Equality Of Multiplicity Free Skew Characters

Christian Gutschwager

23.02.2009

Results 0000

Outline

(4日) (個) (主) (主) (三) の(の)

Results 0000

Partitions

Diagram

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Partitions

Skew-diagram

$$\lambda = (4^2, 3, 1)$$
 $\mu = (3, 2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Littlewood-Richardson Coefficients

- Semistandard (weakly increasing among rows from left to right, strictly increasing among collumns from top to bottom)
- Tableauword w is a lattice permutations.

Semistandard	
semistandard:	not semistandard:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 2 2 1 1 2 2 2 1

Littlewood-Richardson Coefficients

- Semistandard (weakly increasing among rows from left to right, strictly increasing among collumns from top to bottom)
- Tableauword w is a lattice permutations.

Littlewood-Richardson Coefficients

- Semistandard (weakly increasing among rows from left to right, strictly increasing among collumns from top to bottom)
- Tableauword w is a lattice permutations.

Definition

LR-coeffizient $c(\lambda; \mu, \nu)$ equals the number of tableaus of shape λ/μ with content $\nu = (\nu_1, \nu_2, \nu_3, ...)$ satisfying the above conditions.

Results 0000

Skew characters

Skew characters

$$[\lambda/\mu] = \sum_{\nu} c(\lambda; \mu, \nu)[\nu]$$

Skew characters

Skew characters

$$[\lambda/\mu] = \sum_{
u} oldsymbol{c}(\lambda;\mu,
u)[
u]$$

Example $\lambda = (3, 3, 1), \mu = (2, 1)$:

Skew characters

Skew characters

$$[\lambda/\mu] = \sum_{\nu} c(\lambda; \mu, \nu)[\nu]$$

Example $\lambda = (3, 3, 1), \mu = (2, 1)$:

[(3,3,1)/(2,1)] = [3,1] + [2,2] + [2,1,1]

・ロト・日本・日本・日本・日本・日本

Skew characters

Skew characters

$$[\lambda/\mu] = \sum_{
u} c(\lambda; \mu,
u)[
u]$$

Example $\lambda = (3, 3, 1), \mu = (2, 1)$:

[(3,3,1)/(2,1)] = [3,1] + [2,2] + [2,1,1]

Skew Schur functions

$$s_{\lambda/\mu} = \sum_{
u} c(\lambda; \mu,
u) s_{
u}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q ()

Results 0000

Multiplicity free skew characters $[\lambda/\mu]$

For fixed λ, μ all $c(\lambda; \mu, \nu) \in \{0, 1\}$.

Equality of skew characters

• Trivial: Translation of the skew diagram

- Trivial: Rotation of the skew diagram
- Nontrivial results by
 - Billera, Thomas, van Willigenburg
 - Reiner, Shaw, van Willigenburg
 - McNamara, van Willigenburg

Example

Staircase partition $\lambda = (I, I - 1, I - 2, \dots, 2, 1)$, μ arbitrary.

 $[\lambda/\mu] = [(\lambda/\mu)^{\text{conjugate}}]$

・ロト・日本・日本・日本・日本・日本

Equality of skew characters

- Trivial: Translation of the skew diagram
- Trivial: Rotation of the skew diagram
- Nontrivial results by
 - Billera, Thomas, van Willigenburg
 - Reiner, Shaw, van Willigenburg
 - McNamara, van Willigenburg

Example

Staircase partition $\lambda = (I, I - 1, I - 2, \dots, 2, 1)$, μ arbitrary.

 $[\lambda/\mu] = [(\lambda/\mu)^{\text{conjugate}}]$

Equality of skew characters

- Trivial: Translation of the skew diagram
- Trivial: Rotation of the skew diagram
- Nontrivial results by
 - Billera, Thomas, van Willigenburg
 - Reiner, Shaw, van Willigenburg
 - McNamara, van Willigenburg

Example

Staircase partition $\lambda = (I, I - 1, I - 2, \dots, 2, 1), \mu$ arbitrary.

 $[\lambda/\mu] = [(\lambda/\mu)^{\text{conjugate}}]$

Equality of skew characters

- Trivial: Translation of the skew diagram
- Trivial: Rotation of the skew diagram
- Nontrivial results by
 - Billera, Thomas, van Willigenburg
 - Reiner, Shaw, van Willigenburg
 - McNamara, van Willigenburg

Example

Staircase partition $\lambda = (I, I - 1, I - 2, ..., 2, 1)$, μ arbitrary.

