Sven Herrmann (joint work with Michael Joswig) 62^{ème} Séminaire Lotharingien de Combinatoire

TECHNISCHE UNIVERSITÄT DARMSTADT

Splitting Polytopes

Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook

Subdivisions

Definition

A subdivision of P is a collection Σ of polytopes (faces) such that

- $\blacktriangleright \bigcup_{F \in \Sigma} = P,$
- $F \in \Sigma \implies$ all faces of F are in Σ ,
- ► $F_1, F_2 \in \Sigma \implies F_1 \cap F_2$ is a face of both,
- \triangleright F 0-dimensional \implies F is a vertex of P.

Subdivisions

Definition

A subdivision of P is a collection Σ of polytopes (faces) such that

- ► $\bigcup_{F \in \Sigma} = P$,
- $F \in \Sigma \implies$ all faces of F are in Σ ,
- $F_1, F_2 \in \Sigma \implies F_1 \cap F_2$ is a face of both,
- \triangleright F 0-dimensional \implies F is a vertex of P.

Subdivisions

Definition

A subdivision of P is a collection Σ of polytopes (faces) such that

- ► $\bigcup_{F \in \Sigma} = P$,
- $F \in \Sigma \implies$ all faces of F are in Σ ,
- $F_1, F_2 \in \Sigma \implies F_1 \cap F_2$ is a face of both,
- F 0-dimensional \implies F is a vertex of P.

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 3

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ .
- The common refinement of two subdivisions Σ , Σ' of *P* is the subdivision

 $\{S \cap S' \mid S \in \Sigma, S' \in \Sigma'\}.$

The refinement defines a partial order on the set of all subdivisions of P.
 A finest subdivision (minimal element) is a triangulation.

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ .
- The common refinement of two subdivisions Σ , Σ' of *P* is the subdivision

$\{S \cap S' \mid S \in \Sigma, S' \in \Sigma'\}.$

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ.
- The common refinement of two subdivisions Σ , Σ' of *P* is the subdivision

$$\{S \cap S' \mid S \in \Sigma, S' \in \Sigma'\}.$$

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ.
- The common refinement of two subdivisions Σ , Σ' of *P* is the subdivision

$$\{S \cap S' \mid S \in \Sigma, S' \in \Sigma'\}.$$

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ.
- The common refinement of two subdivisions Σ , Σ' of *P* is the subdivision

$$\{S \cap S' \mid S \in \Sigma, S' \in \Sigma'\}.$$

The refinement defines a partial order on the set of all subdivisions of *P*.
 A finest subdivision (minimal element) is a triangulation.

Definition

- Σ' is a refinement of Σ if each face of Σ' is contained in a face of Σ.
- The common refinement of two subdivisions Σ , Σ' of *P* is the subdivision

$$\{S \cap S' \mid S \in \Sigma, S' \in \Sigma'\}.$$

- ▶ The refinement defines a partial order on the set of all subdivisions of *P*.
- A finest subdivision (minimal element) is a triangulation.

Definition

- A splits *S* is defined by a hyperplane H_S .
- ► A hyperplane *H* (that meets the interior of *P*) defines a split if and only if *H* does not cut any edge of *P*.
- ► ⇒ The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- Example: v a vertex of P such that all neighbors of v lie in a common Hyperplane H_v: vertex split for v.

Definition

- A splits S is defined by a hyperplane H_S .
- ► A hyperplane *H* (that meets the interior of *P*) defines a split if and only if *H* does not cut any edge of *P*.
- ► ⇒ The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- ► Example: *v* a vertex of *P* such that all neighbors of *v* lie in a common Hyperplane *H_v*: vertex split for *v*.

Definition

- A splits S is defined by a hyperplane H_S .
- ► A hyperplane *H* (that meets the interior of *P*) defines a split if and only if *H* does not cut any edge of *P*.
- ► ⇒ The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- ► Example: *v* a vertex of *P* such that all neighbors of *v* lie in a common Hyperplane *H_v*: vertex split for *v*.

Definition

- A splits S is defined by a hyperplane H_S .
- ► A hyperplane *H* (that meets the interior of *P*) defines a split if and only if *H* does not cut any edge of *P*.
- ► ⇒ The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- Example: v a vertex of P such that all neighbors of v lie in a common Hyperplane H_v: vertex split for v.

