Well labeled paths and the volume of a polytope

Philippe Nadeau
(Joint work with Olivier Bernardi and Bertrand Duplantier)

Fakultät für Mathematik
Universität Wien
SLC 62, Heilsbronn
February 24th, 2009

Content

(1) The polytope Π_{n}.

Content

(1) The polytope Π_{n}.
(2) Paths, trees and matchings.

Content

(1) The polytope Π_{n}.
(2) Paths, trees and matchings.
(3) Refined enumeration ; application to permutations.

The polytope Π_{n}

In his study of a polypeptide model, Bertrand Duplantier discovered a certain polytope describing the configuration space of the model.

The polypeptide is composed of n line segments of unit length, and is attached to the ground.

The polytope Π_{n}

In his study of a polypeptide model, Bertrand Duplantier discovered a certain polytope describing the configuration space of the model.

The polypeptide is composed of n line segments of unit length, and is attached to the ground. Now we consider the possible heights h_{i} of the extremities of the line segments.

The polytope Π_{n}

The polytope obtained is the following

Definition

We let Π_{n} be the set of points $x=\left(x_{i}\right)_{i}$ in \mathbb{R}^{n} such that for all i,

$$
x_{i} \geqslant 0 \text { and }\left|x_{i}-x_{i-1}\right| \leqslant 1
$$

with the convention $x_{0}=0$.

The polytope Π_{n}

The polytope obtained is the following

Definition

We let Π_{n} be the set of points $x=\left(x_{i}\right)_{i}$ in \mathbb{R}^{n} such that for all i,

$$
x_{i} \geqslant 0 \text { and }\left|x_{i}-x_{i-1}\right| \leqslant 1
$$

with the convention $x_{0}=0$.
This is a bounded region (note that $0 \leqslant x_{i} \leqslant i$ for all i), and is formed by an intersection of half spaces in \mathbb{R}^{n}.

The polytope Π_{n}

For $n=2$ we have for instance

Elementary polytopes

Let \mathbf{h} be a point of \mathbb{Z}^{n}, and let σ be a permutation of $[n]:=\{1, \ldots, n\}$.

Definition

We define the elementary polytope $E(\boldsymbol{h}, \sigma)$ as the set of $y=\left(y_{i}\right)_{i}$ in \mathbb{R}^{n} such that

- $h_{i} \leqslant y_{i} \leqslant h_{i}+1$ and
- $\epsilon\left(y_{\sigma^{-1}(1)}\right) \leqslant \epsilon\left(y_{\sigma^{-1}(2)}\right) \leqslant \ldots \leqslant \epsilon\left(y_{\sigma^{-1}(n)}\right)$
where $\epsilon(t) \in[0,1[$ is the fractional part of t (i.e. $t-\epsilon(t) \in \mathbb{Z}$).

Elementary polytopes

Let \mathbf{h} be a point of \mathbb{Z}^{n}, and let σ be a permutation of $[n]:=\{1, \ldots, n\}$.

Definition

We define the elementary polytope $E(\boldsymbol{h}, \sigma)$ as the set of $y=\left(y_{i}\right)_{i}$ in \mathbb{R}^{n} such that

- $h_{i} \leqslant y_{i} \leqslant h_{i}+1$ and
- $\epsilon\left(y_{\sigma^{-1}(1)}\right) \leqslant \epsilon\left(y_{\sigma^{-1}(2)}\right) \leqslant \ldots \leqslant \epsilon\left(y_{\sigma^{-1}(n)}\right)$
where $\epsilon(t) \in[0,1[$ is the fractional part of t (i.e. $t-\epsilon(t) \in \mathbb{Z}$).
All elementary polytopes have the same volume $\frac{1}{n!}$.

Elementary polytopes

Let \mathbf{h} be a point of \mathbb{Z}^{n}, and let σ be a permutation of $[n]:=\{1, \ldots, n\}$.