 $[\lambda/\mu] = [(\lambda/\mu)^{\text{conjugate}}]$

Results

Theorem

Let $[\lambda/\mu] = [\alpha/\beta]$ be multiplicity free. Then up to rotation and/or translation

•
$$\lambda/\mu=lpha/eta$$
 or

•
$$\lambda = \alpha = (I, I - 1, I - 2, ...)$$
 and $\mu = \beta^{\mathsf{conjugate}}$

Theorem

Let $[\mathcal{A}^1] = [\mathcal{A}^2]$ with \mathcal{A}^1 being an arbitrary skew diagram $\mathcal{A}^1 = \lambda/\mu$ having a part λ_1 and a height $l(\lambda)$. Then $\mathcal{A}^1 = \mathcal{A}^2$ or $\mathcal{A}^1 = (\mathcal{A}^2)^{\text{rotated}}$.

Proof

The corresponding product of Schubert classes is in this case a product of Schur functions.

Theorem

Let $[\mathcal{A}^1] = [\mathcal{A}^2]$ with \mathcal{A}^1 being an arbitrary skew diagram $\mathcal{A}^1 = \lambda/\mu$ having a part λ_1 and a height $l(\lambda)$. Then $\mathcal{A}^1 = \mathcal{A}^2$ or $\mathcal{A}^1 = (\mathcal{A}^2)^{\text{rotated}}$.

Proof

The corresponding product of Schubert classes is in this case a product of Schur functions.

Bijection

Take an arbitrary LR-Tableau which contains in every column a box filled with the entry 1.

Removing all boxes filled with the entry 1 and replacing afterwards every entry i (i > 1) by i - 1 yields another LR-Tableau.

Bijection

This gives a bijection between the characters $[\nu] \in [\lambda/\mu]$ with maximal first part and arbitrary characters $[\xi] \in [\hat{\lambda}/\mu]$ with $\hat{\lambda}/\mu$ the skew diagram obtained by removing the top boxes in every column of λ/μ .

Theorem

$$[\lambda/\mu] = [\alpha/\beta] \Rightarrow [\hat{\lambda}/\mu] = [\hat{\alpha}/\beta]$$

Bijection

Take an arbitrary LR-Tableau which contains in every column a box filled with the entry 1.

Removing all boxes filled with the entry 1 and replacing afterwards every entry i (i > 1) by i - 1 yields another LR-Tableau.

Bijection

This gives a bijection between the characters $[\nu] \in [\lambda/\mu]$ with maximal first part and arbitrary characters $[\xi] \in [\hat{\lambda}/\mu]$ with $\hat{\lambda}/\mu$ the skew diagram obtained by removing the top boxes in every column of λ/μ .

Theorem

$$[\lambda/\mu] = [\alpha/\beta] \Rightarrow [\hat{\lambda}/\mu] = [\hat{\alpha}/\beta]$$

Bijection

Take an arbitrary LR-Tableau which contains in every column a box filled with the entry 1.

Removing all boxes filled with the entry 1 and replacing afterwards every entry i (i > 1) by i - 1 yields another LR-Tableau.

Bijection

This gives a bijection between the characters $[\nu] \in [\lambda/\mu]$ with maximal first part and arbitrary characters $[\xi] \in [\hat{\lambda}/\mu]$ with $\hat{\lambda}/\mu$ the skew diagram obtained by removing the top boxes in every column of λ/μ .

Theorem

$$[\lambda/\mu] = [\alpha/\beta] \Rightarrow [\hat{\lambda}/\mu] = [\hat{\alpha}/\beta]$$

Results 000●

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example $\lambda/\mu = (\lambda_1^a, \lambda_2^b)/(\mu_1^m)$

Theorem

Let
$$\lambda/\mu = (\lambda_1^a, \lambda_2^b)/(\mu_1^m)$$
 and $[\lambda/\mu] = [\alpha/\beta]$.

Then $\lambda/\mu = \alpha/\beta$ or $\lambda/\mu = \alpha/\beta^{\text{rotated}}$.

Results 000●

Example $\overline{\lambda/\mu} = (\overline{\lambda_1^a}, \overline{\lambda_2^b})/(\mu_1^m)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

Results 000●

Example $\lambda/\mu = (\lambda_1^a, \lambda_2^b)/(\mu_1^m)$

Results 000●

Example $\lambda/\mu = (\lambda_1^a,\lambda_2^b)/(\overline{\mu_1^m})$

