Splitting Polytopes

Sven Herrmann (joint work with Michael Joswig)

TECHNISCHE UNIVERSITATT DARMSTADT
$62^{\text {ème }}$ Séminaire Lotharingien de Combinatoire

Heilsbronn, February $24,2009 \mid 62^{\text {ème }}$ Séminaire | Sven Herrmann | 1

Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook

Subdivisions

Definition

A subdivision of P is a collection Σ of polytopes (faces) such that

- $\bigcup_{F \in \Sigma}=P$,
- $F \in \Sigma \Longrightarrow$ all faces of F are in Σ,

Subdivisions

Definition

A subdivision of P is a collection Σ of polytopes (faces) such that

- $\bigcup_{F \in \Sigma}=P$,
- $F \in \Sigma \Longrightarrow$ all faces of F are in Σ,
- $F_{1}, F_{2} \in \Sigma \Longrightarrow F_{1} \cap F_{2}$ is a face of both,

Heilsbronn, February 24, 2009|62 ${ }^{\text {ème }}$ Séminaire | Sven Herrmann | 3

Subdivisions

Definition

A subdivision of P is a collection Σ of polytopes (faces) such that

- $\bigcup_{F \in \Sigma}=P$,
- $F \in \Sigma \Longrightarrow$ all faces of F are in Σ,
- $F_{1}, F_{2} \in \Sigma \Longrightarrow F_{1} \cap F_{2}$ is a face of both,
- F 0-dimensional $\Longrightarrow F$ is a vertex of P.

Refinements of Subdivisions

Definition

$\Rightarrow \Sigma^{\prime}$ is a refinement of Σ if each face of Σ^{\prime} is contained in a face of Σ. - The common refinement of two subdivisions Σ, Σ^{\prime} of P is the subdivision

Refinements of Subdivisions

TECHNISCHE UNIVERSITATT DARMSTADT

Definition

- Σ^{\prime} is a refinement of Σ if each face of Σ^{\prime} is contained in a face of Σ.
> The common refinement of two subdivisions Σ, Σ^{\prime} of P is the subdivision

Refinements of Subdivisions

Definition

- Σ^{\prime} is a refinement of Σ if each face of Σ^{\prime} is contained in a face of Σ.
- The common refinement of two subdivisions Σ, Σ^{\prime} of P is the subdivision

$$
\left\{S \cap S^{\prime} \mid S \in \Sigma, S^{\prime} \in \Sigma^{\prime}\right\} .
$$

Refinements of Subdivisions

Definition

- Σ^{\prime} is a refinement of Σ if each face of Σ^{\prime} is contained in a face of Σ.
- The common refinement of two subdivisions Σ, Σ^{\prime} of P is the subdivision

$$
\left\{S \cap S^{\prime} \mid S \in \Sigma, S^{\prime} \in \Sigma^{\prime}\right\} .
$$

Refinements of Subdivisions

Definition

- Σ^{\prime} is a refinement of Σ if each face of Σ^{\prime} is contained in a face of Σ.
- The common refinement of two subdivisions Σ, Σ^{\prime} of P is the subdivision

$$
\left\{S \cap S^{\prime} \mid S \in \Sigma, S^{\prime} \in \Sigma^{\prime}\right\} .
$$

- The refinement defines a partial order on the set of all subdivisions of P.
- A finest subdivision (minimal element) is a triangulation.

Refinements of Subdivisions

Definition

- Σ^{\prime} is a refinement of Σ if each face of Σ^{\prime} is contained in a face of Σ.
- The common refinement of two subdivisions Σ, Σ^{\prime} of P is the subdivision

$$
\left\{S \cap S^{\prime} \mid S \in \Sigma, S^{\prime} \in \Sigma^{\prime}\right\} .
$$

- The refinement defines a partial order on the set of all subdivisions of P.
- A finest subdivision (minimal element) is a triangulation.

Splits of Convex Polytopes

Definition

A split S of a polytope P is a subdivision of P with exactly two maximal faces.

- A splits S is defined by a hyperplane H_{S}.

Splits of Convex Polytopes

Definition

A split S of a polytope P is a subdivision of P with exactly two maximal faces.

