{e d!}
$$

Random Trees

Star pattern

$$
d=5
$$

$X_{n}^{(d)}=$ number of nodes of degree d in trees of size n

$$
=\text { number of star pattern with } d \text { rays in trees of size } n
$$

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II

Suppose that a sequence of random variables X_{n} has distribution

$$
\mathbb{P}\left[X_{n}=k\right]=\frac{a_{n k}}{a_{n}}
$$

where the generating function $A(x, u)=\sum_{n, k} a_{n, k} x^{n} u^{k}$ is given by

$$
A(x, u)=\Psi\left(x, u, A_{1}(x, u), \ldots, A_{r}(x, u)\right)
$$

for an analytic function Ψ and the generating functions

$$
A_{1}(x, u)=\sum_{n, k} a_{1 ; n, k} u^{k} x^{n}, \ldots, A_{r}(x, u)=\sum_{n, k} a_{r ; n, k} u^{k} x^{n}
$$

satisfy a system of non-linear equations

$$
A_{j}(x, u)=\Phi_{j}\left(x, u, A_{1}(x, u), \ldots, A_{r}(x, u)\right), \quad(1 \leq j \leq r)
$$

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II (cont.)

Suppose that at least one of the functions $\Phi_{j}\left(x, u, a_{1}, \ldots, a_{r}\right)$ is nonlinear in a_{1}, \ldots, a_{r} and they all have a power series expansion at $(0,0,0)$ with non-negative coefficients.

Let $x_{0}>0, \mathbf{a}_{0}=\left(a_{0,0}, \ldots, a_{r, 0}\right)>0$ (inside the region of convergence) satisfy the system of equations: $\left(\Phi=\left(\Phi_{1}, \ldots, \Phi_{r}\right)\right)$

$$
\mathbf{a}_{0}=\boldsymbol{\Phi}\left(x_{0}, 1, \mathbf{a}_{0}\right), \quad 0=\operatorname{det}\left(\mathbb{I}-\mathbf{\Phi}_{\mathbf{a}}\left(x_{0}, 1, \mathbf{a}_{0}\right) .\right.
$$

Suppose further, that the dependency graph of the system $\mathbf{a}=\boldsymbol{\Phi}(x, u, \mathbf{a})$ is strongly connected (which means that no subsystem can be solved before the whole system).

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM II (cont.)

Then there exists analytic function $g_{j}(x, u), h_{j}(x, u)$, and $\rho(u)$ (that is independent of j) such that locally

$$
A_{j}(x, u)=g_{j}(x, u)-h_{j}(x, u) \sqrt{1-\frac{x}{\rho(u)}}
$$

and consequently (for some $g(x, u), h(x, u)$)

$$
A(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}}
$$

Consequently the random variable X_{n} satisfies a central limit theorem with

$$
\mathbb{E} X_{n} \sim n \mu \quad \text { and } \quad \operatorname{Var} X_{n} \sim n \sigma^{2}
$$

where μ and σ^{2} can be computed.

Patterns in Trees

Pattern \mathcal{M}

Patterns in Trees

Pattern \mathcal{M}

Patterns in Trees

Occurrence of a pattern \mathcal{M}

Patterns in Trees

Occurrence of a pattern \mathcal{M}

Patterns in Trees

Occurrence of a pattern \mathcal{M}

Patterns in Trees

Occurrence of a pattern \mathcal{M}

Patterns in Trees

Occurrence of a pattern $\mathcal{M}{ }^{\cdots}$ in a labelled tree

Patterns in Trees

Cayley's formula
$r_{n}=n^{n-1} \ldots$ number of rooted labelled trees with n nodes
$t_{n}=n^{n-2} \ldots$ number of labelled trees with n nodes

Generating functions
$R(x)=\sum_{n \geq 1} r_{n} \frac{x^{n}}{n!}:$

$$
R(x)=x e^{R(x)}
$$

$t(x)=\sum_{n \geq 1} t_{n} \frac{x^{n}}{n!}:$

$$
T(x)=R(x)-\frac{1}{2} R(x)^{2}
$$

Patterns in Trees

Theorem

$\mathcal{M} \ldots$ be a given finite tree.
$X_{n} \ldots$ number of occurrences of of \mathcal{M} in a labelled tree of size n
$\Longrightarrow X_{n}$ satisfies a central limit theorem with

$$
\mathbb{E} X_{n} \sim \mu n \quad \text { and } \quad \mathbb{V} X_{n} \sim \sigma^{2} n
$$

$\mu>0$ and $\sigma^{2} \geq 0$ depend on the pattern \mathcal{M} and can be computed explicitly and algorithmically and can be represented as polynomials (with rational coefficients) in $1 / e$.

Patterns in Trees

Partition of trees in classes $(\square \ldots$ out-degree different from 2)

Patterns in Trees

Recurrences $A_{3}=x A_{0} A_{2}+x A_{0} A_{3}+x A_{0} A_{4}$

$$
A_{j}(x)=\sum_{n, k} a_{j ; n} \frac{x^{n}}{n!}
$$

$a_{j ; n} \quad$... number of trees of size n in class j

Patterns in Trees

Recurrences $A_{3}=x u A_{0} A_{2}+x u A_{0} A_{3}+x u A_{0} A_{4}$

$$
A_{j}(x, u)=\sum_{n, k} a_{j ; n, k} \frac{x^{n}}{n!} u^{k}
$$

$a_{j ; n, k} \quad \ldots$ number of trees of size n in class j with k occurrences of \mathcal{M}

Patterns in Trees

$$
\begin{aligned}
A_{0} & =A_{0}(x, u)=x+x \sum_{i=0}^{10} A_{i}+x \sum_{n=3}^{\infty} \frac{1}{n!}\left(\sum_{i=0}^{10} A_{i}\right)^{n} \\
A_{1} & =A_{1}(x, u)=\frac{1}{2} x A_{0}^{2} \\
A_{2} & =A_{2}(x, u)=x A_{0} A_{1} \\
A_{3} & =A_{3}(x, u)=x A_{0}\left(A_{2}+A_{3}+A_{4}\right) u \\
A_{4} & =A_{4}(x, u)=x A_{0}\left(A_{5}+A_{6}+A_{7}+A_{8}+A_{9}+A_{10}\right) u^{2} \\
A_{5} & =A_{5}(x, u)=\frac{1}{2} x A_{1}^{2} u \\
A_{6} & =A_{6}(x, u)=x A_{1}\left(A_{2}+A_{3}+A_{4}\right) u^{2} \\
A_{7} & =A_{7}(x, u)=x A_{1}\left(A_{5}+A_{6}+A_{7}+A_{8}+A_{9}+A_{10}\right) u^{3} \\
A_{8} & =A_{8}(x, u)=\frac{1}{2} x\left(A_{2}+A_{3}+A_{4}\right)^{2} u^{3} \\
A_{9} & =A_{9}(x, u)=x\left(A_{2}+A_{3}+A_{4}\right)\left(A_{5}+A_{6}+A_{7}+A_{8}+A_{9}+A_{10}\right) u^{4} \\
A_{10} & =A_{10}(x, u)=\frac{1}{2} x\left(A_{5}+A_{6}+A_{7}+A_{8}+A_{9}+A_{10}\right)^{2} u^{5}
\end{aligned}
$$

Patterns in Trees

Final Result for $\mathcal{M}=$

Central limit theorem with

$$
\mu=\frac{5}{8 e^{3}}=0.0311169177 \ldots
$$

and

$$
\sigma^{2}=\frac{20 e^{3}+72 e^{2}+84 e-175}{32 e^{6}}=0.0764585401 \ldots
$$

Contents 2

II. RANDOM PLANAR GRAPHS

- Short history on random planar graphs
- Classes of planar graphs
- Asymptotic enumeration of planar graphs
- The number of edges of planar graphs
- Vertices of given degree
- The degree distribution of planar graphs
- The maximum degree of planar graphs

Random Planar Graphs

"History"

$\mathcal{R}_{n} \ldots$ Iabelled planar graphs with n vertices with uniform distribution
$X_{n} \ldots$ number of edges is a random planar graph with n vertices

Denise, Vasconcellos, Welsh (1996)

$$
\mathbb{P}\left\{X_{n}>\frac{3}{2} n\right\} \rightarrow 1, \quad \mathbb{P}\left\{X_{n}<\frac{5}{2} n\right\} \rightarrow 1 .
$$

$X_{n} \ldots$ number of edges in random planar graphs \mathcal{R}_{n}
(Note that $0 \leq e \leq 3 n$ for all planar graphs.)

Random Planar Graphs

"History"

McDiarmid, Steger, Welsh (2005)

$$
\mathbb{P}\left\{H \text { appears in } \mathcal{R}_{n} \text { at least } \alpha n \text { times }\right\} \rightarrow 1
$$

$H \ldots$ any fixed planar graph, $\alpha>0$ sufficiently small.

Random Planar Graphs

Consequences:

$\mathbb{P}\{$ There are $\geq \alpha n$ vertices of degree $k\} \rightarrow 1$
$k>0$ a given integer, $\alpha>0$ sufficiently small.

$$
\mathbb{P}\left\{\text { There are } \geq C^{n} \text { automorphisms }\right\} \rightarrow 1
$$

for some $C>1$.

Random Planar Graphs

Further Results:

$$
\mathbb{P}\left\{\mathcal{R}_{n} \text { is connected }\right\} \geq \gamma>0
$$

[McDiarmid+Reed]

$$
\mathbb{E} \Delta_{n}=\Theta(\log n)
$$

$\Delta_{n} \ldots$ maximum degree in \mathcal{R}_{n}

Random Planar Graphs

The number of planar graphs

[Bender, Gao, Wormald (2002)]
$b_{n} \ldots$ number of 2-connected labelled planar graphs

$$
b_{n} \sim c \cdot n^{-\frac{7}{2}} \gamma_{2}^{n} n!, \quad \gamma_{2}=26.18 \ldots
$$

[Gimenez+Noy (2005)]
$g_{n} \ldots$ number of all labelled planar graphs

$$
g_{n} \sim c \cdot n^{-\frac{7}{2}} \gamma^{n} n!, \quad \gamma=27.22 \ldots
$$

Random Planar Graphs

Precise distributional results

[Gimenez+Noy (2005)]

- X_{n} satisfies a central limit theorem:

$$
\begin{gathered}
\mathbb{E} X_{n} \sim 2.21 \ldots \cdot n, \quad \mathbb{V} X_{n} \sim c \cdot n \\
\mathbb{P}\left\{\left|X_{n}-2.21 \ldots \cdot n\right|>\varepsilon n\right\} \leq e^{-\alpha(\varepsilon) \cdot n}
\end{gathered}
$$

- Connectedness:

$$
\mathbb{P}\left\{\mathcal{R}_{n} \text { is connected }\right\} \rightarrow e^{-\nu}=0.96 \ldots
$$

number of components of $\mathcal{R}_{n}=: C_{n} \rightarrow 1+\operatorname{Po}(\nu)$.

