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Séminaire Lotharingien de Combinatoire ’09



Introduction Recursive enumeration Bijections Conclusion

Introduction

Let λ be a Young diagram.

Definition
A

Γ

-diagram of shape λ is a 0-1 filling of λ such that: for any 0 in
the diagram, all cells to its left contain 0, or all cells above it
contain 0.

Example

0 0 1 0 1
1 0 1 0 1
1 1 1 0
0 0 1
1

(A. Postnikov, positive Grassmann cells)
(G. Cauchon, primes in quantum algebras)



Introduction Recursive enumeration Bijections Conclusion

Equivalently, they are the 0-1 fillings of λ such that the patterns
11
10 and 01

10 are forbidden.

Definition
A permutation tableau is a

Γ

-diagram with at least a 1 per column.

Proposition

There is a bijection between between permutation tableaux and
permutations.
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Another kind of pattern-avoiding fillings are the 0-1 tableaux (De
Medicis, Stanton and White)
The only condition is that there is exactly a 1 per column.

Example

0 0 0 0 1
1 0 0 1
0 1 1
0 0

They are in bijection with set partitions.
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Another kind of pattern-avoiding fillings are the rook placements.
The condition is that there at most a 1 per row, at most a 1 per
column.

Example

0 0 0 1 0
0 0 1 0 0
1 0 0 0
0 1 0
0 0

They are in bijection with partial involutions.
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We define a graph Gλ with:

• a vertex for each row or column of λ,

• an edge for each cell of λ
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We define a graph Gλ with:

• a vertex for each row or column of λ,

• an edge for each cell of λ
b

b

b
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b b

b

b

b

b

b b

Proposition

The orientations of Gλ are in bijection with the 0-1 fillings of λ.

For example, 0 correspond to and 1 to

Proposition

The acyclic orientations of Gλ are in bijection with the 0-1 fillings
of λ avoiding the patterns 10

01 and 01
10 .

These two patterns correspond to the 4-cycles and .

An orientation of Gλ is acyclic iff there is no 4-cycle.
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Part 1:

Recursive enumeration of pattern-avoiding 0-1 fillings
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From a Young diagram λ we define strictly smaller Young
diagrams:

λ(1) = (λ1, . . . , λk−1, λk − 1) λ(2) = (λ1, . . . , λk−1)

λ(3) = (λ1 − 1, . . . , λk − 1) λ(4) = (λ1 − 1, . . . , λk−1 − 1)

Proposition

The number Fλ of

Γ

-diagrams of shape λ satisfies:

Fλ = F
λ(1) + F

λ(2) + F
λ(3) − F

λ(4)
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Proof.

Fλ = F
λ(1) + F

λ(2) + F
λ(3) − F

λ(4)

λ(1) = λ(2) =

λ(3) = λ(4) =

The number of

Γ

-diagrams of shape λ with a 1 in the corner is

F
λ(1) .

The number of

Γ

-diagrams of shape λ with a 0 in the corner is

F
λ(2) + F

λ(3) − F
λ(4) .
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There are similar recurrence relation for rook placements:

Rλ = R
λ(1) + R

λ(4)
λ(1) = λ(4) =

and for 0-1 tableaux:

Pλ = P
λ(1) + P

λ(3)
λ(1) = λ(3) =
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Let λ be the Young diagram with i
empty rows, j empty columns, and
|λ| = 0. The initial conditions are:

i

j

Pλ = Tλ = δj0

for permutation tableaux, 0-1 tableaux (i.e. when we require at
least a 1 per column), and:

Aλ = Fλ = Rλ = 1

for acyclic orientations,

Γ

-diagrams, rook placements.
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Proposition (Postnikov)

The number Aλ of acyclic orientations of the graph Gλ satisfies:

Aλ = A
λ(1) + A

λ(2) + A
λ(3) − A

λ(4)

Proof.
We have Aλ = χλ(−1) where χλ is the chromatic polynomial of
Gλ (Stanley).
We prove the result for χλ(x) when x ≥ 0 (enumeration of proper
colorings).
Then we specialize at x = −1.
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Corollary

For any λ, Aλ = Fλ.

This result means that the number of pattern-avoiding fillings of λ

are the same, if the patterns are:

• 10
01 and 01

10 (acyclic orientations)

• or 11
10 and 01

10 (

Γ

-diagrams).
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Corollary

For any λ, Aλ = Fλ.

This result means that the number of pattern-avoiding fillings of λ

are the same, if the patterns are:

• 10
01 and 01

10 (acyclic orientations)

• or 11
10 and 01

10 (

Γ

-diagrams).

Proposition (Postnikov, Spiridonov)

The same holds for the patterns 11
11 and 10

11 , 11
11 and 01

11 ,
10
11 and 01

11 , 10
11 and 11

10 (and patterns obtained by transposition,
complement).
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Part 2:

Bijections
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Definition
A row in a 0-1 filling of λ is unrestricted if it contains no 0 with a
1 above it.

Proposition

The number of unrestricted rows in permutation tableaux is
equidistribued with the number of cycles in permutations.
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Definition
A row in a 0-1 filling of λ is unrestricted if it contains no 0 with a
1 above it.

Proposition

The number of unrestricted rows in permutation tableaux is
equidistribued with the number of cycles in permutations.