- A splits S is defined by a hyperplane H_{S}.

A hyperplane H (that meets the interior of P) defines a split if and only if H does not cut any edge of P.

Splits of Convex Polytopes

Definition

A split S of a polytope P is a subdivision of P with exactly two maximal faces.

- A splits S is defined by a hyperplane H_{S}.
- A hyperplane H (that meets the interior of P) defines a split if and only if H does not cut any edge of P.
 of P, not on the realization.

Splits of Convex Polytopes

Definition

A split S of a polytope P is a subdivision of P with exactly two maximal faces.

- A splits S is defined by a hyperplane H_{S}.
- A hyperplane H (that meets the interior of P) defines a split if and only if H does not cut any edge of P.
- \Longrightarrow The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- Example: v a vertex of P such that all neighbors of v lie in a common Hyperplane H_{v} : vertex split for v.

Splits of Convex Polytopes

Definition

A split S of a polytope P is a subdivision of P with exactly two maximal faces.

- A splits S is defined by a hyperplane H_{S}.
- A hyperplane H (that meets the interior of P) defines a split if and only if H does not cut any edge of P.
- \Longrightarrow The splits of P only depend on the combinatorics (oriented matroid) of P, not on the realization.
- Example: v a vertex of P such that all neighbors of v lie in a common Hyperplane H_{v} : vertex split for v.

Example: Hypersimplices

- $\Delta(k, n):=\operatorname{conv}\left\{\sum_{i \in I} e_{i} \mid I \in(\underset{k}{\{1, \ldots, n\}})\right\} \subset \mathbb{R}^{n}$,
- n-dimensional unit cube cut with the hyperplane $\sum_{i} x_{i}=k$,

Example: Hypersimplices

- $\Delta(k, n):=\operatorname{conv}\left\{\sum_{i \in 1} e_{i} \left\lvert\, I \in\binom{\{1, \ldots, n\}}{k}\right.\right\} \subset \mathbb{R}^{n}$,
- n-dimensional unit cube cut with the hyperplane $\sum_{i} x_{i}=k$,

Example: Hypersimplices

- $\Delta(k, n):=\operatorname{conv}\left\{\sum_{i \in 1} e_{i} \left\lvert\, I \in\binom{\{1, \ldots, n\}}{k}\right.\right\} \subset \mathbb{R}^{n}$,
- n-dimensional unit cube cut with the hyperplane $\sum_{i} x_{i}=k$,
- For a partition (A, B) of $\{1, \ldots, n\}$ define the $(A, B ; \mu)$-hyperplane by

$$
\sum_{i \in A} x_{i}=\mu
$$

Satz (Joswig, H. 08)
The splits of $\Delta(k, n)$ correspond to the $(A, B ; \mu)$-hyperplanes with

Example: Hypersimplices

- $\Delta(k, n):=\operatorname{conv}\left\{\sum_{i \in 1} e_{i} \left\lvert\, I \in\binom{\{1, \ldots, n\}}{k}\right.\right\} \subset \mathbb{R}^{n}$,
- n-dimensional unit cube cut with the hyperplane $\sum_{i} x_{i}=k$,
- For a partition (A, B) of $\{1, \ldots, n\}$ define the $(A, B ; \mu)$-hyperplane by

$$
\sum_{i \in A} x_{i}=\mu .
$$

Satz (Joswig, H. 08)

The splits of $\Delta(k, n)$ correspond to the $(A, B ; \mu)$-hyperplanes with $k-\mu+1 \leq|A| \leq n-\mu-1$ and $1 \leq \mu \leq k-1$.