Random Planar Graphs

Degree Distribution

Theorem [D.+Giménez+Noy]

Let $p_{n, k}$ be the probability that a random node in a random planar graph \mathcal{R}_{n} has degree k. Then the limit

$$
p_{k}:=\lim _{n \rightarrow \infty} p_{n, k}
$$

exists. The probability generating function

$$
p(w)=\sum_{k \geq 1} p_{k} w^{k}
$$

can be explicitly computed; $p_{k} \sim c k^{-\frac{1}{2}} q^{k}$ for some $c>0$ and $0<q<1$.

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}
0.0367284	0.1625794	0.2354360	0.1867737	0.1295023	0.0861805

Random Planar Graphs

Classes of planar graphs

- Outerplanar graph: no K_{4} and no $K_{2,3}$ as a minor.
- Series-parallel graph: no K_{4} as a minor.
- Planar graph: no K_{5} and no $K_{3,3}$ as a minor.

Remark.
outerplanar \subseteq series-parallel \subseteq planar

Random Planar Graphs

Outerplanar Graphs

All vertices are on the infinite face.

Random Planar Graphs

Outerplanar Graphs

$b_{n} \ldots$ number of 2-connected labelled outer-planar graphs with n vertices
c_{n}... number of connected labelled outer-planar graphs with n vertices
$g_{n} \ldots$ number of labelled outer-planar graphs with n vertices

$$
B(x)=\sum_{n \geq 0} b_{n} \frac{x^{n}}{n!}, \quad C(x)=\sum_{n \geq 0} c_{n} \frac{x^{n}}{n!}, \quad G(x)=\sum_{n \geq 0} g_{n} \frac{x^{n}}{n!}
$$

Random Planar Graphs

Outerplanar Graphs

$$
\begin{aligned}
G(x) & =e^{C(x)} \\
C^{\prime}(x) & =e^{B^{\prime}\left(x C^{\prime}(x)\right)} \\
B^{\prime}(x) & =x+\frac{1}{2} x A(x) \\
A(x) & =x(1+A(x))^{2}+x(1+A(x)) A(x) \\
& =\frac{1-3 x-\sqrt{1-6 x+x^{2}}}{4 x} .
\end{aligned}
$$

Random Planar Graphs

Outerplanar Graphs

$$
\begin{aligned}
& b_{n}=b \cdot(3+2 \sqrt{2})^{n} n^{-\frac{5}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right) \\
& c_{n}=c \cdot \rho^{-n} n^{-\frac{5}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right) \\
& g_{n}=g \cdot \rho^{-n} n^{-\frac{5}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right), \\
\rho= & y_{0} e^{-B^{\prime}\left(y_{0}\right)}=0.1365937 \ldots, \\
y_{0}= & 0.1707649 \ldots \text { satisfies } 1=y_{0} B^{\prime \prime}\left(y_{0}\right), \\
b= & \frac{1}{8 \sqrt{\pi}} \sqrt{114243 \sqrt{2}-161564}=0.000175453 \ldots, \\
c= & 0.0069760 \ldots, \\
g= & 0.017657 \ldots
\end{aligned}
$$

Random Planar Graphs

Series-Parallel Graphs

Series-parallel extension of a tree

Series-extension:

Parallel-extension:

Random Planar Graphs

Series-Parallel Graphs

$b_{n, m} \ldots$ number of 2-connected labelled series-parallel graphs with n vertices and m edges, $b_{n}=\sum_{m} b_{n, m}$
$c_{n, m} \ldots$ number of connected labelled series-parallel graphs with n vertices and m edges, $c_{n}=\sum_{m} c_{n, m}$
$g_{n, m} \ldots$ number of labelled series-parallel graphs with n vertices and m edges, $g_{n}=\sum_{m} g_{n, m}$

$$
B(x, y)=\sum_{n, m} b_{n, m} \frac{x^{n}}{n!} y^{m}, \quad C(x, y)=\sum_{n, m} c_{n, m} \frac{x^{n}}{n!} y^{m}, \quad G(x, y)=\sum_{n, m} g_{n, m} \frac{x^{n}}{n!} y^{m}
$$

Random Planar Graphs

Series-Parallel Graphs

$$
\begin{aligned}
G(x, y) & =e^{C(x, y)} \\
\frac{\partial C(x, y)}{\partial x} & =\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
D(x, y) & =(1+y) e^{S(x, y)}-1 \\
S(x, y) & =(D(x, y)-S(x, y)) x D(x, y)
\end{aligned}
$$

Random Planar Graphs

Series-Parallel Graphs

$$
\begin{aligned}
& b_{n}=b \cdot \rho_{1}^{-n} n^{-\frac{5}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right) \\
& c_{n}=c \cdot \rho_{2}^{-n} n^{-\frac{5}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right) \\
& g_{n}=g \cdot \rho_{2}^{-n} n^{-\frac{5}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
\rho_{1} & =0.1280038 \ldots \\
\rho_{2} & =0.11021 \ldots \\
b & =0.0010131 \ldots \\
c & =0.0067912 \ldots \\
g & =0.0076388 \ldots
\end{aligned}
$$

Random Planar Graphs

Planar Graphs

$b_{n, m} \ldots$ number of 2-connected labelled planar graphs with n vertices and m edges, $b_{n}=\sum_{m} b_{n, m}$
$c_{n, m} \ldots$ number of connected labelled planar graphs with n vertices and m edges, $c_{n}=\sum_{m} c_{n, m}$
$g_{n, m} \ldots$ number of labelled planar graphs with n vertices and m edges, $g_{n}=\sum_{m} g_{n, m}$
$B(x, y)=\sum_{n, m} b_{n, m} \frac{x^{n}}{n!} y^{m}, C(x, y)=\sum_{n, m} c_{n, m} \frac{x^{n}}{n!} y^{m}, G(x, y)=\sum_{n, m} g_{n, m} \frac{x^{n}}{n!} y^{m}$

Random Planar Graphs

Planar Graphs

$$
\begin{aligned}
G(x, y) & =\exp (C(x, y)) \\
\frac{\partial C(x, y)}{\partial x} & =\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
\frac{M(x, D)}{2 x^{2} D} & =\log \left(\frac{1+D}{1+y}\right)-\frac{x D^{2}}{1+x D} \\
M(x, y) & =x^{2} y^{2}\left(\frac{1}{1+x y}+\frac{1}{1+y}-1-\frac{(1+U)^{2}(1+V)^{2}}{(1+U+V)^{3}}\right) \\
U & =x y(1+V)^{2} \\
V & =y(1+U)^{2}
\end{aligned}
$$

Random Planar Graphs

Planar Graphs

$$
\begin{aligned}
& b_{n}=b \cdot \rho_{1}^{-n} n^{-\frac{7}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right) \\
& c_{n}=c \cdot \rho_{2}^{-n} n^{-\frac{7}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right) \\
& g_{n}=g \cdot \rho_{2}^{-n} n^{-\frac{7}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\rho_{1} & =0.03819 \ldots \\
\rho_{2} & =0.03672841 \ldots \\
b & =0.3704247487 \ldots \cdot 10^{-5} \\
c & =0.4104361100 \ldots \cdot 10^{-5} \\
g & =0.4260938569 \ldots \cdot 10^{-5}
\end{aligned}
$$

Outerplanar Graphs

Generating functions

$$
\begin{aligned}
G(x) & =e^{C(x)} \\
C^{\prime}(x) & =e^{B^{\prime}\left(x C^{\prime}(x)\right)} \\
B^{\prime}(x) & =x+\frac{1}{2} x A(x) \\
A(x) & =x(1+A(x))^{2}+x(1+A(x)) A(x) \\
& =\frac{1-3 x-\sqrt{1-6 x+x^{2}}}{4 x}
\end{aligned}
$$

Outerplanar Graphs

Dissections

\mathcal{A}... set of dissections
(unlabelled planar graphs, where all nodes are on the outer face, one edge is marked, and there are at least 3 edges)

Outerplanar Graphs

Dissections

$a_{n} \ldots$ number of dissections with $n+2$ nodes, $n \geq 1$, (the nodes of the marked edge are not counted)
$A(x)=\sum_{n \geq 1} a_{n} x^{n} \ldots$ generating function of dissections

$$
A(x)=x(1+A(x))^{2}+x(1+A(x)) A(x)
$$

Outerplanar Graphs

Dissections

Quadratic equation:

$$
A^{2}+\frac{3 x-1}{2 x} A+\frac{1}{2}=0
$$

Solution:

$$
A(x)=\frac{1-3 x-\sqrt{1-6 x+x^{2}}}{4 x}
$$

Radius of convergence: $\rho_{1}=3-2 \sqrt{2}$.

Lagrange inversion formula:

$$
a_{n}=\frac{1}{n} \sum_{\ell=0}^{n-1}\binom{n}{\ell}\binom{n}{\ell+1} 2^{\ell}
$$

Outerplanar Graphs

Trees and outerplanar graphs

Outerplanar Graphs

2-Connected outerplanar graphs

$b_{n} \ldots$ number of 2-connected vertex labelled outer planar graphs

Outerplanar Graphs

2-Connected outerplanar graphs

$B(x)=\sum_{n \geq 1} b_{n} \frac{x^{n}}{n!} \ldots$ exponential generating function of 2-connected labelled outer planar graphs:

$$
B^{\prime}(x)=x+\frac{1}{2} x A(x)
$$

The derivative $B^{\prime}(x)$ can be also interpreted as the exponential generating function $B^{\bullet}(x)$ of 2-connected labelled outer planar graphs, where one node is marked (and is not counted).