Definition

- A splits S is defined by a hyperplane H_S .
- ► A hyperplane *H* (that meets the interior of *P*) defines a split if and only if *H* does not cut any edge of *P*.
- ► ⇒ The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- Example: v a vertex of P such that all neighbors of v lie in a common Hyperplane H_v: vertex split for v.

$$\blacktriangleright \Delta(k,n) := \operatorname{conv}\left\{\sum_{i \in I} e_i \ \left| \ I \in \binom{\{1,\ldots,n\}}{k}\right\} \subset \mathbb{R}^n,\right.$$

• *n*-dimensional unit cube cut with the hyperplane $\sum_i x_i = k$,

For a partition (A, B) of $\{1, ..., n\}$ define the $(A, B; \mu)$ -hyperplane by

$$\sum_{i\in A} x_i = \mu.$$

Satz (Joswig, H. 08)

The splits of $\Delta(k, n)$ correspond to the (A, B; μ)-hyperplanes with $k - \mu + 1 \le |A| \le n - \mu - 1$ and $1 \le \mu \le k - 1$.

Theorem (Josiwg, H. 08)

- $\blacktriangleright \Delta(k,n) := \operatorname{conv}\left\{\sum_{i \in I} e_i \ \left| \ I \in \binom{\{1,\ldots,n\}}{k}\right\} \subset \mathbb{R}^n,\right.$
- *n*-dimensional unit cube cut with the hyperplane $\sum_i x_i = k$,
- For a partition (A, B) of $\{1, ..., n\}$ define the $(A, B; \mu)$ -hyperplane by

$$\sum_{i\in A} x_i = \mu.$$

Satz (Joswig, H. 08)

The splits of $\Delta(k, n)$ correspond to the $(A, B; \mu)$ -hyperplanes with $k - \mu + 1 \le |A| \le n - \mu - 1$ and $1 \le \mu \le k - 1$.

Theorem (Josiwg, H. 08)

- $\blacktriangleright \Delta(k,n) := \operatorname{conv}\left\{\sum_{i \in I} e_i \ \Big| \ I \in \binom{\{1,\ldots,n\}}{k}\right\} \subset \mathbb{R}^n,$
- *n*-dimensional unit cube cut with the hyperplane $\sum_i x_i = k$,
- ► For a partition (A, B) of $\{1, ..., n\}$ define the $(A, B; \mu)$ -hyperplane by

$$\sum_{i\in A} x_i = \mu.$$

Satz (Joswig, H. 08)

The splits of $\Delta(k, n)$ correspond to the (A, B; μ)-hyperplanes with $k - \mu + 1 \le |A| \le n - \mu - 1$ and $1 \le \mu \le k - 1$.

Theorem (Josiwg, H. 08)

- $\blacktriangleright \Delta(k,n) := \operatorname{conv}\left\{\sum_{i \in I} e_i \ \Big| \ I \in \binom{\{1,\ldots,n\}}{k}\right\} \subset \mathbb{R}^n,$
- *n*-dimensional unit cube cut with the hyperplane $\sum_i x_i = k$,
- ► For a partition (A, B) of $\{1, ..., n\}$ define the $(A, B; \mu)$ -hyperplane by

$$\sum_{i\in A} x_i = \mu.$$

Satz (Joswig, H. 08)

The splits of $\Delta(k, n)$ correspond to the $(A, B; \mu)$ -hyperplanes with $k - \mu + 1 \le |A| \le n - \mu - 1$ and $1 \le \mu \le k - 1$.

Theorem (Josiwg, H. 08)

- $\blacktriangleright \Delta(k,n) := \operatorname{conv}\left\{\sum_{i \in I} e_i \ \Big| \ I \in \binom{\{1,\ldots,n\}}{k}\right\} \subset \mathbb{R}^n,$
- *n*-dimensional unit cube cut with the hyperplane $\sum_i x_i = k$,
- ► For a partition (A, B) of $\{1, ..., n\}$ define the $(A, B; \mu)$ -hyperplane by

$$\sum_{i\in A} x_i = \mu.$$

Satz (Joswig, H. 08)

The splits of $\Delta(k, n)$ correspond to the $(A, B; \mu)$ -hyperplanes with $k - \mu + 1 \le |A| \le n - \mu - 1$ and $1 \le \mu \le k - 1$.

Theorem (Josiwg, H. 08)

Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook

• w : vert $P \rightarrow \mathbb{R}$ weight function,

- consider conv $\{(v, w(v)) \mid v \in \text{vert } P\}$,
- project the lower convex hull down to P
- the resulting subdivision $\Sigma_w(P)$ is called regular.