Example: Hypersimplices

- $\Delta(k, n):=\operatorname{conv}\left\{\sum_{i \in 1} e_{i} \mid I \in(\underset{k}{\{1, \ldots, n\}})\right\} \subset \mathbb{R}^{n}$,
- n-dimensional unit cube cut with the hyperplane $\sum_{i} x_{i}=k$,
- For a partition (A, B) of $\{1, \ldots, n\}$ define the $(A, B ; \mu)$-hyperplane by

$$
\sum_{i \in A} x_{i}=\mu .
$$

Satz (Joswig, H. 08)

The splits of $\Delta(k, n)$ correspond to the $(A, B ; \mu)$-hyperplanes with $k-\mu+1 \leq|A| \leq n-\mu-1$ and $1 \leq \mu \leq k-1$.
Theorem (Josiwg, H. 08)
The number of splits of $\Delta(k, n)$ equals $(k-1)\left(2^{n}-(n-1)\right)-\sum_{i=2}^{k-1}(k-i)\binom{n}{i}$.

Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook

Regular Subdivisions

- w: vert $P \rightarrow \mathbb{R}$ weight function,
- consider conv\{(v,w(v))|vGvert $P\}$, - project the lower convex hull down to P,

O

Regular Subdivisions

- w: vert $P \rightarrow \mathbb{R}$ weight function,
- consider conv $\{(v, w(v)) \mid v \in \operatorname{vert} P\}$,
- project the lower convex hull down to P,

Heilsbronn, February 24, 2009 | 62 ème Séminaire | Sven Herrmann | 8

Regular Subdivisions

- $w:$ vert $P \rightarrow \mathbb{R}$ weight function,
- consider $\operatorname{conv}\{(v, w(v)) \mid v \in \operatorname{vert} P\}$,
- project the lower convex hull down to P,
- the resulting subdivision $\Sigma_{w}(P)$ is called regular.

Regular Subdivisions

- w : vert $P \rightarrow \mathbb{R}$ weight function,
- consider $\operatorname{conv}\{(v, w(v)) \mid v \in \operatorname{vert} P\}$,
- project the lower convex hull down to P,
- the resulting subdivision $\Sigma_{w}(P)$ is called regular.

Regular Subdivisions

- w : vert $P \rightarrow \mathbb{R}$ weight function,
- consider $\operatorname{conv}\{(v, w(v)) \mid v \in \operatorname{vert} P\}$,
- project the lower convex hull down to P ,
- the resulting subdivision $\Sigma_{w}(P)$ is called regular.

Lemma

Splits are regular.

The Secondary Polytope

- $P d$-dimensional polytope in \mathbb{R}^{d} with n vertices v_{1}, \ldots, v_{n},

There exists an ($n-d-1$)-dimensional polytope SecPoly (P) (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P .

The Secondary Polytope

- $P d$-dimensional polytope in \mathbb{R}^{d} with n vertices v_{1}, \ldots, v_{n},

Theorem (Gel'fand, Kapranov, Zelevinsky 90)
There exists an ($n-d-1$)-dimensional polytope SecPoly (P) (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P.

- Vertices of $\operatorname{SecPoly}(P)$ correspond to triangulations Σ :

The Secondary Polytope

- $P d$-dimensional polytope in \mathbb{R}^{d} with n vertices v_{1}, \ldots, v_{n},

Theorem (Gel'fand, Kapranov, Zelevinsky 90)
There exists an ($n-d-1$)-dimensional polytope SecPoly (P) (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P.

- Vertices of $\operatorname{SecPoly}(P)$ correspond to triangulations Σ : $x_{i}^{\Sigma}=\sum_{v_{i} \in S \in \Sigma} \operatorname{vol}(S)$.
- Facets of SecPoly (P) correspond to coarsest regular subdivisions.

The Secondary Polytope

- $P d$-dimensional polytope in \mathbb{R}^{d} with n vertices v_{1}, \ldots, v_{n},

Theorem (Gel'fand, Kapranov, Zelevinsky 90)

There exists an ($n-d-1$)-dimensional polytope SecPoly (P) (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P.

- Vertices of $\operatorname{SecPoly}(P)$ correspond to triangulations Σ : $x_{i}^{\Sigma}=\sum_{v_{i} \in S \in \Sigma} \operatorname{vol}(S)$.
- Facets of $\operatorname{SecPoly}(P)$ correspond to coarsest regular subdivisions. the subdivisions corresponding to the faces.

