A bijection between noncrossing and nonnesting partitions of types A and B

Ricardo Mamede

CMUC - Universidade de Coimbra
February 23, 2009

Noncrossing and nonnesting set partitions

A set partition of $[n]=\{1, \ldots, n\}$ is a collection of disjoint nonempty subsets of $[n]$, called blocks, whose union is $[n]$.
$\pi=\{\{1,3,4\},\{2,6\},\{5\}\}$ is a partition of [6] of type $(3,2,1)$

$o p(\pi)=\{1,2,5\}, \quad c l(\pi)=\{4,5,6\}, \quad \operatorname{tr}(\pi)=\{3\}$
$m(\pi)=(o p(\pi), c l(\pi), \operatorname{tr}(\pi))$

A complete matching of $[2 n]$ is a set partition of $[2 n]$ of type $(2, \ldots, 2)$
A partial matching of $[n]$ is a set partition of [n] of type $(2, \ldots, 2,1, \ldots, 1)$

The triple $m(\pi)=(o p(\pi), c l(\pi), \operatorname{tr}(\pi))$ encodes some useful information about the set partition π :

- The number of blocks is $|o p(\pi)|=|c l(\pi)| ;$
- The number of singleton blocks is $|o p(\pi) \cap c l(\pi)|$;
- π is a partial matching if and only if $\operatorname{tr}(\pi)=\emptyset$;
- π is a complete matching if and only if $\operatorname{tr}(\pi)=\emptyset$ and $o p(\pi) \cap c l(\pi)=\emptyset$.

Noncrossing set partitions

A set partition π of [n] is said noncrossing if whenever $a<b<c<d$ are such that a, c are contained in a block B and b, d are contained in a block B^{\prime} of π, then $B=B^{\prime}$.

The set partition $\{\{1,4,5,6\},\{2,3\}\}$ is noncrossing:

while the set partition $\{\{1,3,4\},\{2,6\},\{5\}\}$ is not:

Nonnesting set partitions

A set partition π of [n] is said nonnesting if whenever $a<b<c<d$ are such that a, d are contained in a block B and b, c are contained in a block B^{\prime} of π, then $B=B^{\prime}$.

The set partition $\{\{1,3\},\{2,4,5,6\}\}$ is nonnesting:

while the set partition $\{\{1,4,5,6\},\{2,3\}\}$ is not:

Absolute order

Let (W, S) be a finite Coxeter system with set of reflections T Given $w \in W$, the absolute length $\ell_{T}(w)$ of w is the minimal integer k for which w can be written as the product of k reflections:

$$
\ell_{T}(w)=\min \left\{k: w=t_{1} \cdots t_{k}, \text { for some } t_{i} \in T\right\}
$$

Definition

Define the absolute order on W by letting

$$
v \leq_{T} w \text { if and only if } \ell_{T}(w)=\ell_{T}(v)+\ell_{T}\left(v^{-1} w\right)
$$

for all $v, w \in W$.

Proposition

Given $w, v \in W, v \leq_{T} w$ if and only if there is a shortest factorization of w as a product of reflections having as a prefix such a shortest factorization for v.

$$
\begin{aligned}
& W=S_{3}, S=\left\{s_{1}=(1,2), s_{2}=(2,3)\right\} \\
& T=\left\{s_{1}, s_{2}, s_{1} s_{2} s_{1}=(1,3)\right\}
\end{aligned}
$$

(W, S) finite Coxeter system, with $S=\left\{s_{1}, \ldots, s_{n}\right\}$
A Coxeter element of W is any element of the form

$$
c=s_{\sigma(1)} \cdots s_{\sigma(n)}
$$

for some permutation σ of the set $[n]$.

Proposition

(a) Any two Coxeter elements of W are conjugate.
(b) The Coxeter elements are a subclass of maximal elements in W.
(c) If c, c^{\prime} are Coxeter elements, then $[e, c] \cong\left[e, c^{\prime}\right]$.

