Recursive enumeration

Bijections 00000000 Conclusion 000

Pattern-avoiding fillings of Young diagrams

Matthieu Josuat-Vergès

Université Paris-sud

Séminaire Lotharingien de Combinatoire '09

Conclusion 000

Introduction

Let λ be a Young diagram.

Definition

A J-diagram of shape λ is a 0-1 filling of λ such that: for any 0 in the diagram, all cells to its left contain 0, or all cells above it contain 0.

Example

- (A. Postnikov, positive Grassmann cells)
- (G. Cauchon, primes in quantum algebras)

Recursive enumeration 0000000

Bijections 00000000 Conclusion 000

Equivalently, they are the 0-1 fillings of λ such that the patterns $^{11}_{10}$ and $^{01}_{10}$ are forbidden.

Definition

A permutation tableau is a J-diagram with at least a 1 per column.

Proposition

There is a bijection between between permutation tableaux and permutations.

Bijections 00000000 Conclusion 000

Another kind of pattern-avoiding fillings are the 0-1 tableaux (De Medicis, Stanton and White)

The only condition is that there is exactly a 1 per column.

Example

They are in bijection with set partitions.

Bijections 00000000 Conclusion 000

Another kind of pattern-avoiding fillings are the rook placements. The condition is that there at most a 1 per row, at most a 1 per column.

Example

They are in bijection with partial involutions.

Conclusion 000

- a vertex for each row or column of λ ,
- an edge for each cell of λ

Conclusion 000

- a vertex for each row or column of λ ,
- an edge for each cell of λ

Bijections 00000000 Conclusion 000

- a vertex for each row or column of λ ,
- an edge for each cell of λ

Bijections 00000000 Conclusion 000

- a vertex for each row or column of λ ,
- an edge for each cell of λ

Bijections 00000000 Conclusion 000

- a vertex for each row or column of λ ,
- an edge for each cell of λ

Bijections 00000000 Conclusion 000

- a vertex for each row or column of λ ,
- an edge for each cell of λ

Bijections 00000000 Conclusion 000

- a vertex for each row or column of λ ,
- an edge for each cell of λ

Bijections 00000000 Conclusion 000

We define a graph G_{λ} with:

- a vertex for each row or column of λ ,
- an edge for each cell of λ

Proposition

The orientations of G_{λ} are in bijection with the 0-1 fillings of λ .

For example, 0 correspond to \int and 1 to \int

Proposition

The acyclic orientations of G_{λ} are in bijection with the 0-1 fillings of λ avoiding the patterns ${}^{10}_{01}$ and ${}^{01}_{10}$. These two patterns correspond to the 4-cycles and λ .

An orientation of G_{λ} is acyclic iff there is no 4-cycle.

Recursive enumeration

Bijections 00000000 Conclusion 000

Part 1:

Recursive enumeration of pattern-avoiding 0-1 fillings

Conclusion 000

From a Young diagram λ we define strictly smaller Young diagrams:

The number F_{λ} of \Box -diagrams of shape λ satisfies:

$$F_{\lambda} = F_{\lambda^{(1)}} + F_{\lambda^{(2)}} + F_{\lambda^{(3)}} - F_{\lambda^{(4)}}$$

Recursive enumeration

Bijections 00000000 Conclusion 000

Proof.

$$\lambda^{(1)} = \boxed{\qquad} \lambda^{(2)} = \boxed{\qquad}$$

$$F_{\lambda} = F_{\lambda^{(1)}} + F_{\lambda^{(2)}} + F_{\lambda^{(3)}} - F_{\lambda^{(4)}}$$

$$\lambda^{(3)} = \boxed{\qquad} \lambda^{(4)} = \boxed{\qquad}$$

The number of J-diagrams of shape λ with a 1 in the corner is

 $F_{\lambda^{(1)}}$.

The number of J-diagrams of shape λ with a 0 in the corner is

$$F_{\lambda^{(2)}} + F_{\lambda^{(3)}} - F_{\lambda^{(4)}}.$$

Recursive enumeration

Bijections 00000000 Conclusion 000

There are similar recurrence relation for rook placements:

and for 0-1 tableaux:

$$P_{\lambda} = P_{\lambda^{(1)}} + P_{\lambda^{(3)}} \qquad \lambda^{(1)} =$$

Bijections 00000000 Conclusion 000

Let λ be the Young diagram with *i* empty rows, *j* empty columns, and $|\lambda| = 0$. The initial conditions are:

$$P_{\lambda} = T_{\lambda} = \delta_{j0}$$

for permutation tableaux, 0-1 tableaux (*i.e.* when we require at least a 1 per column), and:

$$A_{\lambda} = F_{\lambda} = R_{\lambda} = 1$$

for acyclic orientations, J-diagrams, rook placements.