The Secondary Polytope

- $P d$-dimensional polytope in \mathbb{R}^{d} with n vertices v_{1}, \ldots, v_{n},

Theorem (Gel'fand, Kapranov, Zelevinsky 90)

There exists an ($n-d-1$)-dimensional polytope SecPoly (P) (secondary polytope of P) whose face lattice is isomorphic to the poset of all regular subdivisions of P.

- Vertices of $\operatorname{SecPoly}(P)$ correspond to triangulations Σ : $x_{i}^{\Sigma}=\sum_{v_{i} \in S \in \Sigma} \operatorname{vol}(S)$.
- Facets of $\operatorname{SecPoly}(P)$ correspond to coarsest regular subdivisions.
- The intersection of two faces corresponds to the common refinement of the subdivisions corresponding to the faces.

Splits and Secondary Polytopes

- Splits are facets of $\operatorname{SecPoly}(P)$, they define an approximation SplitPoly $(P) \supset$ SecPoly (P).
- This is a common approximation for all polytopes with the same oriented matroid.

Splits and Secondary Polytopes

- Splits are facets of $\operatorname{SecPoly}(P)$, they define an approximation SplitPoly $(P) \supset$ SecPoly (P).
- This is a common approximation for all polytopes with the same oriented matroid.

Splits and Secondary Polytopes

- Splits are facets of $\operatorname{SecPoly}(P)$, they define an approximation SplitPoly $(P) \supset$ SecPoly (P).
- This is a common approximation for all polytopes with the same oriented matroid.

Theorem (Joswig, H. 09)
SecPoly $(P)=$ SplitPoly (P) if and only if P is a simplex, polygon, cross polytope, prism over a simplex, or a (possible multiple) join of these polytopes.

Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook

(Weakly) Compatible Split Systems

Definition

Let \mathcal{S} be a set of splits (split system) of a polytope P.

- We call \mathcal{S} weakly compatible if the subdivisions $S \in \mathcal{S}$ have a common refinement (without new vertices).

(Weakly) Compatible Split Systems

Definition

Let \mathcal{S} be a set of splits (split system) of a polytope P.

- We call \mathcal{S} weakly compatible if the subdivisions $S \in \mathcal{S}$ have a common refinement (without new vertices).
- We call \mathcal{S} compatible if none of the split defining hyperplanes meet in the interior of P.

(Weakly) Compatible Split Systems

Definition

Let \mathcal{S} be a set of splits (split system) of a polytope P.

- We call \mathcal{S} weakly compatible if the subdivisions $S \in \mathcal{S}$ have a common refinement (without new vertices).
- We call \mathcal{S} compatible if none of the split defining hyperplanes meet in the interior of P.
- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by and edge.
\square

(Weakly) Compatible Split Systems

Definition

Let \mathcal{S} be a set of splits (split system) of a polytope P.

- We call \mathcal{S} weakly compatible if the subdivisions $S \in \mathcal{S}$ have a common refinement (without new vertices).
- We call \mathcal{S} compatible if none of the split defining hyperplanes meet in the interior of P.
- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by and edge.
- Stable set of the edge graph of a polytope yields a compatible split system.

(Weakly) Compatible Split Systems

Definition

Let \mathcal{S} be a set of splits (split system) of a polytope P.

- We call \mathcal{S} weakly compatible if the subdivisions $S \in \mathcal{S}$ have a common refinement (without new vertices).
- We call \mathcal{S} compatible if none of the split defining hyperplanes meet in the interior of P.
- Example: Vertex splits are (weakly) compatible if and only if the corresponding vertices are not connected by and edge.
- Stable set of the edge graph of a polytope yields a compatible split system.

The Split Complex

Definition

The split complex of a polytope P is the simplicial complex

$$
\text { Split }(P):=\{\mathcal{S} \mid \mathcal{S} \text { set of compatible splits }\} .
$$

- The weak split complex is defined in the same way (but is in general not simplicial).

These complexes can be seen as (kind of) subcomplexes of the dual

The Split Complex

Definition

The split complex of a polytope P is the simplicial complex

$$
\text { Split }(P):=\{\mathcal{S} \mid \mathcal{S} \text { set of compatible splits }\} .
$$

- The weak split complex is defined in the same way (but is in general not simplicial).
- These complexes can be seen as (kind of) subcomplexes of the dual complex of the secondary polytope of P.