Theorem
There is a bijection Φ between acyclic orientations of Gλ and

Γ

-diagrams of shape λ, preserving the set of unrestricted rows and
the set of zero-columns (there is also a bijection preserving the set
of zero-rows and zero-columns).
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Definition
A mixed diagram of shape λ is a 0-1 filling such that:

• the k − 1 first rows avoid the patterns 01
10 and 10

01 ,

• for any 0 in the bottom row, either all entries to its left
contain 0 or all entries above contain 0.

Example

0 0 0 0 1 1 0 1 0
0
0
0

0
0
0
0 where the blue region

avoids 10
01 and 01

10
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Definition
A mixed diagram of shape λ is a 0-1 filling such that:

• the k − 1 first rows avoid the patterns 01
10 and 10

01 ,

• for any 0 in the bottom row, either all entries to its left
contain 0 or all entries above contain 0.

Example

0 0 0 0 1 1 0 1 0
0
0
0

0
0
0
0 where the blue region

avoids 10
01 and 01

10

Proposition

There is a bijection ϕ between acyclic orientations of Gλ and
mixed diagrams of shape λ, preserving the set of unrestricted rows
and the set of zero-columns (there is also a bijection preserving the
set of zero-rows and zero-columns).



Introduction Recursive enumeration Bijections Conclusion

For any acyclic orientation A with k rows, the

Γ

-diagram Φ(A) is
recursively obtained as follows: take the mixed diagram ϕ(A), and
replace the k − 1 first rows with their image by Φ.

Example

A and A′ are acyclic orientation of Gλ.

0 0 0 0 1 1 0 1 0
0
0
0

0
0
0
0

ϕ(A) = A′

0 0 0 0 1 1 0 1 0
0
0
0

0
0
0
0

Φ(A) =
Φ(A′)
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For an acyclic orientation A, the mixed diagram ϕ(A) is defined as
follows.

Definition
The pivot column of A is a column

• containing a 0 in bottom position

• containing a maximum number of 1’s

• in leftmost position

0
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For an acyclic orientation A, the mixed diagram ϕ(A) is defined as
follows.

Definition
The pivot column of A is a column

• containing a 0 in bottom position

• containing a maximum number of 1’s

• in leftmost position

00 0 0

We put 0’s on the left of the pivot column.
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For an acyclic orientation A, the mixed diagram ϕ(A) is defined as
follows.

Definition
The pivot column of A is a column

• containing a 0 in bottom position

• containing a maximum number of 1’s

• in leftmost position

00 0 0 1 1 1 1 1

We put 0’s on the left of the pivot column.
We put 1’s on the right of the pivot column (exception: a
zero-column stays a zero-column, a copy of the pivot column
becomes a column with a single 1 in bottom position)
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Example

0
1
1
0
1

1
1
1
1
1

0
1
0
0
1

1
1
1
0
1

1
1
1
1
1

1
1
1
0
1

0
1
0
0
1

0
0
0
0
0

0
1
1
0
1

1
0
0
1

1
1
0
1

1
1
1

0
1
1
0
1

0
1
1
1
1

0
1
0
0
1

0
1
1
0
1

1
1
1
1
1

1
1
1
0
1

1
1
0
0
1

0
0
0
0
0

1
0
0
0
0
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1

1
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The inverse bijection ϕ−1 is also easy to describe.
The pivot column is the rightmost non-zero column with a 0 in
bottom position.

Example

0
1
1
0
1

1
1
0
1

1
1
1
1

It is possible to recover the 1’s transformed in 0’s : they are in
columns containing more 1’s than the pivot column.
There is a similar criterion to recover the 0’s transformed in 1’s.
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The inverse bijection ϕ−1 is also easy to describe.
The pivot column is the rightmost non-zero column with a 0 in
bottom position.

Example

0
1
1
0
1

1
1
0
1

11
1
1
1
1

It is possible to recover the 1’s transformed in 0’s : they are in
columns containing more 1’s than the pivot column.
There is a similar criterion to recover the 0’s transformed in 1’s.



Introduction Recursive enumeration Bijections Conclusion

The bijection preserving the zero-rows and zero-columns is defined
similarly, but we exchange 0 and 1 in the definition of the pivot
column:

Definition
The pivot column of A is a column

• containing a 1 in bottom position

• containing a maximum number of 0’s

• in leftmost position
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Generalizations

A similar method gives bijections for other pattern-avoiding fillings,
for example:

•

Γ

-diagrams and (01
11 , 10

11)-avoiding fillings,

•

Γ

-diagrams and (10
01 , 11

01)-avoiding fillings,

and all other patterns obtained by symetry, complement.
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Γ
-diagrams and acyclic orientations is

extended to other kinds of shapes (for example, skew shapes, stack
polyominoes...) This gives bijective proofs for results of Spiridonov.
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Generalizations to other shapes

The bijection between

Γ

-diagrams and acyclic orientations is
extended to other kinds of shapes (for example, skew shapes, stack
polyominoes...) This gives bijective proofs for results of Spiridonov.

Method: consider the maximal rectangles included in these shapes,
and intersecting the bottom row.
Take as a pivot column, the rightmost pivot column of these
rectangles.
Make a column-by-column transformation as in the previous case.
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The bijection also works for ”comb” polyominoes.

Example

Corollary

In this case the number of

Γ

-diagrams only depends on the column
lengths.

Proof.
The number of (10

01 ,0110)-avoiding fillings only depends on the
columns lengths (we can permute the columns). So it is a
consequence of the previous bijection.
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