- w : vert $P \rightarrow \mathbb{R}$ weight function,
- consider conv{ $(v, w(v)) | v \in \text{vert } P$ },
- project the lower convex hull down to P
- the resulting subdivision $\Sigma_w(P)$ is called regular.

- w : vert $P \rightarrow \mathbb{R}$ weight function,
- consider conv{ $(v, w(v)) | v \in \text{vert } P$ },
- project the lower convex hull down to P,
- the resulting subdivision $\Sigma_w(P)$ is called regular.

- w : vert $P \rightarrow \mathbb{R}$ weight function,
- consider conv{ $(v, w(v)) | v \in \text{vert } P$ },
- project the lower convex hull down to P,
- the resulting subdivision $\Sigma_w(P)$ is called regular.

- w : vert $P \rightarrow \mathbb{R}$ weight function,
- consider conv{ $(v, w(v)) | v \in \text{vert } P$ },
- project the lower convex hull down to P,
- the resulting subdivision $\Sigma_w(P)$ is called regular.

Lemma Splits are regular.

▶ *P d*-dimensional polytope in \mathbb{R}^d with *n* vertices $v_1, ..., v_n$,

Theorem (Gel'fand, Kapranov, Zelevinsky 90)

There exists an (n - d - 1)-dimensional polytope SecPoly(P) (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P.

- Vertices of SecPoly(P) correspond to triangulations Σ: x_i^Σ = ∑_{vi∈S∈Σ} vol(S).
- ▶ Facets of SecPoly(*P*) correspond to coarsest regular subdivisions.
- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.

▶ *P d*-dimensional polytope in \mathbb{R}^d with *n* vertices $v_1, ..., v_n$,

Theorem (Gel'fand, Kapranov, Zelevinsky 90)

There exists an (n - d - 1)-dimensional polytope SecPoly(*P*) (secondary polytope of *P*) whose face lattice is isomorphic to the poset of all regular subdivisions of *P*.

- ► Vertices of SecPoly(*P*) correspond to triangulations Σ : $x_i^{\Sigma} = \sum_{v_i \in S \in \Sigma} \operatorname{vol}(S).$
- ► Facets of SecPoly(*P*) correspond to coarsest regular subdivisions.
- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.

▶ *P d*-dimensional polytope in \mathbb{R}^d with *n* vertices $v_1, ..., v_n$,

Theorem (Gel'fand, Kapranov, Zelevinsky 90)

There exists an (n - d - 1)-dimensional polytope SecPoly(*P*) (secondary polytope of *P*) whose face lattice is isomorphic to the poset of all regular subdivisions of *P*.

► Vertices of SecPoly(*P*) correspond to triangulations Σ : $x_i^{\Sigma} = \sum_{v_i \in S \in \Sigma} \text{vol}(S).$

- ▶ Facets of SecPoly(*P*) correspond to coarsest regular subdivisions.
- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.

▶ *P d*-dimensional polytope in \mathbb{R}^d with *n* vertices $v_1, ..., v_n$,

Theorem (Gel'fand, Kapranov, Zelevinsky 90)

There exists an (n - d - 1)-dimensional polytope SecPoly(*P*) (secondary polytope of *P*) whose face lattice is isomorphic to the poset of all regular subdivisions of *P*.

- Vertices of SecPoly(P) correspond to triangulations Σ: x_i^Σ = ∑_{v_i∈S∈Σ} vol(S).
- ► Facets of SecPoly(*P*) correspond to coarsest regular subdivisions.
- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.

▶ *P d*-dimensional polytope in \mathbb{R}^d with *n* vertices $v_1, ..., v_n$,

Theorem (Gel'fand, Kapranov, Zelevinsky 90)

There exists an (n - d - 1)-dimensional polytope SecPoly(*P*) (secondary polytope of *P*) whose face lattice is isomorphic to the poset of all regular subdivisions of *P*.

- Vertices of SecPoly(P) correspond to triangulations Σ: x_i^Σ = ∑_{v_i∈S∈Σ} vol(S).
- ► Facets of SecPoly(*P*) correspond to coarsest regular subdivisions.
- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.

Splits and Secondary Polytopes

Splits are facets of SecPoly(P), they define an approximation SplitPoly(P) ⊃ SecPoly(P).

This is a common approximation for all polytopes with the same oriented matroid.

