Equality Of Multiplicity Free Skew Characters

Christian Gutschwager
23.02.2009

Outline

(1) Introduction
(2) Results

Partitions

Diagram

$$
\begin{equation*}
\lambda=\left(4^{2}, 3,1\right) \tag{3,2}
\end{equation*}
$$

Skew-diagram

$$
\lambda=\left(4^{2}, 3,1\right) \quad \mu=(3,2)
$$

Littlewood-Richardson Coefficients

- Semistandard (weakly increasing among rows from left to right, strictly increasing among collumns from top to bottom)
- Tableauword w is a lattice permutations.

Semistandard

semistandard:

	1	1	1		
2	2	3	3		
4	4	4	4		

not semistandard:

Littlewood-Richardson Coefficients

- Semistandard (weakly increasing among rows from left to right, strictly increasing among collumns from top to bottom)
- Tableauword w is a lattice permutations.

Lattice permutation

	1	1	1
3	3	2	2

lattice permutation

$w=(112221)$
no lattice permutation

Littlewood-Richardson Coefficients

- Semistandard (weakly increasing among rows from left to right, strictly increasing among collumns from top to bottom)
- Tableauword w is a lattice permutations.

Definition

$L R$-coeffizient $c(\lambda ; \mu, \nu)$ equals the number of tableaus of shape λ / μ with content $\nu=\left(\nu_{1}, \nu_{2}, \nu_{3}, \ldots\right)$ satisfying the above conditions.

Skew characters

Skew characters

$$
[\lambda / \mu]=\sum_{\nu} c(\lambda ; \mu, \nu)[\nu]
$$

Skew characters

Skew characters

$$
[\lambda / \mu]=\sum_{\nu} c(\lambda ; \mu, \nu)[\nu]
$$

Example $\lambda=(3,3,1), \mu=(2,1)$:

Skew characters

Skew characters

$$
[\lambda / \mu]=\sum_{\nu} c(\lambda ; \mu, \nu)[\nu]
$$

Example $\lambda=(3,3,1), \mu=(2,1)$:

$[(3,3,1) /(2,1)]=[3,1]+[2,2]+[2,1,1]$

Skew characters

Skew characters

$$
[\lambda / \mu]=\sum_{\nu} c(\lambda ; \mu, \nu)[\nu]
$$

Example $\lambda=(3,3,1), \mu=(2,1)$:

$[(3,3,1) /(2,1)]=[3,1]+[2,2]+[2,1,1]$

Skew Schur functions

$$
s_{\lambda / \mu}=\sum_{\nu} c(\lambda ; \mu, \nu) s_{\nu}
$$

Multiplicity free skew characters $[\lambda / \mu]$

For fixed λ, μ all $c(\lambda ; \mu, \nu) \in\{0,1\}$.

Multiplicity free skew characters $[\lambda / \mu]$

Multiplicity free skew characters $[\lambda / \mu]$

1.

Multiplicity free skew characters $[\lambda / \mu]$

Multiplicity free skew characters $[\lambda / \mu]$

1.

2. $s_{i n}=1$

Multiplicity free skew characters $[\lambda / \mu]$

Multiplicity free skew characters $[\lambda / \mu]$

1.

2.
$s_{i n}=1$

3．$s_{i n}=2$

Multiplicity free skew characters $[\lambda / \mu]$

Multiplicity free skew characters $[\lambda / \mu]$

Equality of skew characters

- Trivial: Translation of the skew diagram
- Trivial: Rotation of the skew diagram
- Nontrivial results by
- Billera, Thomas, van Willigenburg
- Reiner, Shaw, van Willigenburg
- McNamara, van Willigenburg

Example

Staircase partition $\lambda=(1, \mid-1, /-2, \ldots, 2,1)$, μ arbitrary.

$$
[\lambda / \mu]=\left[(\lambda / \mu)^{\text {conjugate }}\right]
$$

Equality of skew characters

- Trivial: Translation of the skew diagram
- Trivial: Rotation of the skew diagram
- Nontrivial results by
- Billera, Thomas, van Willigenburg
- Reiner, Shaw, van Willigenburg
- McNamara, van Willigenburg

Example

Staircase partition $\lambda=(1, /-1, /-2, \ldots, 2,1)$, μ arbitrary.
\square

Equality of skew characters

- Trivial: Translation of the skew diagram
- Trivial: Rotation of the skew diagram
- Nontrivial results by
- Billera, Thomas, van Willigenburg
- Reiner, Shaw, van Willigenburg
- McNamara, van Willigenburg

Example

Staircase partition $\lambda=(1, /-1, /-2, \ldots, 2,1)$, μ arbitrary.

$$
[\lambda / \mu]=\left[(\lambda / \mu)^{\text {conjugate }}\right]
$$

Equality of skew characters

- Trivial: Translation of the skew diagram
- Trivial: Rotation of the skew diagram
- Nontrivial results by
- Billera, Thomas, van Willigenburg
- Reiner, Shaw, van Willigenburg
- McNamara, van Willigenburg