Noncrossing partitions

Definition

Let W be a finite reflection group and $c \in W$ a Coxeter element. The poset of noncrossing partitions of W is the interval

$$
N C(W):=[e, c]=\left\{w \in W: e \leq_{T} w \leq T c\right\} .
$$

Theorem (Reiner, Bessis-Reiner)
Let W be a finite reflection group. Then,

$$
|N C(W)|=C a t(W):=\prod_{i=1}^{n} \frac{d_{i}+h}{d_{i}}=\frac{1}{|W|} \prod_{i=1}^{n}\left(d_{i}+h\right)
$$

where
(i) n is the number of simple reflections in W,
(ii) h is the Coxeter number, and
(iii) d_{1}, \ldots, d_{n} are the degrees of the fundamental invariants.

Cat (W) for the finite irreducible Coxeter groups

A_{n-1}	B_{n}	D_{n}	$I_{2}(m)$	H_{3}	H_{4}	F_{4}	E_{6}	E_{7}	E_{8}
$\frac{1}{n+1}\binom{2 n}{n}$	$\binom{2 n}{n}$	$\frac{3 n-2}{n}\binom{2 n-2}{n-1}$	$m+2$	32	280	105	833	4160	25080

Noncrossing partitions of type A_{n-1}

$c=(1,2, \ldots, n)$ Coxeter element
$\pi \leq_{T} \subset$ iff all cycles in π are increasing and pairwise noncrossing

$$
N C\left(A_{6-1}\right) \ni \pi=(1456)(23) \longleftrightarrow \pi=\{\{1,4,5,6\},\{2,3\}\} \in N C([6])
$$

Noncrossing partitions of type B_{n}

B_{n} group of sign permutations π of $[\pm n]=\{\overline{1}, \overline{2}, \ldots, \bar{n}, 1,2, \ldots, n\}$ such that $\pi(\bar{i})=\overline{\pi(i)}$

$$
\begin{aligned}
& \pi=(\overline{5}, 1,2)(5, \overline{1}, \overline{2})(3,4)(\overline{3}, \overline{4}) \in B_{5} \text { of type }(3,2) \\
& m(\pi)=(o p(\pi)=\{3\}, c l(\pi)=\{2,4,5\}, \operatorname{tr}(\pi)=\{1\})
\end{aligned}
$$

$$
\begin{aligned}
B_{n} & \hookrightarrow A_{2 n-1} \\
\quad i & \mapsto i, \quad \text { if } i \in[n] \\
& i \mapsto n-i, \text { if } i \in[\overline{1}, \ldots, \bar{n}]
\end{aligned}
$$

$N C\left(B_{n}\right)$ is the subset of $N C([\pm n])=N C([2 n])$ consisting of all partitions that are invariant under the map $i \mapsto \bar{i}$

Noncrossing partitions of type B_{n}

B_{n} group of sign permutations π of $[\pm n]=\{\overline{1}, \overline{2}, \ldots, \bar{n}, 1,2, \ldots, n\}$ such that $\pi(\bar{i})=\overline{\pi(i)}$

$$
\begin{aligned}
& \pi=(\overline{5}, 1,2)(5, \overline{1}, \overline{2})(3,4)(\overline{3}, \overline{4}) \in B_{5} \text { of type }(3,2) \\
& m(\pi)=(o p(\pi)=\{3\}, c l(\pi)=\{2,4,5\}, \operatorname{tr}(\pi)=\{1\})
\end{aligned}
$$

$$
\begin{aligned}
B_{n} & \hookrightarrow A_{2 n-1} \\
\quad i & \mapsto i, \quad \text { if } i \in[n] \\
& i \mapsto n-i, \text { if } i \in[\overline{1}, \ldots, \bar{n}]
\end{aligned}
$$