Theorem (Joswig, H. 09)

SecPoly(P) = SplitPoly(P) if and only if P is a simplex, polygon, cross polytope, prism over a simplex, or a (possible multiple) join of these polytopes.

Splits and Secondary Polytopes

- Splits are facets of SecPoly(P), they define an approximation SplitPoly(P) ⊃ SecPoly(P).
- This is a common approximation for all polytopes with the same oriented matroid.

Theorem (Joswig, H. 09)

SecPoly(P) = SplitPoly(P) if and only if P is a simplex, polygon, cross polytope, prism over a simplex, or a (possible multiple) join of these polytopes.

Splits and Secondary Polytopes

- Splits are facets of SecPoly(P), they define an approximation SplitPoly(P) ⊃ SecPoly(P).
- This is a common approximation for all polytopes with the same oriented matroid.

Theorem (Joswig, H. 09)

SecPoly(P) = SplitPoly(P) if and only if P is a simplex, polygon, cross polytope, prism over a simplex, or a (possible multiple) join of these polytopes.

Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook

Definition

- We call S weakly compatible if the subdivisions S ∈ S have a common refinement (without new vertices).
- ▶ We call *S* compatible if none of the split defining hyperplanes meet in the interior of *P*.
- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by and edge.
- Stable set of the edge graph of a polytope yields a compatible split system.

Definition

- We call S weakly compatible if the subdivisions S ∈ S have a common refinement (without new vertices).
- ▶ We call *S* compatible if none of the split defining hyperplanes meet in the interior of *P*.
- ► Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by and edge.
- Stable set of the edge graph of a polytope yields a compatible split system.

Definition

- We call S weakly compatible if the subdivisions S ∈ S have a common refinement (without new vertices).
- ► We call *S* compatible if none of the split defining hyperplanes meet in the interior of *P*.
- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by and edge.
- Stable set of the edge graph of a polytope yields a compatible split system.

Definition

- We call S weakly compatible if the subdivisions S ∈ S have a common refinement (without new vertices).
- ► We call *S* compatible if none of the split defining hyperplanes meet in the interior of *P*.
- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by and edge.
- Stable set of the edge graph of a polytope yields a compatible split system.

Definition

- We call S weakly compatible if the subdivisions S ∈ S have a common refinement (without new vertices).
- ► We call *S* compatible if none of the split defining hyperplanes meet in the interior of *P*.
- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by and edge.
- Stable set of the edge graph of a polytope yields a compatible split system.

The Split Complex

Definition

The split complex of a polytope P is the simplicial complex

 $Split(P) := \{ S \mid S \text{ set of compatible splits} \}.$

- The weak split complex is defined in the same way (but is in general not simplicial).
- These complexes can be seen as (kind of) subcomplexes of the dual complex of the secondary polytope of *P*.

The Split Complex

Definition

The split complex of a polytope P is the simplicial complex

 $Split(P) := \{ \mathcal{S} \mid \mathcal{S} \text{ set of compatible splits} \}.$

- The weak split complex is defined in the same way (but is in general not simplicial).
- These complexes can be seen as (kind of) subcomplexes of the dual complex of the secondary polytope of *P*.

The Split Complex

Definition

The split complex of a polytope P is the simplicial complex

 $Split(P) := \{ \mathcal{S} \mid \mathcal{S} \text{ set of compatible splits} \}.$

- The weak split complex is defined in the same way (but is in general not simplicial).
- These complexes can be seen as (kind of) subcomplexes of the dual complex of the secondary polytope of *P*.

Satz (Joswig, H. 08)

- ▶ The dual graph of a compatible split system is a tree.
- The dual graph of a weakly compatible split system is bipartite.

Satz (Joswig, H. 08)

- The dual graph of a compatible split system is a tree.
- The dual graph of a weakly compatible split system is bipartite.

Satz (Joswig, H. 08)

- The dual graph of a compatible split system is a tree.
- The dual graph of a weakly compatible split system is bipartite.

Compatibility for Hypersimplices

Satz (Joswig, H. 08)

Two splits $(A, B; \mu)$ and $(C, D; \nu)$ of $\Delta(k, n)$ are compatible if and only if one of the following holds:

$$\begin{aligned} |A \cap C| &\leq k - \mu - \nu, & |A \cap D| &\leq \nu - \mu, \\ |B \cap C| &\leq \mu - \nu, & \text{or } |B \cap D| &\leq \mu + \nu - k. \end{aligned}$$

▶ This allows an explicite computation of the split complex of $\Delta(k, n)$.