Outerplanar Graphs

2-Connected outerplanar graphs. $b_{n}=\frac{1}{2} a_{n-2} \cdot(n-1)!\quad(n \geq 3)$

Outerplanar Graphs

2-Connected outerplanar graphs. $b_{n}=\frac{1}{2} a_{n-2} \cdot(n-1)!\quad(n \geq 3)$

Outerplanar Graphs

2-Connected outerplanar graphs. $\quad b_{n}=\frac{1}{2} a_{n-2} \cdot(n-1)!\quad(n \geq 3)$

Outerplanar Graphs

2-Connected outerplanar graphs. $\quad b_{n}=\frac{1}{2} a_{n-2} \cdot(n-1)!\quad(n \geq 3)$

Outerplanar Graphs

Connected outerplanar graphs. $C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)}$

Outerplanar Graphs

All outerplanar graphs. $G(x)=\exp (C(x))$

Outerplanar Graphs

Asymptotics

$$
\begin{aligned}
A(x) & =\frac{1-3 x-\sqrt{1-6 x+x^{2}}}{4 x} \\
B^{\prime}(x) & =x+\frac{1}{2} x A(x)=\frac{1+5 x-\sqrt{1-6 x+x^{2}}}{8} \\
& \Longrightarrow \quad b_{n} \sim b \cdot(3+2 \sqrt{2})^{n} n^{-\frac{3}{2}} n!
\end{aligned}
$$

Outerplanar Graphs

Asymptotics

$$
\begin{aligned}
C^{\prime}(x)=e^{B^{\prime}\left(x C^{\prime}(x)\right)}, & v(x)=x C^{\prime}(x), \Phi(x, v)=x e^{B^{\prime} v} \\
& \Longrightarrow v(x)=\Phi(x, v(x)) \\
& \Longrightarrow v(x)=x C^{\prime}(x)=g(x)-h(x) \sqrt{1-\frac{x}{\rho}}
\end{aligned}
$$

with $\rho=0.1365937 \ldots$ (Note that $\left.v(\rho)=\rho C^{\prime}(\rho)<3-2 \sqrt{2}!!!\right)$

$$
\Longrightarrow \quad C(x)=g_{2}(x)+h_{2}(x)\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}
$$

$$
\Longrightarrow \quad c_{n} \sim c \rho^{-n} n^{-\frac{5}{2}} n!
$$

Outerplanar Graphs

Asymptotics

$$
\begin{aligned}
C(x) & =g_{2}(x)+h_{2}(x)\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}} \\
\Longrightarrow G(x) & =e^{C(x)}=g_{3}(x)+h_{3}(x)\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}} \\
& \Longrightarrow g_{n} \sim g \cdot \rho^{-n} n^{-\frac{5}{2}} n!
\end{aligned}
$$

Outerplanar Graphs

The number of edges $G(x, y)=\sum_{m, n} g_{n, m} \frac{x^{n}}{n!} y^{m}$ etc.

$$
\begin{aligned}
G(x, y) & =e^{C(x, y)} \\
\frac{\partial C(x, y)}{\partial x} & =\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
\frac{\partial B(x, y)}{\partial x} & =x y+\frac{1}{2} x y A(x, y) \\
A(x, y) & =x y^{2}(1+A(x, y))^{2}+x y(1+A(x, y)) A(x, y) \\
& =\frac{1-x y 2 x y^{2}-\sqrt{1-2 x y-4 x y^{2}+x^{2} y^{2}}}{2 x y(1+y)}
\end{aligned}
$$

Outerplanar Graphs

The number of edges

$$
G(x, y)=g_{2}(x, y)+h_{2}(x, y)\left(1-\frac{x}{\rho(y)}\right)^{\frac{3}{2}}
$$

Theorem

The number of edges X_{n} in an outerplanar graph of size n satisfies a central limit theorem with

$$
\mathbb{E} X_{n}=\mu n+O(1) \quad \text { and } \quad \mathbb{V} X_{n}=\sigma^{2} n+O(1)
$$

where $\mu=1.56251 \ldots$ and $\sigma^{2}=0.22399 \ldots$

Series-Parallel Graphs

Generating functions

$$
\begin{aligned}
G(x, y) & =e^{C(x, y)} \\
\frac{\partial C(x, y)}{\partial x} & =\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
D(x, y) & =(1+y) e^{S(x, y)}-1 \\
S(x, y) & =(D(x, y)-S(x, y)) x D(x, y)
\end{aligned}
$$

Series-Parallel Graphs

Series-parallel networks: series-parallel extension of an edge Series-extension:

Parallel-extension:

There are always two poles $(0, \infty)$ coming from the original two vertices.

Series-Parallel Graphs

Series-parallel networks

Parallel decomposition of a Series-parallel network:

Series decomposition of a series-parallel network

Series-Parallel Graphs

Series-parallel networks

$d_{n, m} \ldots$ number of SP-networks with $n+2$ vertices and m edges
$s_{n, m} \ldots$ number of series SP-networks $n+2$ vertices and m edges

$$
D(x, y)=\sum_{n, m} d_{n, m} \frac{x^{n}}{n!} y^{m}, \quad S(x, y)=\sum_{n, m} s_{n, m} \frac{x^{n}}{n!} y^{m},
$$

$$
\begin{aligned}
D(x, y) & =e^{S(x, y)}-1+y e^{S(x, y)} \\
& =(1+y) e^{S(x, y)}-1 \\
S(x, y) & =(D(x, y)-S(x, y)) x D(x, y)
\end{aligned}
$$

Series-Parallel Graphs

2-connected SP-graphs

A SP-network network with non-adjacent poles (which is counted by $\left.e^{S(x, y)}\right)$ is obtained by distinguishing, orienting and then deleting any edge of an arbitrary 2 -connected series-parallel graph:

$$
\begin{aligned}
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} e^{S(x, y)} \\
& =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y}
\end{aligned}
$$

Series-Parallel Graphs

Connected SP-graphs

$$
\frac{\partial C(x, y)}{\partial x}=\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right)
$$

All SP-graphs

$$
G(x, y)=e^{C(x, y)}
$$

Series-Parallel Graphs

Asymptotics

$$
\begin{aligned}
& D(x, y)=(1+y) \exp \left(\frac{x D(x, y)^{2}}{1+x D(x, y)}\right)-1 \\
& \Longrightarrow \quad D(x, y)=g(x, y)-h(x, y) \sqrt{1-\frac{x}{\rho(y)}}
\end{aligned}
$$

with $\rho(1)=\rho_{1}=0.12800 \ldots$.

Series-Parallel Graphs

Asymptotics

$$
\begin{aligned}
& \Longrightarrow \quad \frac{\partial B(x, y)}{\partial y}=\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} D(x, y) \\
&=g_{2}(x, y)-h_{2}(x, y) \sqrt{1-\frac{x}{\rho(y)}} \\
&!!!!\Longrightarrow B(x, y)=g_{3}(x, y)+h_{3}(x, y)\left(1-\frac{x}{\rho(y)}\right)^{\frac{3}{2}} \\
& \Longrightarrow \quad b_{n} \sim b \cdot \rho(1)^{-n} n^{-\frac{5}{2}} n!
\end{aligned}
$$

Series-Parallel Graphs

Asymptotics $\left(C^{\prime}:=\frac{\partial}{\partial x} C\right)$

$$
\begin{aligned}
C^{\prime}(x, y) & =e^{B^{\prime}\left(x C^{\prime}(x, y), y\right)}, v(x, y)=x C^{\prime}(x, y), \Phi(x, y, v)=x e^{B^{\prime}(v, y)} \\
& \Longrightarrow v(x, y)=\Phi(x, y, v(x)) \\
& \Longrightarrow v(x, y)=x C^{\prime}(x, y)=g_{4}(x, y)-h_{4}(x, y) \sqrt{1-\frac{x}{\rho_{2}(y)}}
\end{aligned}
$$

with $\rho_{2}(1)=0.11021 \ldots$ (Note that $\left.v(\rho)=0.1279695 \ldots<\rho_{1}!!!\right)$

$$
\Longrightarrow \quad C(x, y)=g_{5}(x, y)+h_{5}(x, y)\left(1-\frac{x}{\rho_{2}(y)}\right)^{\frac{3}{2}}
$$

$$
\Longrightarrow \quad c_{n} \sim c \rho_{2}^{-n} n^{-\frac{5}{2}} n!
$$

Series-Parallel Graphs

Asymptotics

$$
\begin{gathered}
C(x, y)=g_{5}(x, y)+h_{5}(x, y)\left(1-\frac{x}{\rho(y)}\right)^{\frac{3}{2}} \\
\Longrightarrow \quad G(x, y)=e^{C(x, y)}=g_{6}(x, y)+h_{6}(x, y)\left(1-\frac{x}{\rho_{2}(y)}\right)^{\frac{3}{2}} \\
\Longrightarrow \quad g_{n} \sim g \cdot \rho_{2}^{-n} n^{-\frac{5}{2}} n!
\end{gathered}
$$

Series-Parallel Graphs

The number of edges

$$
G(x, y)=g_{6}(x, y)+h_{6}(x, y)\left(1-\frac{x}{\rho(y)}\right)^{\frac{3}{2}}
$$

Theorem

The number of edges X_{n} in an series-parallel graph of size n satisfies a central limit theorem with

$$
\mathbb{E} X_{n}=\mu n+O(1) \quad \text { and } \quad \mathbb{V} X_{n}=\sigma^{2} n+O(1)
$$

where $\mu=1.61673 \ldots$ and $\sigma^{2}=0.55347 \ldots$

Planar Graphs

Generating functions

$$
\begin{aligned}
G(x, y) & =\exp (C(x, y)) \\
\frac{\partial C(x, y)}{\partial x} & =\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
\frac{M(x, D)}{2 x^{2} D} & =\log \left(\frac{1+D}{1+y}\right)-\frac{x D^{2}}{1+x D} \\
M(x, y) & =x^{2} y^{2}\left(\frac{1}{1+x y}+\frac{1}{1+y}-1-\frac{(1+U)^{2}(1+V)^{2}}{(1+U+V)^{3}}\right) \\
U & =x y(1+V)^{2} \\
V & =y(1+U)^{2}
\end{aligned}
$$

Planar Graphs

3-connected planar graphs

$M(x, y) \ldots$ generating function for the number of 3-connected edgerooted planar maps according to the number of vertices and edges

Whitney's theorem: every 3-connected planar graph has a unique embedding into the plane.
$\Longrightarrow \quad T^{\bullet}(x, y)=\frac{1}{2} M(x, y): \ldots$ generating function for the number of 3-connected labelled edge-rooted planar graphs

Planar Graphs

Planar networks

A network N is a (multi-)graph with two distinguished vertices, called its poles (usually labelled 0 and ∞) such that the (multi-)graph \hat{N} obtained from N by adding an edge between the poles of N is 2connected.