Example

Staircase partition $\lambda=(I, I-1, I-2, \ldots, 2,1), \mu$ arbitrary.

$$
[\lambda / \mu]=\left[(\lambda / \mu)^{\text {conjugate }}\right]
$$

Results

Theorem

Let $[\lambda / \mu]=[\alpha / \beta]$ be multiplicity free.
Then up to rotation and/or translation

- $\lambda / \mu=\alpha / \beta$ or
- $\lambda=\alpha=(I, I-1, I-2, \ldots)$ and $\mu=\beta^{\text {conjugate }}$

Theorem

Let $\left[\mathcal{A}^{1}\right]=\left[\mathcal{A}^{2}\right]$ with \mathcal{A}^{1} being an arbitrary skew diagram $\mathcal{A}^{1}=\lambda / \mu$ having a part λ_{1} and a height $I(\lambda)$.

Proof
The corresponding product of Schubert classes is in this case a product of Schur functions

Theorem

Let $\left[\mathcal{A}^{1}\right]=\left[\mathcal{A}^{2}\right]$ with \mathcal{A}^{1} being an arbitrary skew diagram $\mathcal{A}^{1}=\lambda / \mu$ having a part λ_{1} and a height I (λ).
Then $\mathcal{A}^{1}=\mathcal{A}^{2}$ or $\mathcal{A}^{1}=\left(\mathcal{A}^{2}\right)^{\text {rotated }}$.

Proof

The corresponding product of Schubert classes is in this case a product of Schur functions.

Bijection

Take an arbitrary LR-Tableau which contains in every column a box filled with the entry 1.
Removing all boxes filled with the entry 1 and replacing afterwards every entry $i(i>1)$ by $i-1$ yields another LR-Tableau.

Bjection
This gives a bijection between the characters $[\nu] \in[\lambda / \mu]$ with maximal first part and arbitrary characters $[\xi] \in[\hat{\lambda} / \mu]$ with $\hat{\lambda} / \mu$ the skew diagram obtained by removing the top boxes in every column of λ / μ.

Theorem

$$
[\lambda / \mu]=[\alpha / \beta] \Rightarrow[\hat{\lambda} / \mu]=[\hat{\alpha} / \beta]
$$

Bijection

Take an arbitrary LR-Tableau which contains in every column a box filled with the entry 1.
Removing all boxes filled with the entry 1 and replacing afterwards every entry $i(i>1)$ by $i-1$ yields another LR-Tableau.

Bijection

This gives a bijection between the characters $[\nu] \in[\lambda / \mu]$ with maximal first part and arbitrary characters $[\xi] \in[\hat{\lambda} / \mu]$ with $\hat{\lambda} / \mu$ the skew diagram obtained by removing the top boxes in every column of λ / μ.

Bijection

Take an arbitrary LR-Tableau which contains in every column a box filled with the entry 1.
Removing all boxes filled with the entry 1 and replacing afterwards every entry $i(i>1)$ by $i-1$ yields another LR-Tableau.

Bijection

This gives a bijection between the characters $[\nu] \in[\lambda / \mu]$ with maximal first part and arbitrary characters $[\xi] \in[\hat{\lambda} / \mu]$ with $\hat{\lambda} / \mu$ the skew diagram obtained by removing the top boxes in every column of λ / μ.

Theorem

$$
[\lambda / \mu]=[\alpha / \beta] \Rightarrow[\hat{\lambda} / \mu]=[\hat{\alpha} / \beta]
$$

Example $\lambda / \mu=\left(\lambda_{1}^{a}, \lambda_{2}^{b}\right) /\left(\mu_{1}^{m}\right)$

Theorem

Let $\lambda / \mu=\left(\lambda_{1}^{a}, \lambda_{2}^{b}\right) /\left(\mu_{1}^{m}\right)$ and $[\lambda / \mu]=[\alpha / \beta]$.
Then $\lambda / \mu=\alpha / \beta$ or $\lambda / \mu=\alpha / \beta^{\text {rotated }}$.

Example $\lambda / \mu=\left(\lambda_{1}^{a}, \lambda_{2}^{b}\right) /\left(\mu_{1}^{m}\right)$

Proof: $\lambda / \mu=\alpha / \beta$ or $\lambda / \mu=\alpha / \beta^{\text {rotated }}$

Example $\lambda / \mu=\left(\lambda_{1}^{p}, \lambda_{2}^{b}\right) /\left(\mu_{1}^{m}\right)$

Proof: $\lambda / \mu=\alpha / \beta$ or $\lambda / \mu=\alpha / \beta^{\text {rotated }}$

Example $\lambda / \mu=\left(\lambda_{1}^{p}, \lambda_{2}^{b}\right) /\left(\mu_{1}^{m}\right)$

Proof: $\lambda / \mu=\alpha / \beta$ or $\lambda / \mu=\alpha / \beta^{\text {rotated }}$