Compatibility for Hypersimplices

Satz (Joswig, H. 08)

Two splits $(A, B; \mu)$ and $(C, D; \nu)$ of $\Delta(k, n)$ are compatible if and only if one of the following holds:

$$\begin{aligned} |A \cap C| &\leq k - \mu - \nu, & |A \cap D| &\leq \nu - \mu, \\ |B \cap C| &\leq \mu - \nu, & \text{or } |B \cap D| &\leq \mu + \nu - k. \end{aligned}$$

• This allows an explicite computation of the split complex of $\Delta(k, n)$.

Split Decomposition

- A decomposition w + w' of weight functions is called coherent if Σ_w(P) and Σ_{w'}(P) have a common refinement (Σ_{w+w'}(P)).
- A weight function w is called split prime if $\Sigma_w(P)$ does not refine any split.

Theorem (Bandelt, Dress 92; Hirai 06; Joswig, H. 08)

Each weight function w for a polytope P has a coherent decomposition

$$w = w_0 + \sum_{S \in S} \alpha_{w_S}^w w_S,$$

where S is some weakly compatible set of splits and w_0 is split prime. This decomposition is unique.

Split Decomposition

- A decomposition w + w' of weight functions is called coherent if Σ_w(P) and Σ_{w'}(P) have a common refinement (Σ_{w+w'}(P)).
- A weight function w is called split prime if $\Sigma_w(P)$ does not refine any split.

Theorem (Bandelt, Dress 92; Hirai 06; Joswig, H. 08)

Each weight function w for a polytope P has a coherent decomposition

$$w = w_0 + \sum_{S \in S} \alpha_{w_S}^w w_S,$$

where S is some weakly compatible set of splits and w_0 is split prime. This decomposition is unique.

Split Decomposition

- A decomposition w + w' of weight functions is called coherent if Σ_w(P) and Σ_{w'}(P) have a common refinement (Σ_{w+w'}(P)).
- A weight function w is called split prime if $\Sigma_w(P)$ does not refine any split.

Theorem (Bandelt, Dress 92; Hirai 06; Joswig, H. 08) Each weight function *w* for a polytope *P* has a coherent decomposition

$$w = w_0 + \sum_{S \in S} \alpha_{w_S}^w w_S,$$

where S is some weakly compatible set of splits and w_0 is split prime. This decomposition is unique.

• $\Delta(2, n) = \operatorname{conv} \{ e_i + e_j \mid 1 \le i < j \le n \}.$

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- Splits of ∆(2, n) are in bijection with partitions (A, B) of {1, ..., n} where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of ∆(2, n) are compatible if and only if one of the four sets A ∩ C, A ∩ D, B ∩ C, and B ∩ D is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.

- $\Delta(2, n) = \operatorname{conv} \{ e_i + e_j \mid 1 \le i < j \le n \}.$
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- Splits of ∆(2, n) are in bijection with partitions (A, B) of {1, ..., n} where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of ∆(2, n) are compatible if and only if one of the four sets A ∩ C, A ∩ D, B ∩ C, and B ∩ D is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.

- $\Delta(2, n) = \operatorname{conv} \{ e_i + e_j \mid 1 \le i < j \le n \}.$
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- Splits of ∆(2, n) are in bijection with partitions (A, B) of {1, ..., n} where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of ∆(2, n) are compatible if and only if one of the four sets A ∩ C, A ∩ D, B ∩ C, and B ∩ D is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- ▶ There is also a combinatorial condition for weak compatibility.

- $\Delta(2, n) = \operatorname{conv} \{ e_i + e_j \mid 1 \le i < j \le n \}.$
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- Splits of ∆(2, n) are in bijection with partitions (A, B) of {1, ..., n} where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of ∆(2, n) are compatible if and only if one of the four sets A ∩ C, A ∩ D, B ∩ C, and B ∩ D is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- ► There is also a combinatorial condition for weak compatibility.

- $\Delta(2, n) = \operatorname{conv} \{ e_i + e_j \mid 1 \le i < j \le n \}.$
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- Splits of ∆(2, n) are in bijection with partitions (A, B) of {1, ..., n} where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of Δ(2, n) are compatible if and only if one of the four sets A ∩ C, A ∩ D, B ∩ C, and B ∩ D is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- ▶ There is also a combinatorial condition for weak compatibility.

