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Subdivisions

Definition
A subdivision of P is a collection Σ of polytopes (faces) such that

◮

⋃

F∈Σ
= P ,

◮ F ∈ Σ =⇒ all faces of F are in Σ,
◮ F1, F2 ∈ Σ =⇒ F1 ∩ F2 is a face of both,
◮ F 0-dimensional =⇒ F is a vertex of P .
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Refinements of Subdivisions

Definition
◮ Σ′ is a refinement of Σ if each face of Σ′ is contained in a face of Σ.
◮ The common refinement of two subdivisions Σ, Σ′ of P is the subdivision

{S ∩ S ′ | S ∈ Σ, S ′ ∈ Σ′}.

◮ The refinement defines a partial order on the set of all subdivisions of P .
◮ A finest subdivision (minimal element) is a triangulation.
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Splits of Convex Polytopes

Definition
A split S of a polytope P is a subdivision of P with exactly two maximal faces.

◮ A splits S is defined by a hyperplane HS .
◮ A hyperplane H (that meets the interior of P) defines a split if and only if

H does not cut any edge of P .
◮ =⇒ The splits of P only depend on the combinatorics (oriented matroid)

of P , not on the realization.
◮ Example: v a vertex of P such that all neighbors of v lie in a common

Hyperplane Hv : vertex split for v .
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Example: Hypersimplices

◮ ∆(k , n) := conv
{

∑

i∈I ei

∣

∣

∣
I ∈

(

{1,...,n}
k

)

}

⊂ R
n,

◮ n-dimensional unit cube cut with the hyperplane
∑

i xi = k ,
◮ For a partition (A, B) of {1, ... , n} define the (A, B; µ)-hyperplane by

∑

i∈A

xi = µ .

Satz (Joswig, H. 08)
The splits of ∆(k , n) correspond to the (A, B; µ)-hyperplanes with
k − µ + 1 ≤ |A| ≤ n − µ − 1 and 1 ≤ µ ≤ k − 1.

Theorem (Josiwg, H. 08)
The number of splits of ∆(k , n) equals (k − 1) (2n − (n − 1))−

∑k−1

i=2
(k − i)

(

n
i

)

.
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Regular Subdivisions

◮ w : vert P → R weight function,
◮ consider conv{(v , w(v)) | v ∈ vert P},
◮ project the lower convex hull down to P,
◮ the resulting subdivision Σw (P) is called regular.

Lemma
Splits are regular.
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The Secondary Polytope

◮ P d-dimensional polytope in R
d with n vertices v1, ... , vn,

Theorem (Gel′fand, Kapranov, Zelevinsky 90)
There exists an (n − d − 1)-dimensional polytope SecPoly(P) (secondary
polytope of P) whose face lattice is isomorphic to the poset of all regular
subdivisions of P .

◮ Vertices of SecPoly(P) correspond to triangulations Σ:
xΣ
i =

∑

vi∈S∈Σ
vol(S).

◮ Facets of SecPoly(P) correspond to coarsest regular subdivisions.
◮ The intersection of two faces corresponds to the common refinement of

the subdivisions corresponding to the faces.
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Splits and Secondary Polytopes

◮ Splits are facets of SecPoly(P), they define an approximation
SplitPoly(P) ⊃ SecPoly(P).

◮ This is a common approximation for all polytopes with the same oriented
matroid.

Theorem (Joswig, H. 09)
SecPoly(P) = SplitPoly(P) if and only if P is a simplex, polygon, cross
polytope, prism over a simplex, or a (possible multiple) join of these polytopes.
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(Weakly) Compatible Split Systems

Definition
Let S be a set of splits (split system) of a polytope P .

◮ We call S weakly compatible if the subdivisions S ∈ S have a common
refinement (without new vertices).

◮ We call S compatible if none of the split defining hyperplanes meet in the
interior of P .

◮ Example: Vertex splits are (weakly) compatible if and only if the
corresponding vertices are not connected by and edge.

◮ Stable set of the edge graph of a polytope yields a compatible split
system.
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The Split Complex

Definition
The split complex of a polytope P is the simplicial complex

Split(P) := {S | S set of compatible splits} .

◮ The weak split complex is defined in the same way (but is in general not
simplicial).

◮ These complexes can be seen as (kind of) subcomplexes of the dual
complex of the secondary polytope of P .
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(Weakly) Compatible Split Systems

Satz (Joswig, H. 08)

◮ The dual graph of a compatible split system is a tree.
◮ The dual graph of a weakly compatible split system is bipartite.
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Compatibility for Hypersimplices

Satz (Joswig, H. 08)
Two splits (A, B; µ) and (C , D; ν) of ∆(k , n) are compatible if and only if one of
the following holds:

|A ∩ C | ≤ k − µ − ν , |A ∩ D| ≤ ν − µ ,

|B ∩ C | ≤ µ − ν , or |B ∩ D| ≤ µ + ν − k .