The Split Complex

Definition

The split complex of a polytope P is the simplicial complex

$$
\text { Split }(P):=\{\mathcal{S} \mid \mathcal{S} \text { set of compatible splits }\} .
$$

- The weak split complex is defined in the same way (but is in general not simplicial).
- These complexes can be seen as (kind of) subcomplexes of the dual complex of the secondary polytope of P.

(Weakly) Compatible Split Systems

Satz (Joswig, H. 08)

- The dual graph of a compatible split system is a tree.

The dual graph of a weakly compatible split system is bipartite.

(Weakly) Compatible Split Systems

Satz (Joswig, H. 08)

- The dual graph of a compatible split system is a tree.
- The dual graph of a weakly compatible split system is bipartite.

(Weakly) Compatible Split Systems

Satz (Joswig, H. 08)

- The dual graph of a compatible split system is a tree.
- The dual graph of a weakly compatible split system is bipartite.

Compatibility for Hypersimplices

Satz (Joswig, H. 08)
Two splits $(A, B ; \mu)$ and $(C, D ; \nu)$ of $\Delta(k, n)$ are compatible if and only if one of the following holds:

$$
\begin{aligned}
& |A \cap C| \leq k-\mu-\nu, \\
& |B \cap C| \leq \mu-\nu,
\end{aligned}
$$

$$
|A \cap D| \leq \nu-\mu
$$

$$
\text { or }|B \cap D| \leq \mu+\nu-k
$$

Compatibility for Hypersimplices

Satz (Joswig, H. 08)

Two splits $(A, B ; \mu)$ and $(C, D ; \nu)$ of $\Delta(k, n)$ are compatible if and only if one of the following holds:

$$
\begin{aligned}
& |A \cap C| \leq k-\mu-\nu, \\
& |B \cap C| \leq \mu-\nu,
\end{aligned}
$$

$$
|A \cap D| \leq \nu-\mu
$$

$$
\text { or }|B \cap D| \leq \mu+\nu-k \text {. }
$$

- This allows an explicite computation of the split complex of $\Delta(k, n)$.

Split Decomposition

- A decomposition $w+w^{\prime}$ of weight functions is called coherent if $\Sigma_{w}(P)$ and $\Sigma_{w^{\prime}}(P)$ have a common refinement $\left(\Sigma_{w+w^{\prime}}(P)\right)$.

Each weight function w for a polytope P has a coherent decomposition
where \mathcal{S} is some weakly compatible set of splits and w_{0} is split prime. This decomposition is unique.

Split Decomposition

- A decomposition $w+w^{\prime}$ of weight functions is called coherent if $\Sigma_{w}(P)$ and $\Sigma_{w^{\prime}}(P)$ have a common refinement $\left(\Sigma_{w+w^{\prime}}(P)\right)$.
- A weight function w is called split prime if $\Sigma_{w}(P)$ does not refine any split.

Each weight function w for a polytope P has a coherent decomposition

where \mathcal{S} is some weakly compatible set of splits and w_{0} is split prime. This decomposition is unique.

Split Decomposition

- A decomposition $w+w^{\prime}$ of weight functions is called coherent if $\Sigma_{w}(P)$ and $\Sigma_{w^{\prime}}(P)$ have a common refinement $\left(\Sigma_{w+w^{\prime}}(P)\right)$.
- A weight function w is called split prime if $\Sigma_{w}(P)$ does not refine any split.

Theorem (Bandelt, Dress 92; Hirai 06; Joswig, H. 08)
Each weight function w for a polytope P has a coherent decomposition

$$
w=w_{0}+\sum_{S \in \mathcal{S}} \alpha_{w_{S}}^{w} w_{S}
$$

where \mathcal{S} is some weakly compatible set of splits and w_{0} is split prime. This decomposition is unique.

The Second Hypersimplex and Metric Spaces

- $\Delta(2, n)=\operatorname{conv}\left\{e_{i}+e_{j} \mid 1 \leq i<j \leq n\right\}$.
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points. Splits of $\Delta(2, n)$ are in bijection with partitions (A, B) of $\{1, \ldots, n\}$ where each part has at least two elements.