- $\Delta(2, n) = \operatorname{conv} \{ e_i + e_j \mid 1 \le i < j \le n \}.$
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- Splits of ∆(2, n) are in bijection with partitions (A, B) of {1, ..., n} where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of Δ(2, n) are compatible if and only if one of the four sets A ∩ C, A ∩ D, B ∩ C, and B ∩ D is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- ▶ There is also a combinatorial condition for weak compatibility.

- $\Delta(2, n) = \operatorname{conv} \{ e_i + e_j \mid 1 \le i < j \le n \}.$
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- Splits of ∆(2, n) are in bijection with partitions (A, B) of {1, ..., n} where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of Δ(2, n) are compatible if and only if one of the four sets A ∩ C, A ∩ D, B ∩ C, and B ∩ D is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.

Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook

- A subdivision ∑ of ∆(k, n) is called a matroid subdivision if all edges of ∑ are edges of ∆(k, n).
- (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)
- The Dressian is the polyhedral complex

$$\mathsf{Dr}(k,n) := \left\{ w \in \mathbb{R}^{\binom{n}{k}} \; \Big| \; \Sigma_w(\Delta(k,n)) \; \mathsf{is} \; \mathsf{a} \; \mathsf{matroid} \; \mathsf{subdivision}
ight\} \cap \mathbb{S}^{\binom{n}{k}-1}.$$

- Elements of Dr(k, n) are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian Gr(k, n) parameterizes (realizable) subspaces of tropical projective space.

- A subdivision Σ of Δ(k, n) is called a matroid subdivision if all edges of Σ are edges of Δ(k, n).
- (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)
- The Dressian is the polyhedral complex

$$\mathsf{Dr}(k,n) := \left\{ w \in \mathbb{R}^{\binom{n}{k}} \; \middle| \; \Sigma_w(\Delta(k,n)) \text{ is a matroid subdivision}
ight\} \cap \mathbb{S}^{\binom{n}{k}-1}.$$

- Elements of Dr(k, n) are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian Gr(k, n) parameterizes (realizable) subspaces of tropical projective space.

Definition

- A subdivision Σ of Δ(k, n) is called a matroid subdivision if all edges of Σ are edges of Δ(k, n).
- (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)
- The Dressian is the polyhedral complex

 $\mathsf{Dr}(k,n) := \left\{ w \in \mathbb{R}^{\binom{n}{k}} \; \middle| \; \Sigma_w(\Delta(k,n)) \text{ is a matroid subdivision}
ight\} \cap \mathbb{S}^{\binom{n}{k}-1}.$

- Elements of Dr(k, n) are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian Gr(k, n) parameterizes (realizable) subspaces of tropical projective space.

- A subdivision Σ of Δ(k, n) is called a matroid subdivision if all edges of Σ are edges of Δ(k, n).
- (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)
- The Dressian is the polyhedral complex

$$\mathsf{Dr}(k,n) := \left\{ w \in \mathbb{R}^{\binom{n}{k}} \; \left| \; \Sigma_w(\Delta(k,n)) \; \mathsf{is a matroid subdivision}
ight\} \cap \mathbb{S}^{\binom{n}{k} - 1}.$$

- Elements of Dr(k, n) are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian Gr(k, n) parameterizes (realizable) subspaces of tropical projective space.

- A subdivision Σ of Δ(k, n) is called a matroid subdivision if all edges of Σ are edges of Δ(k, n).
- (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)
- The Dressian is the polyhedral complex

$$\mathsf{Dr}(k,n) := \left\{ w \in \mathbb{R}^{\binom{n}{k}} \; \left| \; \Sigma_w(\Delta(k,n)) \; \mathsf{is a matroid subdivision}
ight\} \cap \mathbb{S}^{\binom{n}{k} - 1}.$$

- Elements of Dr(k, n) are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian Gr(k, n) parameterizes (realizable) subspaces of tropical projective space.

- A subdivision Σ of Δ(k, n) is called a matroid subdivision if all edges of Σ are edges of Δ(k, n).
- (Equivalently: Each face of Σ is a matroid polytope P_M, i.e. each vertex of P_M corresponds to a basis of M.)
- The Dressian is the polyhedral complex

$$\mathsf{Dr}(k,n) := \left\{ w \in \mathbb{R}^{\binom{n}{k}} \; \left| \; \Sigma_w(\Delta(k,n)) \; \mathsf{is a matroid subdivision}
ight\} \cap \mathbb{S}^{\binom{n}{k} - 1}.$$

- Elements of Dr(k, n) are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian Gr(k, n) parameterizes (realizable) subspaces of tropical projective space.

k = 2:

• Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.