Definition

We define the elementary polytope $E(\boldsymbol{h}, \sigma)$ as the set of $y=\left(y_{i}\right)_{i}$ in \mathbb{R}^{n} such that

- $h_{i} \leqslant y_{i} \leqslant h_{i}+1$ and
- $\epsilon\left(y_{\sigma^{-1}(1)}\right) \leqslant \epsilon\left(y_{\sigma^{-1}(2)}\right) \leqslant \ldots \leqslant \epsilon\left(y_{\sigma^{-1}(n)}\right)$
where $\epsilon(t) \in[0,1[$ is the fractional part of t (i.e. $t-\epsilon(t) \in \mathbb{Z}$).
All elementary polytopes have the same volume $\frac{1}{n!}$. Then we have the following proposition :

Proposition

The interior of a given elementary polytope $E(\boldsymbol{h}, \sigma)$ is either included in Π_{n} or disjoint from Π_{n}.

Subpolytopes for $n=2$

Well labeled paths

So, in order to compute the volume of Π_{n}, it suffices to count the number of elementary subpolytopes $E(\mathbf{h}, \sigma)$ inside it, and divide by $n!$. For this, we will encode $\left(h_{i}, \sigma_{i}\right), i \in[n]$ as the point $\left(i-1, h_{i}\right)$ labeled by the integer σ_{i}. Then the condition for a polytope $E(\mathbf{h}, \sigma)$ to be included in Π_{n} is the following :

Definition

A well-labelled positive path of size n is a pair (\boldsymbol{h}, σ) made of a integer vector $\boldsymbol{h}=\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathbb{Z}^{n}$ and a permutation $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ of [n] such that :
(1) $h_{1}=0, h_{i} \geqslant 0$, and $h_{i}-h_{i-1} \in\{-1,0,1\}$ for all i
(2) $h_{i}>h_{i+1}$ implies $\sigma_{i}<\sigma_{i+1}$, while $h_{i+1}<h_{i}$ implies $\sigma_{i}>\sigma_{i+1}$.

Well labeled paths

Definition

A well-labelled positive path of size n is a pair (\boldsymbol{h}, σ) made of a integer vector $\boldsymbol{h}=\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathbb{Z}^{n}$ and a permutation $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ of [n] such that :
(1) $h_{1}=0, h_{i} \geqslant 0$, and $h_{i}-h_{i-1} \in\{-1,0,1\}$ for all i
(2) $h_{i}>h_{i+1}$ implies $\sigma_{i}<\sigma_{i+1}$, while $h_{i+1}<h_{i}$ implies $\sigma_{i}>\sigma_{i+1}$.

Positive paths for $n=1,2,3$

Definition

A well-labelled Motzkin path of size n is a pair (\boldsymbol{h}, σ) made of a integer vector $\boldsymbol{h}=\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathbb{Z}^{n}$ and a permutation $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ of [n] such that :
(1) $h_{1}=0, h_{i} \geqslant 0, h_{i+1}-h_{i-1} \in\{-1,0,1\}$ for $i=1 \ldots n-1$,and...
(2) $h_{i}>h_{i+1}$ implies $\sigma_{i}<\sigma_{i+1}$, while $h_{i+1}<h_{i}$ implies $\sigma_{i}>\sigma_{i+1}$.

Definition

A well-labelled Motzkin path of size n is a pair (\boldsymbol{h}, σ) made of a integer vector $\boldsymbol{h}=\left(h_{1}, h_{2}, \ldots, h_{n}\right) \in \mathbb{Z}^{n}$ and a permutation $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ of [n] such that :
(1) $h_{1}=0, h_{i} \geqslant 0, h_{i+1}-h_{i-1} \in\{-1,0,1\}$ for $i=1 \ldots n-1$, and $h_{n}=-1$.
(2) $h_{i}>h_{i+1}$ implies $\sigma_{i}<\sigma_{i+1}$, while $h_{i+1}<h_{i}$ implies $\sigma_{i}>\sigma_{i+1}$.