The Second Hypersimplex and Metric Spaces

- $\Delta(2, n)=\operatorname{conv}\left\{e_{i}+e_{j} \mid 1 \leq i<j \leq n\right\}$.
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points. each part has at least two elements.
Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.

The Second Hypersimplex and Metric Spaces

- $\Delta(2, n)=\operatorname{conv}\left\{e_{i}+e_{j} \mid 1 \leq i<j \leq n\right\}$.
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- Splits of $\Delta(2, n)$ are in bijection with partitions (A, B) of $\{1, \ldots, n\}$ where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.

The Second Hypersimplex and Metric Spaces

- $\Delta(2, n)=\operatorname{conv}\left\{e_{i}+e_{j} \mid 1 \leq i<j \leq n\right\}$.
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- Splits of $\Delta(2, n)$ are in bijection with partitions (A, B) of $\{1, \ldots, n\}$ where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
\Rightarrow Two splits (A, B) and (C, D) of $\Delta(2, n)$ are compatible if and only if one of the four sets $A \cap C, A \cap D, B \cap C$, and $B \cap D$ is empty.

The Second Hypersimplex and Metric Spaces

- $\Delta(2, n)=\operatorname{conv}\left\{e_{i}+e_{j} \mid 1 \leq i<j \leq n\right\}$.
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- Splits of $\Delta(2, n)$ are in bijection with partitions (A, B) of $\{1, \ldots, n\}$ where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of $\Delta(2, n)$ are compatible if and only if one of the four sets $A \cap C, A \cap D, B \cap C$, and $B \cap D$ is empty.

The Second Hypersimplex and Metric Spaces

- $\Delta(2, n)=\operatorname{conv}\left\{e_{i}+e_{j} \mid 1 \leq i<j \leq n\right\}$.
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- Splits of $\Delta(2, n)$ are in bijection with partitions (A, B) of $\{1, \ldots, n\}$ where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of $\Delta(2, n)$ are compatible if and only if one of the four sets $A \cap C, A \cap D, B \cap C$, and $B \cap D$ is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.

The Second Hypersimplex and Metric Spaces

- $\Delta(2, n)=\operatorname{conv}\left\{e_{i}+e_{j} \mid 1 \leq i<j \leq n\right\}$.
- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- Splits of $\Delta(2, n)$ are in bijection with partitions (A, B) of $\{1, \ldots, n\}$ where each part has at least two elements.
- Originally, these were the splits of finite metric spaces defined by Bandelt and Dress (92) for applications in biology.
- Two splits (A, B) and (C, D) of $\Delta(2, n)$ are compatible if and only if one of the four sets $A \cap C, A \cap D, B \cap C$, and $B \cap D$ is empty.
- This is the original definition of compatibility for splits of finite metric spaces.
- There is also a combinatorial condition for weak compatibility.

Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook

Hypersimplices, Dressians, and Tropical Grassmannians

Definition

A subdivision Σ of $\Delta(k, n)$ is called a matroid subdivision if all edges of Σ are edges of $\Delta(k, n)$.

Hypersimplices, Dressians, and Tropical Grassmannians

Definition

- A subdivision Σ of $\Delta(k, n)$ is called a matroid subdivision if all edges of Σ are edges of $\Delta(k, n)$.
- (Equivalently: Each face of Σ is a matroid polytope $P_{\mathcal{M}}$, i.e. each vertex of $P_{\mathcal{M}}$ corresponds to a basis of \mathcal{M}.)