Let M be a network and $X=\left(N_{e}, e \in E(M)\right)$ a system of networks indexed by the edge-set $E(M)$ of M. Then $N=M(X)$ is called the superposition with core M and components N_{e} and is obtained by replacing all edges $e \in E(M)$ by the corresponding network N_{e} (and, of course, by identifying the poles of N_{e} with the end vertices of e accordingly).

A network N is called an h-network if it can be represented by $N=$ $M(X)$, where the core M has the property that the graph \hat{M} obtained by adding an edge joining the poles is 3 -connected and has at least 4 vertices. Similarly $N=M(X)$ is called a p-network if M consists of 2 or more edges that connect the poles, and it is called an s-network if M consists of 2 or more edges that connect the poles in series.

Planar Graphs

Planar networks

Trakhtenbrot's canonical network decomposition theorem: any network with at least 2 edges belongs to exactly one of the 3 classes of h-, p - or s-networks. Furthermore, any h-network has a unique decomposition of the form $N=M(X)$, and a p-network (or any s network) can be uniquely decomposed into components which are not themselves p-networks (or s-networks).

Planar Graphs

Planar networks

$K(x, y) \ldots$ generating function corresponding to all planar networks where the two poles are not connected by an edge.
$D(x, y) \ldots$ generating function corresponding to all planar networks with at least one edge
$S(x, y) \ldots$ generating function corresponding to all s-networks
$F(x, y)=D(x, y)-S(x, y) \ldots$ the generating function corresponding to all non-s-networks (with at least one edge)
$N(x, y) \ldots$ generating function corresponding to all non-p-networks.

Planar Graphs

Planar networks

$$
\begin{aligned}
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} K(x, y) \\
D(x, y) & =(1+y) K(x, y)-1 \\
K(x, y) & =e^{N(x, y)}, \\
S(x, y) & =x D(x, y)(D(x, y)-S(x, y)) \\
\frac{T^{\bullet}(x, D(x, y))}{\left.x^{2} D(x, y)\right)} & =N(x, y)-S(x, y) \\
\Longrightarrow \quad \frac{M(x, D)}{2 x^{2} D} & =\log \left(\frac{1+D}{1+y}\right)-\frac{x D^{2}}{1+x D} \\
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y}
\end{aligned}
$$

Planar Graphs

Asymptotics

$$
\begin{aligned}
U(x, y) & =x y(1+V(x, y))^{2} \\
V(x, y) & =y(1+U(x, y))^{2} \\
\Longrightarrow \quad U(x, y) & =x y\left(1+y(1+U(x, y))^{2}\right)^{2} \\
\Longrightarrow \quad U(x, y) & =g(x, y)-h(x, y) \sqrt{1-\frac{y}{\tau(x)}} \\
\Longrightarrow \quad V(x, y) & =g_{2}(x, y)-h_{2}(x, y) \sqrt{1-\frac{y}{\tau(x)}} \\
\Longrightarrow \quad M(x, y) & =x^{2} y^{2}\left(\frac{1}{1+x y}+\frac{1}{1+y}-1-\frac{(1+U)^{2}(1+V)^{2}}{(1+U+V)^{3}}\right) \\
!!!\quad \Longrightarrow \quad M(x, y) & =g_{3}(x, y)+h_{3}(x, y)\left(1-\frac{y}{\tau(x)}\right)^{\frac{3}{2}}
\end{aligned}
$$

due to cancellation of the $\sqrt{1-y / \tau(x)}$-term

Planar Graphs

Asymptotics

$$
\begin{aligned}
\frac{M(x, D)}{2 x^{2} D} & =\log \left(\frac{1+D}{1+y}\right)-\frac{x D^{2}}{1+x D} \\
!!!\quad D(x, y) & =g_{4}(x, y)+h_{4}(x, y)\left(1-\frac{x}{R(y)}\right)^{\frac{3}{2}}
\end{aligned}
$$

due to interaction of the singularities!!!

$$
\begin{gathered}
\frac{\partial B(x, y)}{\partial y}=\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
!!!\Longrightarrow B(x, y)=g_{5}(x, y)+h_{5}(x, y)\left(1-\frac{x}{R(y)}\right)^{\frac{5}{2}} \\
\Longrightarrow b_{n} \sim b \cdot R(1)^{-n} n^{-\frac{7}{2}} n!
\end{gathered}
$$

Planar Graphs

Asymptotics

$$
\begin{aligned}
B^{\prime}(x, y) & =g_{6}(x, y)+h_{6}(x, y)\left(1-\frac{x}{R(y)}\right)^{\frac{3}{2}}, \\
C^{\prime}(x, y) & =e^{B^{\prime}\left(x C^{\prime}(x, y), y\right)}, \\
!!!\quad \Longrightarrow \quad C^{\prime}(x, y) & =g_{7}(x, y)+h_{7}(x, y)\left(1-\frac{x}{r(y)}\right)^{\frac{3}{2}}
\end{aligned}
$$

due to interaction of the singularities!!!

$$
\begin{gathered}
\Longrightarrow C(x, y)=g_{8}(x, y)+h_{8}(x, y)\left(1-\frac{x}{r(y)}\right)^{\frac{5}{2}} . \\
\Longrightarrow c_{n} \sim c r(1)^{-n} n^{-\frac{7}{2}} n!
\end{gathered}
$$

Planar Graphs

Asymptotics

$$
\begin{aligned}
C(x, y) & =g_{8}(x, y)+h_{8}(x, y)\left(1-\frac{x}{r(y)}\right)^{\frac{5}{2}} \\
\Longrightarrow \quad G(x, y) & =e^{C(x, y)}=g_{9}(x, y)+h_{9}(x, y)\left(1-\frac{x}{r(y)}\right)^{\frac{5}{2}} \\
& \Longrightarrow g_{n} \sim g \cdot r(1)^{-n} n^{-\frac{7}{2}} n!
\end{aligned}
$$

Planar Graphs

The number of edges

$$
G(x, y)=e^{C(x, y)}=g_{9}(x, y)+h_{9}(x, y)\left(1-\frac{x}{r(y)}\right)^{\frac{5}{2}}
$$

Theorem

The number of edges X_{n} in a planar graph of size n satisfies a central limit theorem with

$$
\mathbb{E} X_{n}=\mu n+O(1) \quad \text { and } \quad \mathbb{V} X_{n}=\sigma^{2} n+O(1)
$$

where $\mu=2.2132652 \ldots$ and $\sigma^{2}=0.4303471 \ldots$

Degree Distribution

Outerplanar graphs

Theorem
$X_{n}^{(k)} \ldots$ number of vertices of degree k in random 2-connected, connected or unrestricted labelled outerplanar graphs with n vertices.
$\Longrightarrow X_{n}^{(k)}$ satisfies a central limit theorem with

$$
\mathbb{E} X_{n}^{(k)} \sim \mu_{k} n \quad \text { and } \quad \mathbb{V} X_{n}^{(k)} \sim \sigma_{k}^{2} n
$$

Degree Distribution

Outerplanar graphs $p(w)=\sum_{k \geq 1} \mu_{k} w^{k}$

- 2-connected

$$
p(w)=\frac{2(3-2 \sqrt{2}) w^{2}}{(1-(\sqrt{2}-1) w)^{2}}
$$

- connected or unrestricted:

$$
p(w)=\frac{c_{1} w^{2}}{\left(1-c_{2} w\right)^{2}} \exp \left(c_{3} w+\frac{c_{4} w^{2}}{\left(1-c_{2} w\right)}\right)
$$

(with certain constants $c_{1}, c_{2}, c_{3}, c_{4}>0$).

Degree Distribution

Outerplanar graphs

Theorem
$\Delta_{n} \ldots$ maximum degree of outerplanar graphs of size n

$$
\begin{gathered}
\Longrightarrow \quad \frac{\Delta_{n}}{\log n} \rightarrow c \quad \text { in probability } \\
\mathbb{E} \Delta_{n} \sim c \log n .
\end{gathered}
$$

(Application of first and second moment method.)

Degree Distribution

Series-parallel graphs

Theorem
$X_{n}^{(k)} \ldots$ number of vertices of degree k in random 2-connected, connected or unrestricted labelled series-parallel graphs with n vertices.
$\Longrightarrow X_{n}^{(k)}$ satisfies a central limit theorem with

$$
\mathbb{E} X_{n}^{(k)} \sim \mu_{k} n \quad \text { and } \quad \mathbb{V} X_{n}^{(k)} \sim \sigma_{k}^{2} n
$$

Degree Distribution

2-connected series-parallel graphs $p(w)=\sum_{k \geq 1} \mu_{k} w^{k}$.

$$
p(w)=\frac{B_{1}(1, w)}{B_{1}(1,1)}
$$

where $B_{1}(y, w)$ is given by the following procedure ...