◮ This allows an explicite computation of the split complex of ∆(k , n).
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Split Decomposition

◮ A decomposition w + w ′ of weight functions is called coherent if Σw (P)
and Σw ′(P) have a common refinement (Σw+w ′(P)).

◮ A weight function w is called split prime if Σw (P) does not refine any split.

Theorem (Bandelt, Dress 92; Hirai 06; Joswig, H. 08)
Each weight function w for a polytope P has a coherent decomposition

w = w0 +
∑

S∈S

α
w
wS

wS ,

where S is some weakly compatible set of splits and w0 is split prime. This
decomposition is unique.
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w = w0 +
∑

S∈S

α
w
wS

wS ,

where S is some weakly compatible set of splits and w0 is split prime. This
decomposition is unique.
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The Second Hypersimplex and Metric Spaces

◮ ∆(2, n) = conv {ei + ej | 1 ≤ i < j ≤ n}.
◮ Lifting functions of ∆(2, n) correspond to (pseudo-)metrics on n points.
◮ Splits of ∆(2, n) are in bijection with partitions (A, B) of {1, ... , n} where

each part has at least two elements.
◮ Originally, these were the splits of finite metric spaces defined by Bandelt

and Dress (92) for applications in biology.
◮ Two splits (A, B) and (C , D) of ∆(2, n) are compatible if and only if one of

the four sets A ∩ C , A ∩ D, B ∩ C , and B ∩ D is empty.
◮ This is the original definition of compatibility for splits of finite metric

spaces.
◮ There is also a combinatorial condition for weak compatibility.
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Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook
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Hypersimplices, Dressians, and Tropical
Grassmannians

Definition
◮ A subdivision Σ of ∆(k , n) is called a matroid subdivision if all edges of Σ

are edges of ∆(k , n).
◮ (Equivalently: Each face of Σ is a matroid polytope PM, i.e. each vertex

of PM corresponds to a basis of M.)
◮ The Dressian is the polyhedral complex

Dr(k , n) :=
{

w ∈ R
(n

k)
∣

∣

∣
Σw (∆(k , n)) is a matroid subdivision

}

∩ S
(n

k)−1.

◮ Elements of Dr(k , n) are the tropical Plücker vectors (Speyer 08).
◮ The tropical Grassmannian Gr(k , n) parameterizes (realizable) subspaces

of tropical projective space.

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 19



Hypersimplices, Dressians, and Tropical
Grassmannians

Definition
◮ A subdivision Σ of ∆(k , n) is called a matroid subdivision if all edges of Σ

are edges of ∆(k , n).
◮ (Equivalently: Each face of Σ is a matroid polytope PM, i.e. each vertex

of PM corresponds to a basis of M.)
◮ The Dressian is the polyhedral complex

Dr(k , n) :=
{

w ∈ R
(n

k)
∣

∣

∣
Σw (∆(k , n)) is a matroid subdivision

}

∩ S
(n

k)−1.

◮ Elements of Dr(k , n) are the tropical Plücker vectors (Speyer 08).
◮ The tropical Grassmannian Gr(k , n) parameterizes (realizable) subspaces

of tropical projective space.

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 19



Hypersimplices, Dressians, and Tropical
Grassmannians

Definition
◮ A subdivision Σ of ∆(k , n) is called a matroid subdivision if all edges of Σ

are edges of ∆(k , n).
◮ (Equivalently: Each face of Σ is a matroid polytope PM, i.e. each vertex

of PM corresponds to a basis of M.)
◮ The Dressian is the polyhedral complex

Dr(k , n) :=
{

w ∈ R
(n

k)
∣

∣

∣
Σw (∆(k , n)) is a matroid subdivision

}

∩ S
(n

k)−1.

◮ Elements of Dr(k , n) are the tropical Plücker vectors (Speyer 08).
◮ The tropical Grassmannian Gr(k , n) parameterizes (realizable) subspaces

of tropical projective space.

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 19



Hypersimplices, Dressians, and Tropical
Grassmannians

Definition
◮ A subdivision Σ of ∆(k , n) is called a matroid subdivision if all edges of Σ

are edges of ∆(k , n).
◮ (Equivalently: Each face of Σ is a matroid polytope PM, i.e. each vertex

of PM corresponds to a basis of M.)
◮ The Dressian is the polyhedral complex

Dr(k , n) :=
{

w ∈ R
(n

k)
∣

∣

∣
Σw (∆(k , n)) is a matroid subdivision

}

∩ S
(n

k)−1.

◮ Elements of Dr(k , n) are the tropical Plücker vectors (Speyer 08).
◮ The tropical Grassmannian Gr(k , n) parameterizes (realizable) subspaces

of tropical projective space.