Recursive enumeration

Bijections 00000000 Conclusion 000

Proposition (Postnikov)

The number A_{λ} of acyclic orientations of the graph G_{λ} satisfies:

$$oldsymbol{A}_{\lambda}=oldsymbol{A}_{\lambda^{(1)}}+oldsymbol{A}_{\lambda^{(2)}}+oldsymbol{A}_{\lambda^{(3)}}-oldsymbol{A}_{\lambda^{(4)}}$$

Proof.

We have $A_{\lambda} = \chi_{\lambda}(-1)$ where χ_{λ} is the chromatic polynomial of G_{λ} (Stanley). We prove the result for $\chi_{\lambda}(x)$ when $x \ge 0$ (enumeration of proper colorings).

Then we specialize at x = -1.

Bijections 00000000 Conclusion 000

Corollary

For any
$$\lambda$$
, $A_{\lambda} = F_{\lambda}$.

This result means that the number of pattern-avoiding fillings of λ are the same, if the patterns are:

- ${}^{10}_{01}$ and ${}^{01}_{10}$ (acyclic orientations)
- or $\frac{11}{10}$ and $\frac{01}{10}$ (J-diagrams).

Bijections 00000000 Conclusion 000

Corollary

For any
$$\lambda$$
, $A_{\lambda} = F_{\lambda}$.

This result means that the number of pattern-avoiding fillings of λ are the same, if the patterns are:

- ${}^{10}_{01}$ and ${}^{01}_{10}$ (acyclic orientations)
- or $\frac{11}{10}$ and $\frac{01}{10}$ (J-diagrams).

Proposition (Postnikov, Spiridonov)

The same holds for the patterns ${}^{11}_{11}$ and ${}^{10}_{11}$, ${}^{11}_{11}$ and ${}^{01}_{11}$, ${}^{10}_{11}$ and ${}^{01}_{11}$, ${}^{10}_{11}$ and ${}^{10}_{11}$ (and patterns obtained by transposition, complement).

Recursive enumeration 0000000

Bijections •0000000

Conclusion 000

Part 2:

Bijections

Recursive enumeration

Bijections 00000000 Conclusion 000

Definition

A row in a 0-1 filling of λ is unrestricted if it contains no 0 with a 1 above it.

Proposition

The number of unrestricted rows in permutation tableaux is equidistribued with the number of cycles in permutations.

Bijections

Conclusion 000

Definition

A row in a 0-1 filling of λ is unrestricted if it contains no 0 with a 1 above it.

Proposition

The number of unrestricted rows in permutation tableaux is equidistribued with the number of cycles in permutations.

Theorem

There is a bijection Φ between acyclic orientations of G_{λ} and \square -diagrams of shape λ , preserving the set of unrestricted rows and the set of zero-columns (there is also a bijection preserving the set of zero-rows and zero-columns).

Conclusion 000

Definition

A mixed diagram of shape λ is a 0-1 filling such that:

- the k-1 first rows avoid the patterns ${}^{01}_{10}$ and ${}^{10}_{01}$,
- for any 0 in the bottom row, either all entries to its left contain 0 or all entries above contain 0.

Example

where the blue region avoids $^{10}_{01}$ and $^{01}_{10}$

Conclusion 000

Definition

A mixed diagram of shape λ is a 0-1 filling such that:

- the k-1 first rows avoid the patterns ${}^{01}_{10}$ and ${}^{10}_{01}$,
- for any 0 in the bottom row, either all entries to its left contain 0 or all entries above contain 0.

Example

where the blue region avoids $^{10}_{01}$ and $^{01}_{10}$

Proposition

There is a bijection φ between acyclic orientations of G_{λ} and mixed diagrams of shape λ , preserving the set of unrestricted rows and the set of zero-columns (there is also a bijection preserving the set of zero-rows and zero-columns).