Hypersimplices, Dressians, and Tropical Grassmannians

Definition

- A subdivision Σ of $\Delta(k, n)$ is called a matroid subdivision if all edges of Σ are edges of $\Delta(k, n)$.
- (Equivalently: Each face of Σ is a matroid polytope $P_{\mathcal{M}}$, i.e. each vertex of $P_{\mathcal{M}}$ corresponds to a basis of \mathcal{M}.)
- The Dressian is the polyhedral complex

Hypersimplices, Dressians, and Tropical Grassmannians

Definition

- A subdivision Σ of $\Delta(k, n)$ is called a matroid subdivision if all edges of Σ are edges of $\Delta(k, n)$.
- (Equivalently: Each face of Σ is a matroid polytope $P_{\mathcal{M}}$, i.e. each vertex of $P_{\mathcal{M}}$ corresponds to a basis of \mathcal{M}.)
- The Dressian is the polyhedral complex

$$
\operatorname{Dr}(k, n):=\left\{\left.w \in \mathbb{R}^{\binom{n}{k}} \right\rvert\, \Sigma_{w}(\Delta(k, n)) \text { is a matroid subdivision }\right\} \cap \mathbb{S}^{\binom{n}{k}-1} .
$$

- Elements of $\operatorname{Dr}(k, n)$ are the tropical Plücker vectors (Speyer 08).

Hypersimplices, Dressians, and Tropical Grassmannians

Definition

- A subdivision Σ of $\Delta(k, n)$ is called a matroid subdivision if all edges of Σ are edges of $\Delta(k, n)$.
- (Equivalently: Each face of Σ is a matroid polytope $P_{\mathcal{M}}$, i.e. each vertex of $P_{\mathcal{M}}$ corresponds to a basis of \mathcal{M}.)
- The Dressian is the polyhedral complex

$$
\operatorname{Dr}(k, n):=\left\{\left.w \in \mathbb{R}^{\binom{n}{k}} \right\rvert\, \Sigma_{w}(\Delta(k, n)) \text { is a matroid subdivision }\right\} \cap \mathbb{S}^{\binom{n}{k}-1} .
$$

- Elements of $\operatorname{Dr}(k, n)$ are the tropical Plücker vectors (Speyer 08).
of tropical projective space.

Hypersimplices, Dressians, and Tropical Grassmannians

Definition

- A subdivision Σ of $\Delta(k, n)$ is called a matroid subdivision if all edges of Σ are edges of $\Delta(k, n)$.
- (Equivalently: Each face of Σ is a matroid polytope $P_{\mathcal{M}}$, i.e. each vertex of $P_{\mathcal{M}}$ corresponds to a basis of \mathcal{M}.)
- The Dressian is the polyhedral complex

$$
\operatorname{Dr}(k, n):=\left\{\left.w \in \mathbb{R}^{\binom{n}{k}} \right\rvert\, \Sigma_{w}(\Delta(k, n)) \text { is a matroid subdivision }\right\} \cap \mathbb{S}^{\binom{n}{k}-1} .
$$

- Elements of $\operatorname{Dr}(k, n)$ are the tropical Plücker vectors (Speyer 08).
- The tropical Grassmannian $\operatorname{Gr}(k, n)$ parameterizes (realizable) subspaces of tropical projective space.

The Split Complex and the Dressian

$k=2$:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points. (Bunemann 74; Billera, Holmes \& Vogtmann 01).

The Split Complex and the Dressian

$k=2$:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- $\operatorname{Gr}(2, n)=\operatorname{Dr}(2, n) \cong \operatorname{Split}(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes \& Vogtmann 01).

The Split Complex and the Dressian

$k=2$:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- $\operatorname{Gr}(2, n)=\operatorname{Dr}(2, n) \cong \operatorname{Split}(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes \& Vogtmann 01).

Theorem (Joswig, H. 08)
$\operatorname{Split}(\Delta(k, n))$ is a subcomplex of $\operatorname{Dr}(k, n)$.

- Proof idea:

The Split Complex and the Dressian

$k=2$:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- $\operatorname{Gr}(2, n)=\operatorname{Dr}(2, n) \cong \operatorname{Split}(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes \& Vogtmann 01).

Theorem (Joswig, H. 08)
$\operatorname{Split}(\Delta(k, n))$ is a subcomplex of $\operatorname{Dr}(k, n)$.

- Proof idea:
- Splits are matroid subdivisions.

The Split Complex and the Dressian

$k=2$:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- $\operatorname{Gr}(2, n)=\operatorname{Dr}(2, n) \cong \operatorname{Split}(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes \& Vogtmann 01).