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 19



Hypersimplices, Dressians, and Tropical
Grassmannians

Definition
◮ A subdivision Σ of ∆(k , n) is called a matroid subdivision if all edges of Σ

are edges of ∆(k , n).
◮ (Equivalently: Each face of Σ is a matroid polytope PM, i.e. each vertex

of PM corresponds to a basis of M.)
◮ The Dressian is the polyhedral complex

Dr(k , n) :=
{

w ∈ R
(n

k)
∣

∣

∣
Σw (∆(k , n)) is a matroid subdivision

}

∩ S
(n

k)−1.

◮ Elements of Dr(k , n) are the tropical Plücker vectors (Speyer 08).
◮ The tropical Grassmannian Gr(k , n) parameterizes (realizable) subspaces

of tropical projective space.

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 19



Hypersimplices, Dressians, and Tropical
Grassmannians

Definition
◮ A subdivision Σ of ∆(k , n) is called a matroid subdivision if all edges of Σ

are edges of ∆(k , n).
◮ (Equivalently: Each face of Σ is a matroid polytope PM, i.e. each vertex

of PM corresponds to a basis of M.)
◮ The Dressian is the polyhedral complex

Dr(k , n) :=
{

w ∈ R
(n

k)
∣

∣

∣
Σw (∆(k , n)) is a matroid subdivision

}

∩ S
(n

k)−1.

◮ Elements of Dr(k , n) are the tropical Plücker vectors (Speyer 08).
◮ The tropical Grassmannian Gr(k , n) parameterizes (realizable) subspaces

of tropical projective space.

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 19



The Split Complex and the Dressian

k = 2:
◮ Lifting functions of ∆(2, n) correspond to (pseudo-)metrics on n points.
◮ Gr(2, n) = Dr(2, n) ∼= Split(∆(2, n)) is the space of metric trees

(Bunemann 74; Billera, Holmes & Vogtmann 01).

Theorem (Joswig, H. 08)
Split(∆(k , n)) is a subcomplex of Dr(k , n).

◮ Proof idea:
◮ Splits are matroid subdivisions.
◮ Since the splits are compatible, additional edges can only occur in the

boundary.
◮ Then use induction and the characterization of compatibility of

hypersimplexes.
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The Dimension of Grassmannians and
Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian ∆(3, n) is of order Θ(n2).

◮ dim Gr(3, n) is linear in n.
◮ Upper bound: Speyer 08.
◮ Lower bound:

◮ Uses Split(∆(3, n)).
◮ Find a stable set of the edge graph of ∆(3, n).

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 21



The Dimension of Grassmannians and
Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian ∆(3, n) is of order Θ(n2).

◮ dim Gr(3, n) is linear in n.
◮ Upper bound: Speyer 08.
◮ Lower bound:

◮ Uses Split(∆(3, n)).
◮ Find a stable set of the edge graph of ∆(3, n).

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 21



The Dimension of Grassmannians and
Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian ∆(3, n) is of order Θ(n2).

◮ dim Gr(3, n) is linear in n.
◮ Upper bound: Speyer 08.
◮ Lower bound:

◮ Uses Split(∆(3, n)).
◮ Find a stable set of the edge graph of ∆(3, n).

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 21



The Dimension of Grassmannians and
Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian ∆(3, n) is of order Θ(n2).

◮ dim Gr(3, n) is linear in n.
◮ Upper bound: Speyer 08.
◮ Lower bound:

◮ Uses Split(∆(3, n)).
◮ Find a stable set of the edge graph of ∆(3, n).

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 21



The Dimension of Grassmannians and
Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian ∆(3, n) is of order Θ(n2).

◮ dim Gr(3, n) is linear in n.
◮ Upper bound: Speyer 08.
◮ Lower bound:

◮ Uses Split(∆(3, n)).
◮ Find a stable set of the edge graph of ∆(3, n).

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 21



The Dimension of Grassmannians and
Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian ∆(3, n) is of order Θ(n2).

◮ dim Gr(3, n) is linear in n.
◮ Upper bound: Speyer 08.
◮ Lower bound:

◮ Uses Split(∆(3, n)).
◮ Find a stable set of the edge graph of ∆(3, n).

Heilsbronn, February 24, 2009 | 62ème Séminaire | Sven Herrmann | 21



Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook
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Further Coarsest Subdivisions

◮ Split: one combinatorial type, dual graph is an edge.
◮ Three maximal faces: one combinatorial type, regular.
◮ Four maximal faces: three combinatorial types.
◮ More than four: gets complicated...

Definition
A subdivision of Σ of P is called k-split, if the tight span of Σ is a
(k − 1)-dimensional simplex.
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Further Coarsest Subdivisions

Theorem (H. 08)
k-splits are regular.

◮ How does polytopes look like whose subdivisions are all induced by
k-splits?

◮ Classification of these polytopes could lead to new interesting classes of
polytopes whose secondary polytopes are computable.
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Thanks for your attention!
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