Bijections

Conclusion 000

For any acyclic orientation A with k rows, the J-diagram $\Phi(A)$ is recursively obtained as follows: take the mixed diagram $\varphi(A)$, and replace the k - 1 first rows with their image by Φ .

Example

A and A' are acyclic orientation of G_{λ} .

For an acyclic orientation A, the mixed diagram $\varphi(A)$ is defined as follows.

Definition

The pivot column of A is a column

- containing a 0 in bottom position
- containing a maximum number of 1's
- in leftmost position

For an acyclic orientation A, the mixed diagram $\varphi(A)$ is defined as follows.

Definition

The pivot column of A is a column

- containing a 0 in bottom position
- containing a maximum number of 1's
- in leftmost position

We put 0's on the left of the pivot column.

For an acyclic orientation A, the mixed diagram $\varphi(A)$ is defined as follows.

Definition

The pivot column of A is a column

- containing a 0 in bottom position
- containing a maximum number of 1's
- in leftmost position

We put 0's on the left of the pivot column.

We put 1's on the right of the pivot column (exception: a zero-column stays a zero-column, a copy of the pivot column becomes a column with a single 1 in bottom position)

Recursive enumeration

Bijections 00000●00

Conclusion 000

Example

1	1	1	1	1	1	1	0	1	1	1	1
1	0	0	0	1	0	0	0	0	0	0	1
1	0	1	1	1	1	0	0	1	0	1	1
1	1	1	1	1	1	1	0	1	1	1	
1	0	1	0	1	1	0	0	0			

Recursive enumeration

Bijections

Conclusion 000

The inverse bijection φ^{-1} is also easy to describe. The pivot column is the rightmost non-zero column with a 0 in bottom position.

Example

It is possible to recover the 1's transformed in 0's : they are in columns containing more 1's than the pivot column. There is a similar criterion to recover the 0's transformed in 1's.

Recursive enumeration

Bijections

Conclusion 000

The inverse bijection φ^{-1} is also easy to describe. The pivot column is the rightmost non-zero column with a 0 in bottom position.

Example

It is possible to recover the 1's transformed in 0's : they are in columns containing more 1's than the pivot column. There is a similar criterion to recover the 0's transformed in 1's.

Bijections

Conclusion 000

The bijection preserving the zero-rows and zero-columns is defined similarly, but we exchange 0 and 1 in the definition of the pivot column:

Definition

The pivot column of A is a column

- containing a 1 in bottom position
- containing a maximum number of 0's
- in leftmost position

Conclusion •00

Generalizations

A similar method gives bijections for other pattern-avoiding fillings, for example:

- J-diagrams and $\begin{pmatrix} 01 & 10 \\ 11 & 11 \end{pmatrix}$ -avoiding fillings,
- J-diagrams and $\begin{pmatrix} 10\\01 \end{pmatrix}$, $\begin{pmatrix} 11\\01 \end{pmatrix}$ -avoiding fillings,

and all other patterns obtained by symetry, complement.

Conclusion •00

Generalizations

A similar method gives bijections for other pattern-avoiding fillings, for example:

- J-diagrams and $\begin{pmatrix} 01 & 10 \\ 11 & 11 \end{pmatrix}$ -avoiding fillings,
- J-diagrams and $\begin{pmatrix} 10\\01 \end{pmatrix}$, $\begin{pmatrix} 11\\01 \end{pmatrix}$ -avoiding fillings,

and all other patterns obtained by symetry, complement. The bijection between J-diagrams and acyclic orientations is extended to other kinds of shapes (for example, skew shapes, stack polyominoes...) This gives bijective proofs for results of Spiridonov.

Bijections 00000000 Conclusion

Generalizations to other shapes

The bijection between J-diagrams and acyclic orientations is extended to other kinds of shapes (for example, skew shapes, stack polyominoes...) This gives bijective proofs for results of Spiridonov.

Method: consider the maximal rectangles included in these shapes, and intersecting the bottom row.

Take as a pivot column, the rightmost pivot column of these rectangles.

Make a column-by-column transformation as in the previous case.

The bijection also works for "comb" polyominoes. Example

Corollary

In this case the number of *J*-diagrams only depends on the column lengths.

Proof.

The number of $\binom{10 \ 01}{01, 10}$ -avoiding fillings only depends on the columns lengths (we can permute the columns). So it is a consequence of the previous bijection.