Theorem (Joswig, H. 08)
$\operatorname{Split}(\Delta(k, n))$ is a subcomplex of $\operatorname{Dr}(k, n)$.

- Proof idea:
- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the

The Split Complex and the Dressian

$k=2:$

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- $\operatorname{Gr}(2, n)=\operatorname{Dr}(2, n) \cong \operatorname{Split}(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes \& Vogtmann 01).

Theorem (Joswig, H. 08) $\operatorname{Split}(\Delta(k, n))$ is a subcomplex of $\operatorname{Dr}(k, n)$.

- Proof idea:
- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the boundary.
- Then use induction and the characterization of compatibility of

The Split Complex and the Dressian

$k=2$:

- Lifting functions of $\Delta(2, n)$ correspond to (pseudo-)metrics on n points.
- $\operatorname{Gr}(2, n)=\operatorname{Dr}(2, n) \cong \operatorname{Split}(\Delta(2, n))$ is the space of metric trees (Bunemann 74; Billera, Holmes \& Vogtmann 01).

Theorem (Joswig, H. 08)
$\operatorname{Split}(\Delta(k, n))$ is a subcomplex of $\operatorname{Dr}(k, n)$.

- Proof idea:
- Splits are matroid subdivisions.
- Since the splits are compatible, additional edges can only occur in the boundary.
- Then use induction and the characterization of compatibility of hypersimplexes.

The Dimension of Grassmannians and Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta\left(n^{2}\right)$.

The Dimension of Grassmannians and Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta\left(n^{2}\right)$.

- $\operatorname{dim} \operatorname{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.
- Lower bound:

The Dimension of Grassmannians and Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta\left(n^{2}\right)$.

- $\operatorname{dim} \operatorname{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.

The Dimension of Grassmannians and Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta\left(n^{2}\right)$.

- $\operatorname{dim} \operatorname{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.
- Lower bound:

The Dimension of Grassmannians and Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta\left(n^{2}\right)$.

- $\operatorname{dim} \operatorname{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
- Uses Split($\Delta(3, n))$.
- Find a stable set of the edge graph of $\Delta(3, n)$.

The Dimension of Grassmannians and Dressians

Theorem (Jensen, Joswig, Sturmfels, H. 08)
The dimension of the Dressian $\Delta(3, n)$ is of order $\Theta\left(n^{2}\right)$.

- $\operatorname{dim} \operatorname{Gr}(3, n)$ is linear in n.
- Upper bound: Speyer 08.
- Lower bound:
- Uses Split $(\Delta(3, n))$.
- Find a stable set of the edge graph of $\Delta(3, n)$.

Subdivisions and Splits of Convex Polytopes

Regular Subdivisions and Secondary Polytopes

Properties of Splits

Application: Tropical Geometry

Generalizations/Outlook

Further Coarsest Subdivisions

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.

Further Coarsest Subdivisions

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.

Further Coarsest Subdivisions

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Further Coarsest Subdivisions

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition
A subdivision of Σ of P is called k-split, if the tight span of Σ is a ($k-1$)-dimensional simplex.

Further Coarsest Subdivisions

- Split: one combinatorial type, dual graph is an edge.
- Three maximal faces: one combinatorial type, regular.
- Four maximal faces: three combinatorial types.
- More than four: gets complicated...

Definition

A subdivision of Σ of P is called k-split, if the tight span of Σ is a ($k-1$)-dimensional simplex.

Further Coarsest Subdivisions

Theorem (H. 08)
k-splits are regular.

- How does polytopes look like whose subdivisions are all induced by k-splits?

Classification of these polytopes could lead to new interesting classes of polytopes whose secondary polytopes are computable.

Further Coarsest Subdivisions

Theorem (H. 08)
k-splits are regular.

- How does polytopes look like whose subdivisions are all induced by k-splits?
- Classification of these polytopes could lead to new interesting classes of polytopes whose secondary polytopes are computable.

Further Coarsest Subdivisions

Theorem (H. 08)
k-splits are regular.

- How does polytopes look like whose subdivisions are all induced by k-splits?
- Classification of these polytopes could lead to new interesting classes of polytopes whose secondary polytopes are computable.

Thanks for your attention!