Gr(2, n) = Dr(2, n) ≅ Split(∆(2, n)) is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

- ► Proof idea:
- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the boundary.
- Then use induction and the characterization of compatibility of hypersimplexes.

k = 2:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- Gr(2, n) = Dr(2, n) ≅ Split(Δ(2, n)) is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

- Proof idea:
- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the boundary.
- Then use induction and the characterization of compatibility of hypersimplexes.

k = 2:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- ► $Gr(2, n) = Dr(2, n) \cong Split(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

- Proof idea:
- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the boundary.
- Then use induction and the characterization of compatibility of hypersimplexes.

k = 2:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- ► $Gr(2, n) = Dr(2, n) \cong Split(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

 $Split(\Delta(k, n))$ is a subcomplex of Dr(k, n).

Proof idea:

- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the boundary.
- Then use induction and the characterization of compatibility of hypersimplexes.

k = 2:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- ► $Gr(2, n) = Dr(2, n) \cong Split(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

- Proof idea:
- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the boundary.
- Then use induction and the characterization of compatibility of hypersimplexes.

k = 2:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- ► $Gr(2, n) = Dr(2, n) \cong Split(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

- Proof idea:
- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the boundary.
- Then use induction and the characterization of compatibility of hypersimplexes.

The Split Complex and the Dressian

k = 2:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on *n* points.
- ► $Gr(2, n) = Dr(2, n) \cong Split(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)

 $Split(\Delta(k, n))$ is a subcomplex of Dr(k, n).

- Proof idea:
- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the boundary.
- Then use induction and the characterization of compatibility of hypersimplexes.

Theorem (Jensen, Joswig, Sturmfels, H. 08) The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta(n^2)$.

- dim Gr(3, n) is linear in n.

Theorem (Jensen, Joswig, Sturmfels, H. 08)

- dim Gr(3, n) is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
 - >> Uses Split(∆(3, n)).

Theorem (Jensen, Joswig, Sturmfels, H. 08)

- dim Gr(3, n) is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
 - ► Uses Split(∆(3, n)).
 - Find a stable set of the edge graph of ∆(3, n).

Theorem (Jensen, Joswig, Sturmfels, H. 08)

- dim Gr(3, n) is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
 - Uses Split($\Delta(3, n)$).
 - Find a stable set of the edge graph of $\Delta(3, n)$.

Theorem (Jensen, Joswig, Sturmfels, H. 08)

- dim Gr(3, n) is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
 - ► Uses Split(∆(3, n)).
 - Find a stable set of the edge graph of $\Delta(3, n)$.

Theorem (Jensen, Joswig, Sturmfels, H. 08)

- dim Gr(3, n) is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
 - Uses Split($\Delta(3, n)$).
 - Find a stable set of the edge graph of $\Delta(3, n)$.

Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook

Split: one combinatorial type, dual graph is an edge.

- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition

A subdivision of Σ of *P* is called *k*-split, if the tight span of Σ is a (k - 1)-dimensional simplex.

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition

A subdivision of Σ of *P* is called *k*-split, if the tight span of Σ is a (k - 1)-dimensional simplex.

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- ► Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition

A subdivision of Σ of *P* is called *k*-split, if the tight span of Σ is a (k - 1)-dimensional simplex.

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition

A subdivision of Σ of *P* is called *k*-split, if the tight span of Σ is a (k-1)-dimensional simplex.

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition

A subdivision of Σ of *P* is called *k*-split, if the tight span of Σ is a (k-1)-dimensional simplex.

Theorem (H. 08)

k-splits are regular.

- How does polytopes look like whose subdivisions are all induced by k-splits?
- Classification of these polytopes could lead to new interesting classes of polytopes whose secondary polytopes are computable.

Theorem (H. 08)

k-splits are regular.

- How does polytopes look like whose subdivisions are all induced by k-splits?
- Classification of these polytopes could lead to new interesting classes of polytopes whose secondary polytopes are computable.

Theorem (H. 08)

k-splits are regular.

- How does polytopes look like whose subdivisions are all induced by k-splits?
- Classification of these polytopes could lead to new interesting classes of polytopes whose secondary polytopes are computable.

Thanks for your attention!