$N C\left(B_{n}\right)$ is the subset of $N C([\pm n])=N C([2 n])$ consisting of all partitions that are invariant under the map $i \mapsto \bar{i}$

The root poset

Let W be a Weyl group with crystallographic root system Φ, and $\Delta \subseteq \Phi^{+}$ a set of simple roots

Definition

- For $\alpha, \beta \in \Phi^{+}$, we say that $\alpha \leq \beta$ if and only if $\beta-\alpha \in \mathbb{Z}_{\geq 0} \Delta$. The pair $\left(\Phi^{+}, \leq\right)$is called the root poset of W.
- An antichain in the root poset $\left(\Phi^{+}, \leq\right)$is called a nonnesting partition of W. Let $N N(W)$ denote the set of nonnesting partitions of W.

Theorem

Let W be a Weyl group. Then,

$$
|N C(W)|=|N N(W)|=\operatorname{Cat}(W)
$$

Nonnesting partitions of type A_{n-1}
$\left\{e_{1}, \ldots, e_{n}\right\}$ canonical basis of \mathbb{R}^{n}
$\Phi=\left\{e_{i}-e_{j}: n \geq i \neq j \geq 1\right\}, \quad \Phi^{+}=\left\{e_{i}-e_{j}: n \geq i>j \geq 1\right\}$
$\Delta=\left\{r_{1}=e_{2}-e_{1}, r_{2}=e_{3}-e_{2}, \ldots, r_{n-1}=e_{n}-e_{n-1}\right\}$
If $i>j$, then $e_{i}-e_{j}=r_{j}+\cdots+r_{i-1} \leftrightarrow(i, j) \in S_{n}$

Lemma

Let $\alpha=r_{i}+\cdots+r_{j}$ and $\beta=r_{k}+\cdots+r_{\ell}$ be two roots in Φ^{+}. Then, $\{\alpha, \beta\}$ is an antichain if and only if $i<k$ and $j<\ell$.
$N N\left(A_{4}\right) \ni\left(r_{1}, r_{2}+r_{3}, r_{3}+r_{4}\right) \leftrightarrow(1,2)(2,4)(3,5)=(1,2,4)(3,5) \in N N([5])$

- $\operatorname{supp}\left(r_{i}+\cdots+r_{j}\right)=\left\{r_{i}, \ldots, r_{j}\right\}$
- An antichain $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ is connected if $\operatorname{supp}\left(\alpha_{i}\right) \cap \operatorname{supp}\left(\alpha_{i+1}\right) \neq \emptyset$ for $i=1, \ldots, k-1$
- The connected components of an antichain π are the connected sub-antichains of π for which the supports of the union of the roots in any two distinct components are disjoint.

Nonnesting partitions of type B_{n}

$$
\begin{aligned}
& \Phi=\left\{ \pm e_{i}, 1 \leq i \leq n\right\} \cup\left\{ \pm e_{i} \pm e_{j}: 1 \leq i \neq j \leq n\right\} \\
& \Phi^{+}=\left\{e_{i}: 1 \leq i \leq n\right\} \cup\left\{e_{i} \pm e_{j}: 1 \leq j<i \leq n\right\} \\
& \Delta=\left\{r_{1}=e_{1}, r_{2}=e_{2}-e_{1}, \ldots, r_{n}=e_{n}-e_{n-1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
e_{i} & =\sum_{k=1}^{i} r_{k} \leftrightarrow(i, \bar{i}) \\
e_{i}-e_{j} & =\sum_{k=j+1}^{i} r_{k} \leftrightarrow(i, j)(\bar{i}, \bar{j}) \\
e_{i}+e_{j} & =2 \sum_{k=1}^{j} r_{k}+\sum_{k=j+1}^{i} r_{k} \leftrightarrow(i, \bar{j})(\bar{i}, j)
\end{aligned}
$$