Degree Distribution

$$
\begin{aligned}
\frac{E_{0}(y)^{3}}{E_{0}(y)-1} & =\left(\log \frac{1+E_{0}(y)}{1+R(y)}-E_{0}(y)\right)^{2}, \\
R(y) & =\frac{\sqrt{1-1 / E_{0}(y)}-1}{E_{0}(y)}, \\
E_{1}(y) & =-\left(\frac{2 R(y) E_{0}(y)^{2}\left(1+R(y) E_{0}(y)\right)^{2}}{\left(2 R(y) E_{0}(y)+R(y)^{2} E_{0}(y)^{2}\right)^{2}+2 R(y)\left(1+R(y) E_{0}(y)\right)}\right)^{\frac{1}{2}}, \\
D_{0}(y, w) & =(1+y w), \frac{R(t) E_{0}(w)}{1+R(t) e_{0}(w)} D_{0}(y, w)-1, \\
D_{1}(y, w) & =\frac{\left(1+D_{0}(y, w)\right) \frac{\left.R(y) E_{1}(y)\right)(y, w)}{1+R(y) E_{0}(y)}}{1-\left(1+D_{0}(y, w)\right) \frac{R(y) E_{0}(y) D_{0}(y, w)}{1+R(y) E_{0}(y)}}, \\
B_{0}(y, w) & =\frac{R(y) D_{0}(y, w)}{1+R(y) E_{0}(y)}-\frac{R(y)^{2} E_{0}(y) D_{0}(y, w)^{2}}{2\left(1+R(y) E_{0}(y)\right)}, \\
B_{1}(y, w) & =\frac{R(y) D_{1}(y, w)}{1+R(y) E_{0}(y)}-\frac{R(y)^{2} E_{0}(y) D_{0}(y, w) D_{1}(y, w)}{1+R(y) E_{0}(y)} \\
& -\frac{R(y)^{2} E_{1}(y) D_{0}(y, w)\left(1+D_{0}(y, w) / 2\right)}{\left(1+R(y) E_{0}(y)\right)^{2}} .
\end{aligned}
$$

Degree Distribution

Series-parallel graphs

Theorem
$\Delta_{n} \ldots$ maximum degree of series-parallel graphs of size n

$$
\begin{gathered}
\Longrightarrow \quad \frac{\Delta_{n}}{\log n} \rightarrow c \quad \text { in probability } \\
\mathbb{E} \Delta_{n} \sim c \log n .
\end{gathered}
$$

Degree Distribution

Planar graphs

Theorem
$X_{n}^{(k)} \ldots$ number of vertices of degree k in random 3-connected, 2connected, connected or unrestricted labelled planar graphs with n vertices.
$\Longrightarrow \mathbb{E} X_{n}^{(k)} \sim p_{k} n$
For $k \leq 2, X_{n}^{(k)}$ satisfies also a central limit theorem.

Degree Distribution

unrestricted planar graphs $p(w)=\sum_{k \geq 1} p_{k} w^{k}$.

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}
0.0367284	0.1625794	0.2354360	0.1867737	0.1295023	0.0861805

$$
p(w)=-e^{B_{0}(1, w)-B_{0}(1,1)} B_{2}(1, w)+e^{B_{0}(1, w)-B_{0}(1,1)} \frac{1+B_{2}(1,1)}{B_{3}(1,1)} B_{3}(1, w)
$$

where $B_{j}(y, w)$ are given by the following procedure \ldots

Degree Distribution

- Implicit equation for $D_{0}(y, w)$:

$$
\begin{aligned}
& 1+D_{0}=(1+y \sqrt{w}) \exp \left(\frac{\sqrt{S}\left(D_{0}(t-1)+t\right)}{4(3 t+1)\left(D_{0}+1\right)}-\right. \\
& \left.\quad-\frac{D_{0}^{2}\left(t^{4}-12 t^{2}+20 t-9\right)+D_{0}\left(2 t^{4}+6 t^{3}-6 t^{2}+10 t-12\right)+t^{4}+6 t^{3}+9 t^{2}}{4(t+3)\left(D_{0}+1\right)(3 t+1)}\right)
\end{aligned}
$$

where $t=t(y)$ satisfies $y+1=\frac{1+2 t}{(1+3 t)(1-t)} \exp \left(-\frac{1}{2} \frac{t^{2}(1-t)\left(18+36 t+5 t^{2}\right)}{(3+t)(1+2 t)(1+3 t)^{2}}\right)$.
and $S=\left(D_{0}(t-1)+t\right)\left(D_{0}(t-1)^{3}+t(t+3)^{2}\right)$.

- Explicit expressions in terms of $D_{0}(y, w)$ (SEVERAL PAGES !!!!):

$$
D_{2}(y, w), D_{3}(y, w), B_{0}(y, w), B_{2}(y, w), B_{3}(y, w)
$$

- Explict expression for $p(w)$:

$$
p(w)=-e^{B_{0}(1, w)-B_{0}(1,1)} B_{2}(1, w)+e^{B_{0}(1, w)-B_{0}(1,1)} \frac{1+B_{2}(1,1)}{B_{3}(1,1)} B_{3}(1, w)
$$

Nodes of Given Degree

Dissections:

Nodes of Given Degree

- v_{2} counts the number of nodes with degree 2,
- v_{3} counts the number of nodes with degree 3,
- v counts the number of nodes with degree >3, and
- in all cases the two nodes of the rooted edge are are not taken into account.

Nodes of Given Degree

- $A_{i j}\left(v_{2}, v_{3}, v\right) \ldots$ generating function of dissections with the properties that the left node of the rooted edge has degree i and right one has degree $i, 2 \leq i, j \leq 3$
- $A_{i \infty}\left(v_{2}, v_{3}, v\right) \ldots$ generating function of dissections with the properties that the left node of the rooted edge has degree i and the right has degree >3,
- $A_{\infty \infty}\left(v_{2}, v_{3}, v\right) \ldots$ generating function of dissections with the properties that both nodes of the rooted edge have degree >3.

Nodes of Given Degree

The sum

$$
A\left(v_{2}, v_{3}, v\right)=A_{22}+2 A_{23}+A_{33}+2 A_{2 \infty}+2 A_{3 \infty}+A_{\infty \infty}
$$

is the generating function of all dissections (with the corresponding counting in $\left.v_{2}, v_{3}, v\right)$.

In particular,

$$
A(x)=A(x, x, x)=\frac{1-3 x-\sqrt{1-6 x+x^{2}}}{4 x}
$$

Nodes of Given Degree

Lemma 3

$$
\begin{aligned}
A_{22} & =v_{2} \\
& +v_{2} A_{22}+v_{3} A_{23}+v A_{2 \infty}, \\
A_{23} & =v_{3} A_{22}+v\left(A_{23}+A_{2 \infty}\right) \\
& =v_{2} A_{23}+v_{3} A_{33}+v A_{3 \infty} \\
A_{33} & =v\left(A_{22}+A_{23}+A_{2 \infty}\right)^{2} \\
& +v\left(A_{22}+A_{23}+A_{2 \infty}\right)\left(A_{23}+A_{33}+A_{3 \infty}\right) \\
A_{2 \infty} & =v_{3} A_{23}+v\left(A_{33}+A_{3 \infty}\right)+v\left(A_{2 \infty}+A_{3 \infty}+A_{\infty \infty}\right) \\
& +v_{2} A_{2 \infty}+v_{3} A_{3 \infty}+v A_{\infty \infty} \\
A_{3 \infty} & =v\left(A_{23}+A_{33}+A_{3 \infty}\right)\left(A_{2 \infty}+A_{3 \infty}+A_{\infty \infty}\right) \\
& +v\left(A_{22}+A_{23}+A_{2 \infty}\right)\left(A_{2 \infty}+A_{3 \infty}+A_{\infty \infty}\right) \\
A_{\infty \infty} & =v\left(A_{23}+A_{33}+A_{3 \infty}+A_{2 \infty}+A_{3 \infty}+A_{\infty \infty}\right)^{2} \\
& +v\left(A_{23}+A_{33}+A_{3 \infty}+A_{2 \infty}+A_{3 \infty}+A_{\infty \infty}\right)\left(A_{2 \infty}+A_{3 \infty}+A_{\infty \infty}\right)
\end{aligned}
$$

Nodes of Given Degree

Remark

All functions $A_{i j}\left(v_{2}, v_{3}, v\right)$ have a squareroot singularity due to the COMBINATORIAL CENTRAL LIMIT THEOREM II!!!

Nodes of Given Degree

- $B_{i}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) \ldots$ exponential genenerating functions of 2-connected labelled and marked outer planar graphs, where the root node (that is not counted) has degree $i, 1 \leq i \leq 3$.
- $B_{\infty}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) \ldots$ exponential genenerating functions of 2-connected labelled and marked outer planar graphs, where the root node (that is not counted) has degree >3.

Nodes of Given Degree

Lemma 4

$$
\begin{aligned}
B_{1}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) & =v_{1} \\
B_{2}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) & =\frac{1}{2}\left(v_{2} A_{22}+v_{3} A_{23}+v A_{2 \infty}\right), \\
B_{3}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) & =\frac{1}{2}\left(v_{2} A_{23}+v_{3} A_{33}+v A_{3 \infty}\right), \\
B_{\infty}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) & =\frac{1}{2}\left(v_{2} A_{2 \infty}+v_{3} A_{3 \infty}+v A_{\infty \infty}\right)
\end{aligned}
$$

Nodes of Given Degree

Remark

All functions $B_{i}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right)$ have a squareroot singularity since all functions $A_{i j}\left(v_{2}, v_{3}, v\right)$ have squareroot singularities!!!

Nodes of Given Degree

- $C_{i}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) \ldots$ exponential generating functions of connected labelled and marked outer planar graphs, where the root node (that is not counted) has degree $i, 0 \leq i \leq 3$.
- $C_{\infty}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) \ldots$ exponential generating functions of connected labelled and marked outer planar graphs, where the root node (that is not counted) has degree >3.

Nodes of Given Degree

Lemma 5

$$
\begin{aligned}
C_{0}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) & =1 \\
C_{1}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) & =B_{1}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right) \\
C_{2}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) & =\frac{1}{2!}\left(B_{1}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right)\right)^{2}+B_{2}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right) \\
C_{3}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) & =\frac{1}{3!}\left(B_{1}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right)\right)^{3} \\
& +\frac{1}{1!1!} B_{1}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right) B_{2}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right) \\
& +B_{3}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right) \\
C_{\infty}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right) & =e^{B_{1}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right)+B_{2}^{\bullet}(\ldots)+B_{3}^{\bullet}(\ldots)+B_{\infty}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right)} \\
& -1-B_{1}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right)-B_{2}^{\bullet}(\ldots)-B_{3}^{\bullet}(\ldots) \\
& -\frac{1}{1!}\left(B_{1}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right)\right)^{2}-\frac{1}{3!}\left(B_{1}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right)\right)^{3} \\
& -\frac{1}{1!1!} B_{1}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right) B_{2}^{\bullet}\left(W_{1}, W_{2}, W_{3}, W\right),
\end{aligned}
$$

where on the right hand side

$$
\begin{aligned}
W_{1} & =v_{1} C_{0}^{\bullet}+v_{2} C_{1}^{\bullet}+v_{3} C_{2}^{\bullet}+v\left(C_{3}^{\bullet}+C_{\infty}^{\bullet}\right), \\
W_{2} & =v_{2} C_{0}^{\bullet}+v_{3} C_{1}^{\bullet}+v\left(C_{2}^{\bullet}+C_{3}^{\bullet}+C_{\infty}^{\bullet}\right), \\
W_{3} & =v_{3} C_{0}^{\bullet}+v\left(C_{1}^{\bullet}+C_{2}^{\bullet}+C_{3}^{\bullet}+C_{\infty}^{\bullet}\right), \\
W & =v\left(C_{0}^{\bullet}+C_{1}^{\bullet}+C_{2}^{\bullet}+C_{3}^{\bullet}+C_{\infty}^{\bullet}\right)
\end{aligned}
$$

Nodes of Given Degree

Remark

All functions $C_{i}^{\bullet}\left(v_{1}, v_{2}, v_{3}, v\right)$ have a squareroot singularity due to the COMBINATORIAL CENTRAL LIMIT THEOREM II!!!

Nodes of Given Degree

Counting nodes of degree 3 :
$C\left(v_{1}, v_{2}, v_{3}, v\right) \ldots$ exponential generating function of all connected labelled outer planar graphs
$C_{d=3}(x, u) \ldots$ exponential generating function that counts the number of nodes with x and the number of nodes of degree $d=3$ with u :

$$
C_{d=3}(x, u)=C(x, x, x u, x) .
$$

Also:

$$
\frac{\partial C_{d=3}(x, u)}{\partial x}=C_{1}^{\bullet}+C_{2}^{\bullet}+u C_{3}^{\bullet}+C_{\infty}^{\bullet} \quad \text { and } \quad \frac{\partial C_{d=3}(x, u)}{\partial u}=x C_{3}^{\bullet}
$$

Nodes of Given Degree

Central limit theorem

$$
\begin{aligned}
& \frac{\partial C_{d=3}(x, u)}{\partial x}=C_{1}^{\bullet}+C_{2}^{\bullet}+u C_{3}^{\bullet}+C_{\infty}^{\bullet} \\
\Longrightarrow & \frac{\partial C_{d=3}(x, u)}{\partial x} g(x, y)-h(x, y) \sqrt{1-\frac{x}{\rho(y)}} \\
\Longrightarrow & C_{d=3}(x, u)=g_{2}(x, y)+h_{2}(x, y)\left(1-\frac{x}{\rho(y)}\right)^{\frac{3}{2}}
\end{aligned}
$$

$\Longrightarrow \quad$ The number of nodes of degree 3 in outerplanar graphs satisfies a central limit theorem.

Degree Distribution of Planar Graphs

$C^{\bullet}=\frac{\partial C}{\partial x} \ldots$ GF, where one vertex is marked but not counted
$w \ldots$ additional variable that counts the degree of the marked vertex

Generating functions:

$$
\begin{array}{ll}
G^{\bullet}(x, y, w) & \text { all rooted planar graphs } \\
C^{\bullet}(x, y, w) & \text { connected rooted planar graphs } \\
B^{\bullet}(x, y, w) & \text { 2-connected rooted planar graphs } \\
T^{\bullet}(x, y, w) & \text { 3-connected rooted planar graphs }
\end{array}
$$

Note that $G^{\bullet}(x, y, 1)=\frac{\partial G}{\partial x}(x, y)$ etc.

Degree Distribution of Planar Graphs

$$
\left.\begin{array}{rl}
G^{\bullet}(x, y, w) & =\exp (C(x, y, 1)) C^{\bullet}(x, y, w) \\
C^{\bullet}(x, y, w) & =\exp \left(B^{\bullet}\left(x C^{\bullet}(x, y, 1), y, w\right)\right) \\
w \frac{\partial B^{\bullet}(x, y, w)}{\partial w} & =x y w \exp \left(S(x, y, w)+\frac{1}{x^{2} D(x, y, w)} T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right. \\
D(x, y, w) & =(1+y w) \exp \left(S(x, y, w)+\frac{1}{x^{2} D(x, y, w)} \times\right. \\
& \left.\times T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right)-1 \\
S(x, y, w) & =x D(x, y, 1)(D(x, y, w)-S(x, y, w)), \\
T^{\bullet}(x, y, w) & =\frac{x^{2} y^{2} w^{2}}{2}\left(\frac{1}{1+w y}+\frac{1}{1+x y}-1-\right. \\
\left.-\frac{(u+1)^{2}(-w 1}{2}(u, v, w)+(u-w+1) \sqrt{w_{2}(u, v, w)}\right)
\end{array}\right),
$$

Degree Distribution of Planar Graphs

3-connected planar graphs

$$
T^{\bullet}(x, y, w)=\tilde{T}_{0}(y, w)+\tilde{T}_{2}(y, w) \tilde{X}^{2}+\tilde{T}_{3}(y, w) \tilde{X}^{3}+O\left(\tilde{X}^{4}\right)
$$

with

$$
\tilde{X}=\sqrt{1-\frac{x}{r(y)}}
$$

Degree Distribution of Planar Graphs

2-connected planar graphs

$$
\begin{aligned}
& \Longrightarrow D(x, y, w)=D_{0}(y, w)+D_{2}(y, w) X^{2}+D_{3}(y, w) X^{3}+O\left(X^{4}\right), \\
& \Longrightarrow B^{\bullet}(x, y, w)=B_{0}(y, w)+B_{2}(y, w) X^{2}+B_{3}(y, w) X^{3}+O\left(X^{4}\right)
\end{aligned}
$$

with

$$
X=\sqrt{1-\frac{x}{R(y)}}
$$

Degree Distribution of Planar Graphs

Lemma

$$
\left.\begin{array}{c}
f(x)=\sum_{n \geq 0} \sqrt{a_{n}} \frac{x^{n}}{n!}=f_{0}+f_{2} X^{2}+f_{3} \sqrt{X^{3}}+\mathcal{O}\left(X^{4}\right), \quad X=\sqrt{1-\frac{x}{\rho}} \\
H(x, z, w)=h_{0}(x, w)+h_{2}(x, w) Z^{2}+h_{3}(x, w) \sqrt[Z^{3}]{ }, \mathcal{O}\left(Z^{4}\right) \\
Z=\sqrt{1-\frac{z}{\mid f(\rho)}}
\end{array}\right] \begin{aligned}
& f_{H}(x)=H(x, \sqrt[f(x)]{ }, w)=\sum_{n \geq 0} \sqrt{b_{n}(w)} \frac{x^{n}}{n!} \\
& \Longrightarrow \sqrt{\lim _{n \rightarrow \infty} \frac{b_{n}(w)}{a_{n}}=-\frac{h_{2}(\rho, w)}{f_{0}}+\frac{h_{3}(\rho, w)}{f_{3}}\left(-\frac{f_{2}}{f_{0}}\right)^{3 / 2}}
\end{aligned}
$$

Degree Distribution of Planar Graphs

Connected planar graphs

$$
C^{\bullet}(x, 1, w)=\exp \left(B^{\bullet}\left(x C^{\prime}(x), 1, w\right)\right)
$$

Application of the lemma with

$$
f(x)=x C^{\prime}(x)
$$

and

$$
H(x, z, w)=x e^{B^{\bullet}(z, 1, w)}
$$

Contents 3

III. CONTINUOUS LIMITING OBJECTS

- Weak Convergence
- The Depth-First-Search of Rooted Trees
- The Continuum Random Tree
- The Profile of Galton-Watson trees
- The Schaeffer Bijection
- The ISE (Integrated SuperBrownian Excursion)

Asymptotics on Random Discrete Objects

Levels of complexity:

1. Asymptotic enumeration
2. Distribution of (shape) parameters
3. Asymptotic shape ($=$ continuous limiting object)

Weak Convergence

$X_{n}, X \ldots$ (real) random variables:

$$
X_{n} \xrightarrow{\mathrm{~d}} X \quad: \Longleftrightarrow \lim _{n \rightarrow \infty} \mathbb{P}\left\{X_{n} \leq x\right\}=\mathbb{P}\{X \leq x\}
$$

for all points of continuity of $F_{X}(x)=\mathbb{P}\{X \leq x\}$

$$
\Longleftrightarrow \quad \lim _{n \rightarrow \infty} \mathbb{E} G\left(X_{n}\right)=\mathbb{E} G(X)
$$

for all bounded continuous functionals $G: \mathbb{R} \rightarrow \mathbb{R}$

$$
\Longleftrightarrow \quad \lim _{n \rightarrow \infty} \mathbb{E} e^{i t X_{n}}=\mathbb{E} e^{i t X}
$$

for all real t
(Levy's criterion)

Weak Convergence

Polish space: $(S, d) \ldots$ complete, separable, metric space

Examples: $\mathbb{R}, \mathbb{R}^{k}, C[0,1], \mathcal{M}_{0}(X)$ (probability measures on X)
S-valued random variable: $X: \Omega \rightarrow S \ldots$ measurable function
$S=\mathbb{R}$: random variable
$S=\mathbb{R}^{k}: k$-dimensional random vector
$S=C[0,1]:$ stochastic process $(X(t), 0 \leq t \leq 1)$
$S=\mathcal{M}_{0}(X)$: random measure

Weak Convergence

Definition

$X_{n}, X: \Omega \rightarrow S \ldots S$-valued random variables $((S, d) \ldots$ Polish space)

$$
X_{n} \xrightarrow{\mathrm{~d}} X \quad \Longleftrightarrow \lim _{n \rightarrow \infty} \mathbb{E} G\left(X_{n}\right)=\mathbb{E} G(X)
$$

for all bounded continuous functionals $G: S \rightarrow \mathbb{R}$

Weak Convergence

Stochastic process: random function

Weak Convergence

Stochastic process

$X_{n}: \Omega \rightarrow C[0,1]$ sequence of stochastic processes, $X: \Omega \rightarrow C[0,1]$

- $X_{n} \xrightarrow{\mathrm{~d}} X \Longrightarrow F\left(X_{n}\right) \xrightarrow{\mathrm{d}} F(X)$ for all continuous $F: S \rightarrow S^{\prime}$.
- $X_{n} \xrightarrow{\mathrm{~d}} X \quad X_{n}\left(t_{0}\right) \xrightarrow{\mathrm{d}} X\left(t_{0}\right)$ for all fixed $t_{0} \in[0,1]$.
- $X_{n} \xrightarrow{\mathrm{~d}} X \Longrightarrow\left(X_{n}\left(t_{1}\right), \ldots, X_{n}\left(t_{k}\right)\right) \xrightarrow{\mathrm{d}}\left(X\left(t_{1}\right), \ldots, X\left(t_{k}\right)\right)$ for all $k \geq 1$ and all fixed $t_{1}, \ldots, t_{k} \in[0,1]$.