Lemma

- $\left\{r_{i}+\cdots+r_{j}, r_{k}+\cdots+r_{\ell}\right\}$ is an antichain iff $i<k$ and $j<\ell$
$\bullet\left\{2 r_{1}+\cdots+2 r_{i}+r_{i+1}+\cdots+r_{j}, r_{k}+\cdots+r_{\ell}\right\}$ is an antichain iff $1<k$ and $j<\ell$
$\bullet\left\{2 r_{1}+\cdots+2 r_{i}+r_{i+1}+\cdots+r_{j}, 2 r_{1}+\cdots+2 r_{k}+r_{k+1}+\cdots+r_{\ell}\right\}$ is an antichain iff $k<i$ and $j<\ell$

$$
\begin{aligned}
& \left(2 r_{1}+2 r_{2}+r_{3}, r_{1}+r_{2}+r_{3}+r_{4}, r_{5}\right) \in N N\left(B_{5}\right) \\
& (2, \overline{3})(\overline{2}, 3)(\overline{5}, \overline{4}, 4,5) \in N N([\pm n])
\end{aligned}
$$

- $\operatorname{supp}\left(2 r_{1}+2 r_{2}+r_{3}\right)=\left\{r_{1}, r_{2}, r_{3}\right\}$, $\operatorname{supp}\left(r_{1}+r_{2}+r_{3}+r_{4}\right)=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}, \operatorname{supp}\left(r_{5}\right)=\left\{r_{5}\right\}$
- Connected components: $\left(2 r_{1}+2 r_{2}+r_{3}, r_{1}+r_{2}+r_{3}+r_{4}\right)$ and $\left(r_{5}\right)$

The bijection $f: N N(W) \rightarrow N C(W)$

$$
\begin{aligned}
\pi & =\left(r_{1}+r_{2}, r_{2}+r_{3}, r_{3}+r_{4}+r_{5}, r_{4}+r_{5}+r_{6}, r_{5}+r_{6}+r_{7}\right) \\
& =(1,3,6)(2,4,7)(5,8) \in \operatorname{NN}\left(A_{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
f(\pi) & =\left(r_{1}+\cdots+r_{7}\right) f\left(r_{2}, r_{3}, r_{4}+r_{5}, r_{5}+r_{6}\right) \\
& =\left(r_{1}+\cdots+r_{7}\right) r_{2} r_{3} f\left(r_{4}+r_{5}, r_{5}+r_{6}\right) \\
& =\left(r_{1}+\cdots+r_{7}\right) r_{2} r_{3}\left(r_{4}+r_{5}+r_{6}\right) r_{5} \\
& =(1,8)(2,3,4,7)(5,6) \in N C\left(A_{7}\right), \quad m(\pi)=m(f(\pi))
\end{aligned}
$$

The bijection $f: N N(W) \rightarrow N C(W)$

$$
\begin{aligned}
\pi & =\left(r_{1}+r_{2}, r_{2}+r_{3}, r_{3}+r_{4}+r_{5}, r_{4}+r_{5}+r_{6}, r_{5}+r_{6}+r_{7}\right) \\
& =(1,3,6)(2,4,7)(5,8) \in \operatorname{NN}\left(A_{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
f(\pi) & =\left(r_{1}+\cdots+r_{7}\right) f\left(r_{2}, r_{3}, r_{4}+r_{5}, r_{5}+r_{6}\right) \\
& =\left(r_{1}+\cdots+r_{7}\right) r_{2} r_{3} f\left(r_{4}+r_{5}, r_{5}+r_{6}\right) \\
& =\left(r_{1}+\cdots+r_{7}\right) r_{2} r_{3}\left(r_{4}+r_{5}+r_{6}\right) r_{5} \\
& =(1,8)(2,3,4,7)(5,6) \in N C\left(A_{7}\right), \quad m(\pi)=m(f(\pi))
\end{aligned}
$$