The converse statement is not necessarily true, one needs tightness.

Weak Convergence

Stochastic process

$X_{n}: \Omega \rightarrow C[0,1]$ sequence of stochastic processes, $X: \Omega \rightarrow C[0,1]$

1. $\left(X_{n}\left(t_{1}\right), \ldots, X_{n}\left(t_{k}\right)\right) \xrightarrow{\mathrm{d}}\left(X\left(t_{1}\right), \ldots, X\left(t_{k}\right)\right.$ for all $k \geq 1$ and all fixed $t_{1}, \ldots, t_{k} \in[0,1]$
2. $\mathbb{E}\left(\left|X_{n}(0)\right|^{\beta}\right) \leq C$ for some constant $C>0$ and an exponent $\beta>0$
3. $\mathbb{E}\left(\left|X_{n}(t)-X_{n}(s)\right|^{\beta}\right) \leq C|t-s|^{\alpha}$ for all $s, t \in[0,1]$ for some constant $C>0$ and exponents $\alpha>1$ and $\beta>0$.

Then

$$
\left(X_{n}(t), 0 \leq t \leq 1\right) \xrightarrow{\mathrm{d}}(X(t), 0 \leq t \leq 1) .
$$

Depth-First-Search

Rooted trees and discrete excursions

Bijection between

$$
\text { Catalan trees } \longleftrightarrow \text { Dyck paths }
$$

random trees of size $n \quad \longleftrightarrow \quad$ random Dyck paths of length $2 n$

Depth-First-Search

Brownian excursion $(e(t), 0 \leq t \leq 1)$

Rescaled Brownian motion between 2 zeros.

Random function in $C[0,1]$.

Depth-First-Search

Kaigh's Theorem

($\left.X_{n}(t), 0 \leq t \leq 2 n\right) \ldots$ random Dyck path of length $2 n$.

$$
\Longrightarrow \quad\left(\frac{1}{\sqrt{2 n}} X_{n}(2 n t), 0 \leq t \leq 1\right) \xrightarrow{\mathrm{d}}(e(t), 0 \leq t \leq 1) .
$$

Remark. This theorem also holds for more general random walks with independent increments conditioned to be an excursion.

Real Trees

$T \ldots$ tree, $\mathcal{T} \ldots$ embedding of T into the plane \mathbb{R}^{2}
$\Longrightarrow \quad \mathcal{T}$ is a metric space (and a real tree in the following sense):

Definition

A metric space (\mathcal{T}, d) is a real tree if the following two properties hold for every $x, y \in \mathcal{T}$.

1. There is a unique isometric map $h_{x, y}:[0, d(x, y)] \rightarrow \mathcal{T}$ such that $h_{x, y}(0)=x$ and $h_{x, y}(d(x, y))=y$.
2. If q is a continuous injective map from $[0,1]$ into \mathcal{T} with $q(0)=x$ and $q(1)=y$ then

$$
q([0,1])=h_{x, y}([0, d(x, y)]) .
$$

A rooted real tree (\mathcal{T}, d) is a real tree with a distinguished vertex $r=r(\mathcal{T})$ called the root.

Real Trees

Two real trees $\left(\mathcal{T}_{1}, d_{1}\right),\left(\mathcal{I}_{2}, d_{2}\right)$ are equivalent if there is a rootpreserving isometry that maps \mathcal{T}_{1} onto \mathcal{T}_{2}.
$\mathbb{T} \ldots$ set of all equivalence classes of rooted compact real trees.

Gromov-Hausdorff Distance $d_{\mathrm{GH}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ of two real trees $\mathcal{T}_{1}, \mathcal{T}_{2}$ is the infimum of the Hausdorff distance of all isometric embeddings of $\mathcal{T}_{1}, \mathcal{T}_{2}$ into the same metric space.

Hausdorff distance: $\delta_{\text {Haus }}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}$
Theorem
The metric space $\left(\mathbb{T}, d_{\mathrm{GH}}\right)$ is a Polish space.

Real Trees

$g:[0,1] \rightarrow[0, \infty) \ldots$ continuous, $\geq 0, g(0)=g(1)=0$

$$
d_{g}(s, t)=g(s)+g(t)-2 \inf _{\min \{s, t\} \leq u \leq \max \{s, t\}} g(u)
$$

$$
s \sim t \quad \Longleftrightarrow \quad d_{g}(s, t)=0 \quad \mathcal{T}_{g}=[0,1] / \sim
$$

$\Longrightarrow \quad\left(\mathcal{T}_{g}, d_{g}\right) \quad$ is a compact real tree.

Real Trees

Construction of a real tree \mathcal{T}_{g}

γ

The mapping $C[0,1] \rightarrow \mathbb{T}, g \mapsto \mathcal{T}_{g}$ is continuous.

Real Trees

Catalan trees as real trees

T_{n}
$X_{n}=X_{T_{n}}$
$\mathcal{T}_{X_{n}}$

Real Trees

Continuum random tree $\mathcal{T}_{2 e}$ (with Brownian excursion $e(t)$)

Real Trees

Theorem

$\left(X_{n}(t), 0 \leq t \leq 2 n\right) \ldots$ random Dyck paths of length $2 n$ or the depth-first-search process of Catalan trees of size n.

$$
\Longrightarrow \quad \frac{1}{\sqrt{2 n}} \mathcal{T}_{X_{n}} \xrightarrow{\mathrm{~d}} \mathcal{T}_{2 e}
$$

In other words...

Scaled Catalan trees (interpreted as "real trees") converge weakly to the continuum random tree.

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process
$\xi \ldots$ offspring distribution, $\varphi_{k}=\mathbb{P}\{\xi=k\}, \varphi_{0}>0$

Galton-Watson Trees

Galton-Watson branching process. $\left(Z_{k}\right)_{k \geq 0}$
$Z_{0}=1$, and for $k \geq 1$

$$
Z_{k}=\sum_{j=1}^{Z_{k-1}} \xi_{j}^{(k)}
$$

where the $\left(\xi_{j}^{(k)}\right)_{k, j}$ are iid random variables distributed as ξ.
$Z_{k} \ldots$ number of nodes in k-th generation
$Z=Z_{0}+Z_{1}+Z_{2}+\cdots \ldots$ total progeny

Galton-Watson Trees

Generating functions

$$
\begin{gathered}
y_{n}=\mathbb{P}\{Z=n\}, \quad y(x)=\sum_{n \geq 1} y_{n} x^{n} \\
\Phi(w)=\mathbb{E} w^{\xi}=\sum_{k \geq 0} \varphi_{k} w^{k} \\
\Longrightarrow \quad y(x)=x \Phi(y(x))
\end{gathered}
$$

Conditioned Galton-Watson tree
GW-branching process conditioned on the total progeny $Z=n$.

Galton-Watson Trees

Example. $\mathbb{P}\{\xi=k\}=2^{-k-1}, \Phi(w)=1 /(2-w)$
$\Longrightarrow \quad$ all trees of size n have the same probability
$\Longrightarrow \quad$ conditioned GW-tree of size n is the same model as the Catalan tree model (with the uniform distribution on trees of size n)

Example. $\Phi(w)=\frac{1}{2}(1+w)^{2}$: binary trees with n internal nodes.
Example. $\Phi(w)=\frac{1}{3}\left(1+w+w^{2}\right)$: Motzkin trees

Example. $\Phi(w)=e^{w-1}$: Cayley trees

Galton-Watson Trees

General assumption: $\mathbb{E} \xi=1,0<\operatorname{Var} \xi=\sigma^{2}<\infty$
Theorem (Aldous)
$X_{n}(t) \ldots$ depth-first-search of conditioned GW-trees of size n

$$
\Longrightarrow \quad\left(\frac{\sigma}{2 \sqrt{n}} X_{n}(2 n t), 0 \leq t \leq 1\right) \xrightarrow{\mathrm{d}}(e(t), 0 \leq t \leq 1) .
$$

Corollary

$$
\frac{\sigma}{\sqrt{n}} \mathcal{T}_{X_{n}} \xrightarrow{\mathrm{~d}} \mathcal{T}_{2 e}
$$

Galton-Watson Trees

Corollary $H_{n} \ldots$ height of conditioned GW-trees of size n :

$$
\Longrightarrow \frac{1}{\sqrt{n}} H_{n} \xrightarrow{\mathrm{~d}} \frac{2}{\sigma} \max _{0 \leq t \leq 1} e(t)
$$

Remark. Distribution function of $\max _{0 \leq t \leq 1} e(t)$:

$$
\mathbb{P}\left\{\max _{0 \leq t \leq 1} e(t) \leq x\right\}=1-2 \sum_{k=1}^{\infty}\left(4 x^{2} k^{2}-1\right) e^{-2 x^{2} k^{2}}
$$

Galton-Watson Trees

Profile

$L_{T}(k) \ldots$ number of nodes at distance k from the root
$\left(L_{T}(k)\right)_{k \geq 0} \ldots$ profile of T
$\left(L_{T}(s), s \geq 0\right) \ldots$ linearly interpolated profile of T

Galton-Watson Trees

Value distribution

$$
\mu_{T}=\frac{1}{|T|} \sum_{k \geq 0} L_{T}(k) \delta_{k}
$$

$\delta_{x} \ldots \delta$-distribution concentrated at x

Galton-Watson Trees

Occupation measure: random measure on \mathbb{R}

$$
\mu(A)=\int_{0}^{1} \mathbf{1}_{A}(e(t) d t
$$

measure how long $e(t)$ stays in set A

Galton-Watson Trees

Theorem (Aldous)
($\left.L_{n}(k), k \geq 0\right) \ldots$ random profile of conditioned GW-trees of size n

$$
\Longrightarrow \quad \frac{1}{n} \sum_{k \geq 0} L_{n}(k) \delta_{(\sigma / 2) k / \sqrt{n}} \xrightarrow{\mathrm{~d}} \mu
$$

Galton-Watson Trees

Local time of the Brownian excursion: random density of μ

$$
l(s)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{1} 1_{[s, s+\varepsilon]}(e(t)) d t
$$

Theorem (D.+Gittenberger)
($\left.L_{n}(s), s \geq 0\right) \ldots$ random profile of conditioned GW-trees of size n

$$
\Longrightarrow\left(\frac{1}{\sqrt{n}} L_{n}(s \sqrt{n}), s \geq 0\right) \xrightarrow{\mathrm{d}}\left(\frac{\sigma}{2} l\left(\frac{\sigma}{2} s\right), s \geq 0\right)
$$

Proof with asymptotics on generating functions (very involved)!!!