$F_{s t}=(1<2<3<4<5), \quad L_{s t}=(2<3<5<6<7)$

$$
\begin{aligned}
\pi & =\left(r_{1}+r_{2}, r_{2}+r_{3}, r_{3}+r_{4}+r_{5}, r_{4}+r_{5}+r_{6}, r_{5}+r_{6}+r_{7}\right) \\
& =(1,3,6)(\overline{1}, \overline{3}, \overline{6})(4,7)(\overline{4}, \overline{7})(\overline{5}, \overline{2}, 2,5) \in \operatorname{NN}\left(B_{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
f(\pi) & =\left(r_{1}+\cdots+r_{7}\right) f\left(r_{2}, r_{3}, r_{4}+r_{5}, r_{5}+r_{6}\right) \\
& =\left(r_{1}+\cdots+r_{7}\right) r_{2} r_{3} f\left(r_{4}+r_{5}, r_{5}+r_{6}\right) \\
& =\left(r_{1}+\cdots+r_{7}\right) r_{2} r_{3}\left(r_{4}+r_{5}+r_{6}\right) r_{5} \\
& =(7, \overline{7})(1,2)(\overline{1}, \overline{2})(2,3)(\overline{2}, \overline{3})(3,6)(\overline{3}, \overline{6})(4,5)(\overline{4}, \overline{5}) \\
& =(7, \overline{7})(1,2,3,6)(\overline{1}, \overline{2}, \overline{3}, \overline{6})(4,5)(\overline{4}, \overline{5}) \in N C\left(B_{7}\right)
\end{aligned}
$$

$$
m(\pi)=m(f(\pi))=(\{1,4\},\{5,6,7\},\{2,3\})
$$

$$
\pi=(1,3,6)(2,4,7)(5,8)
$$

$$
f(\pi)=(1,8)(2,3,4,7)(5,6)
$$

The bijection $f: N N(W) \rightarrow N C(W)$

$$
\pi=\left(2 r_{1}+2 r_{2}+2 r_{3}+r_{4}, 2 r_{1}+2 r_{2}+r_{3}+r_{4}+r_{5}, \quad r_{3}+r_{4}+r_{5}+r_{6}, r_{4}+r_{5}+r_{6}+r_{7}, r_{6}+r_{7}+r_{8}\right)
$$

The bijection $f: N N(W) \rightarrow N C(W)$

$$
\pi=\left(2 r_{1}+2 r_{2}+2 r^{2}+r_{4}, 2 r_{1}+2 r_{2}+r_{3}+r_{4}+r_{5}, r_{3}+r_{4}+r_{5}+r_{6}, r_{4}+r_{5}+r_{6}+r_{7}, r_{6}+r_{7}+r_{8}\right)
$$

The bijection $f: N N(W) \rightarrow N C(W)$

The bijection $f: N N(W) \rightarrow N C(W)$

The bijection $f: N N(W) \rightarrow N C(W)$

$$
\begin{aligned}
\pi= & \left(2 r_{1}+2 r_{2}+2 r_{3}+r_{4}, 2 r_{1}+2 r_{2}+r_{3}+r_{4}+r_{5}, r_{3}+r_{4}+r_{5}+r_{6}, r_{4}+r_{5}+r_{6}+r_{7}, r_{6}+r_{7}+r_{8}\right) \\
f(\pi) & :\left(2 r_{1}+2 r_{2}+r_{3}+\cdots+r_{8}, 2 r_{1}+2 r_{2}+2 r_{3}+2 r_{4}+2 r_{5}+r_{6}+r_{7}, r_{3}, f\left(r_{4}, r_{6}\right)\right) \\
& \rightarrow\left(2 r_{1}+2 r_{2}+r_{3}+\cdots+r_{8}, 2 r_{1}+2 r_{2}+2 r_{3}+2 r_{4}+2 r_{5}+r_{6}+r_{7}, r_{3}, r_{4}, r_{6}\right) \\
& \rightarrow(2, \overline{8})(\overline{2}, 8)(5, \overline{7})(\overline{5}, 7)(2,3)(\overline{2}, \overline{3})(3,4)(\overline{3}, \overline{4})(5,6)(\overline{5}, \overline{6}) \\
& \rightarrow(2,3,4, \overline{8})(\overline{2}, \overline{3}, \overline{4}, 8)(5,6, \overline{7})(\overline{5}, \overline{6}, 7)=f(\pi)
\end{aligned}
$$