Galton-Watson Trees

Width

$$
W=\max _{k \geq 0} L(k)=\max _{t \geq 0} L(t)
$$

maximal number of nodes in a level.

Corollary

$$
\frac{1}{\sqrt{n}} W_{n} \xrightarrow{\mathrm{~d}} \frac{\sigma}{2} \sup _{0 \leq t \leq 1} l(t)
$$

Remark. $\sup _{t \geq 0} l(t)=2 \sup _{0 \leq t \leq 1} e(t)$ (in distribution)

Stacked Triangulations

Theorem (Albenque+Marckert)
$M_{n} \ldots$ uniform stacked triangulations with $2 n$ faces with graph distance as metric:

$$
\Longrightarrow \quad \frac{11}{\sqrt{6 n}} M_{n} \xrightarrow{\mathrm{~d}} \mathcal{T}_{2 e}
$$

in the Gromov-Hausdorff topology.

Remark. The continuum random tree $\mathcal{T}_{2 e}$ seems to be a universal continuous limiting object.

Quadrangulations

Bijection between 2-connected maps and quadrangulations

Quadrangulations

Bijection between 2-connected maps and quadrangulations

\square

Quadrangulations

Bijection between 2-connected maps and quadrangulations

Quadrangulations

Bijection between 2-connected maps and quadrangulations

Quadrangulations

Bijection between 2-connected maps and quadrangulations

Quadrangulations

3-connected maps

In this bijection 3-connected maps correspond so simple quadrangulations (every circle different from the outer cirlce of length 4 determines a face).

This correspondence is important for the counting procedure of planar graphs.

Quadrangulations

Schaeffer bijection: start with a quadrangulation

Quadrangulations

Schaeffer bijection: calulate the distance to the root vertex

Quadrangulations

Schaeffer bijection: there are only two possible constellations

Quadrangulations

Schaeffer bijection: include fat edges

Quadrangulations

Schaeffer bijection: include fat edges

Quadrangulations

Schaeffer bijection: include fat edges

Quadrangulations

Schaeffer bijection: delete the dotted edges
0

Quadrangulations

Schaeffer bijection: a labelled tree occurs

Quadrangulations

Schaeffer bijection: a labelled tree occurs

Well-Labelled Trees

Positive labels, root has label 1, adjacent labels differ at most by 1 :

Well-Labelled Trees

$H_{n, k} \ldots$ number of vertices of distance k from the root vertex in a quadrangulation of size n
$\lambda_{n, k} \ldots$ number of vertices with label k from in a well-labelled tree with n edges

Theorem (Schaeffer)

There exists a bijection between edge-rooted quadrangulations with n faces and well-labelled trees with n edges, such that the distance profile $\left(H_{n, k}\right)_{k \geq 1}$ of a quadrangulation is mapped onto the label distribution $\left(\lambda_{n, k}\right)_{k \geq 1}$ of the corresponding well-labelled tree.

Well-Labelled Trees

Counting

$q_{n} \ldots$ number of well-labelled trees of size n :

$$
q_{n}=\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}
$$

$T_{j}(y) \ldots$ generating function of those generalised well-labelled trees where the root has label j and where the exponent of y counts the number of edges:

$$
T_{j}(y)=\frac{1}{1-y\left(T_{j-1}(y)+T_{j}(y)+T_{j+1}(y)\right)}
$$

$$
(j \geq 1)
$$

with the convention $T_{0}(y)=0$

Well-Labelled Trees

Theorem

$$
\begin{gathered}
T(y)=\frac{1}{1-3 y T(y)}=\frac{1-\sqrt{1-12 y}}{6 y} \\
Z(y)+\frac{1}{Z(y)}+1=\frac{1}{y T(y)^{2}} \\
\Longrightarrow \quad T_{j}(y)=T(y) \frac{\left(1-Z(y)^{j}\right)\left(1-Z(y)^{j+3}\right)}{\left(1-Z(y)^{j+1}\right)\left(1-Z(y)^{j+2}\right)}
\end{gathered}
$$

Well-Labelled Trees

Counting

$$
\begin{aligned}
T_{1}(y) & =T(y) \frac{(1-Z(y))\left(1-Z(y)^{4}\right)}{\left(1-Z(y)^{2}\right)\left(1-Z(y)^{3}\right)} \\
& =T(y) \frac{1+Z(y)^{2}}{1+Z(y)+Z(y)^{2}} \\
& =T(y)\left(1-t T(y)^{2}\right) \\
\Longrightarrow \quad q_{n} & =\left[y^{n}\right] T_{1}(y)=\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}
\end{aligned}
$$

Embedded Trees

Integer labels, root has label 0 , adjacent labels differ at most by 1 :

$$
u_{n}=3^{n} p_{n+1}=\frac{3^{n}}{n+1}\binom{2 n}{n}
$$

(the number of embedded trees with n edges)

Embedded Trees

Interpretation as embedding

Brownian Snake

Discrete Brownian snake

Brownian Snake

$g:[0,1] \rightarrow[0, \infty) \ldots$ continuous, $\geq 0, g(0)=g(1)=0$

$$
d_{g}(s, t)=g(s)+g(t)-2 \inf _{\min \{s, t\} \leq u \leq \max \{s, t\}} g(u)=0 .
$$

Gaussian process

$$
\begin{aligned}
& \left(W_{g}(t), t \geq 0\right): W_{g}(0)=0, \\
& \quad \mathbb{E}\left(W_{g}(t)\right)=0, \quad \operatorname{Cov}\left(W_{g}(s), W_{g}(t)\right)=\inf _{\min \{s, t\} \leq u \leq \max \{s, t\}} g(u) .
\end{aligned}
$$

A Gaussian process $(X(t), t \in I)$ (with zero mean) is completely determined by a positive definite covariance function $B(s, t)$. All finite dimensional random vectors $\left(X\left(t_{1}\right), \ldots, X\left(t_{k}\right)\right)$ are normally distributed with covariance matrix $\left(B\left(t_{i}, t_{j}\right)\right)_{1 \leq i, j \leq k}$.

Brownian snake: $W(t)=W_{2 e}(t)$.

Brownian Snake

Theorem (Chassaing+Marckert)

Consider a conditioned GW-trees with offspring distribution ξ and labels given by independent increments following a distribution η with $\mathbb{E} \eta=0$.
$W_{n}(s) \ldots$ discrete Brownian snake corresponding to these trees and labels

$$
\Longrightarrow \quad\left(\frac{\gamma}{n^{1 / 4}} W_{n}(2 n t), 0 \leq t \leq 1\right) \xrightarrow{\mathrm{d}}(W(t), 0 \leq t \leq 1)
$$

with $\gamma=(\mathbb{V a r} \eta)^{-\frac{1}{2}}(\operatorname{Var} \xi)^{\frac{1}{4}}$.

Integrated SuperBrownian Excursion (ISE)

Occupation measure of the Brownian snake: random measure

$$
\mu_{\mathrm{ISE}}(A)=\int_{0}^{1} \mathbf{1}_{A}(W(t)) d t
$$

Density of the ISE: random density

$$
f_{\mathrm{ISE}}(s)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{1} \mathbf{1}_{[s, s+\varepsilon]}(W(t)) d t
$$

Remark. The ISE has finite support [$L_{\mathrm{ISE}}, R_{\mathrm{ISM}}$] (Its length $R_{\text {ISE }}-L_{\text {ISE }}$ is a random variable.)

Continuous Limits

Theorem (Aldous)

Consider a conditioned GW-trees with offspring distribution ξ and labels given by independent increments following a distribution η with $\mathbb{E} \eta=0$.
$\ell(v) \ldots$ label of vertex v

$$
\Longrightarrow \frac{1}{n} \sum_{v \in V\left(T_{n}\right)} \delta_{\gamma n^{-1 / 4} \ell(v)} \xrightarrow{\mathrm{d}} \mu_{\mathrm{ISE}}
$$

with $\gamma=(\operatorname{Var} \eta)^{-\frac{1}{2}}(\operatorname{Var} \xi)^{\frac{1}{4}}$.

Continuous Limits

Theorem (Devroye+Janson)

Suppose additionally that η is integer valued and aperiodic.
$\left(X_{n}(j)\right)_{j \in \mathbb{Z}} \ldots$ profile corresponding to η
($X_{n}(j) \ldots$ number of nodes with label j)
($\left.X_{n}(t),-\infty<t<\infty\right) \ldots$ the linearly interpolated process:

$$
\Longrightarrow \quad\left(n^{-3 / 4} X_{n}\left(n^{1 / 4} t\right),-\infty<t<\infty\right) \xrightarrow{\mathrm{d}}\left(\gamma f_{\text {ISE }}(\gamma t),-\infty<t<\infty\right)
$$

Continuous Limits

Theorem (Chassaing+Marckert)

Let $\left(\lambda_{n, k}\right)$ denote the height profile and r_{n} the maximum distance from the root vertex in random quadrangulations with n vertices:

$$
\Longrightarrow \quad \frac{1}{n} \sum_{k \geq 0} \lambda_{n, k} \delta_{\gamma n^{-1 / 4} k} \xrightarrow{\mathrm{~d}} \widehat{\mu}_{\mathrm{ISE}}
$$

and

$$
\Longrightarrow \quad \gamma n^{-1 / 4} r_{n} \xrightarrow{\mathrm{~d}} R_{\mathrm{ISE}}-L_{\mathrm{ISE}}
$$

where $\gamma=2^{-1 / 4}$.

Thank You!