$$
\begin{aligned}
& f(\pi)=(2,3,4, \overline{8})(\overline{2}, \overline{3}, \overline{4}, 8)(5,6, \overline{7})(\overline{5}, \overline{6}, 7) \\
& \rightarrow(2, \overline{8})(\overline{2}, 8)(5, \overline{7})(\overline{5}, 7)(2,3)(\overline{2}, \overline{3})(3,4)(\overline{3}, \overline{4})(5,6)(\overline{5}, \overline{6}) \\
& \rightarrow\left(2 r_{1}+2 r_{2}+r_{3}+\cdots+r_{8}, 2 r_{1}+2 r_{2}+2 r_{3}+2 r_{4}+2 r\right. \\
& D=(3>2), \quad F_{s t}=(3<4<6) \\
& L_{s t}=(4<5<6<7<8)
\end{aligned}
$$

$$
\rightarrow\left(2 r_{1}+2 r_{2}+r_{3}+\cdots+r_{8}, 2 r_{1}+2 r_{2}+2 r^{\left.r_{3}+2 r_{4}+2 r_{5}+r_{6}+r_{7}, r_{3}, r_{4}, r_{6}\right) ~}\right.
$$

$$
\begin{aligned}
& f(\pi)=(2,3,4, \overline{8})(\overline{2}, \overline{3}, \overline{4}, 8)(5,6, \overline{7})(\overline{5}, \overline{6}, 7) \\
& \rightarrow(2, \overline{8})(\overline{2}, 8)(5, \overline{7})(\overline{5}, 7)(2,3)(\overline{2}, \overline{3})(3,4)(\overline{3}, \overline{4})(5,6)(\overline{5}, \overline{6}) \\
& \rightarrow\left(2 r_{1}+2 r_{2}+r_{3}+\cdots+r_{8}, 2 r_{1}+2 r_{2}+2 r_{3}+2 r_{4}+2 r_{5}+r_{6}+r_{7}, r_{3}, r_{4}, r_{6}\right) \\
& D=(3>2), \quad F_{s t}=(3<4<6) \\
& L_{s t}=(4<5<6<7<8) \\
& \text { Then } \\
& \pi=\left(2 r_{1}+2 r_{2}+2 r_{3}+r_{4}, 2 r_{1}+2 r_{2}+r_{3}+r_{4}+r_{5}, r_{3}+r_{4}+r_{5}+r_{6}, r_{4}+r_{5}+r_{6}+r_{7}, r_{6}+r_{7}+r_{8}\right) \\
& \text { with } m(\pi)=m(f(\pi))=(\{1\},\{1,4,6,7,8\},\{2,3,5\})
\end{aligned}
$$

Theorem

The map f is a bijection between the sets $N N(\Psi)$ and $N C(\Psi)$, for $\Psi=A_{n-1}$ or $\Psi=B_{n}$, that preserves the number of blocks and the triples $(o p(\pi), c l(\pi), \operatorname{tr}(\pi))$.

Theorem

The map f is a bijection between the sets $N N(\Psi)$ and $N C(\Psi)$, for $\Psi=A_{n-1}$ or $\Psi=B_{n}$, that preserves the number of blocks and the triples $(o p(\pi), c l(\pi), \operatorname{tr}(\pi))$.

Corollary

The map f establishes a bijection between nonnesting matching partitions of [2n] and noncrossing matching partitions of [2n].