We defined the classes of well-labeled Motzkin paths and positive paths, which we will denote by \mathcal{M} and \mathcal{P}.

To compute the volume of Π_{n}, we need to enumerate \mathcal{P}_{n}, the class of positive paths of size n. Still, we will focus on the class \mathcal{M}_{n}, which is easier to enumerate and is an essential step in the enumeration of \mathcal{P}_{n}.

A matching of size n is a partition of [2n] with all blocks of size 2 ; equivalently, it is an involution on [2n] without fixed points.

Main Results

Theorem

There are explicit bijections between the classes \mathcal{P}_{n} and \mathcal{M}_{n+1} and the matchings on [2n].

Main Results

Theorem

There are explicit bijections between the classes \mathcal{P}_{n} and \mathcal{M}_{n+1} and the matchings on [2n].

We have as immediate corollaries :

Corollary

(1) For all n we have

$$
\left|\mathcal{P}_{n}\right|=\left|\mathcal{M}_{n+1}\right|=(2 n-1)!!:=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1 .
$$

(2) The volume of the polytope Π_{n} is equal to $\frac{(2 n-1)!!}{n!}$

Main Results

Theorem

There are explicit bijections between the classes \mathcal{P}_{n} and \mathcal{M}_{n+1} and the matchings on [2n].

We have as immediate corollaries :

Corollary

(1) For all n we have

$$
\left|\mathcal{P}_{n}\right|=\left|\mathcal{M}_{n+1}\right|=(2 n-1)!!:=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1 .
$$

(2) The volume of the polytope Π_{n} is equal to $\frac{(2 n-1)!!}{n!}$

We will now exhibit the bijections announced in the main theorem above : in both cases, they will use a certain class of trees as an intermediate object.

Recursive decomposition of the class \mathcal{M}

Let us decompose the paths (\mathbf{p}, σ) according to its second point h_{1}, which can be equal to $-1,0$ or 1 . Then we can write the following symbolic equation :

Recursive decomposition of the class \mathcal{M}

Let us decompose the paths (\mathbf{p}, σ) according to its second point h_{1}, which can be equal to $-1,0$ or 1 . Then we can write the following symbolic equation :

Notice that this is easily translated in the following equation :

$$
M(z)=\frac{z^{2}}{2}+z M(z)+\frac{M(z)^{2}}{2}
$$

where $M(z)=\sum_{n}\left|\mathcal{M}_{n}\right| \frac{z^{n}}{n!}$ is the exponential generating function of the class \mathcal{M}. From this we can already deduce the enumeration $\left|\mathcal{M}_{n+1}\right|=(2 n-1)$!! by solving the equation, or by Lagrange inversion formula.

From paths to trees

Definition

A labelled binary tree of size n is a rooted tree with n leaves having n different labels in [n] and such that each (unlabelled) internal vertex has exactly two unordered children.

Proposition

There is a recursive bijection between \mathcal{M}_{n} and \mathcal{T}_{n}.

From paths to trees

Now remember the decomposition of \mathcal{M} :

We will recursively attach to the three cases:

- The tree with one root, and two leaves labelled σ_{1} and σ_{2}.
- The tree with one root, one leaf (labeled by σ_{1}) and one nontrivial subtree
- The tree with one root and two non trivial subtrees.

From paths to trees : example

From trees to matchings

This is a bijection due to Bill Chen.
First, number all internal non root vertices of the tree by $m=n+1, n+2, \ldots, 2 n-2$ in this order, as follows :

- Consider all unlabelled internal vertices that have both of their children labelled.
- Among these, choose the one which has the child with the smallest label.
- Label this vertex by m.

From trees to matchings

This is a bijection due to Bill Chen.
First, number all internal non root vertices of the tree by $m=n+1, n+2, \ldots, 2 n-2$ in this order, as follows :

- Consider all unlabelled internal vertices that have both of their children labelled.
- Among these, choose the one which has the child with the smallest label.
- Label this vertex by m.

Once the tree is fully labeled, define a matching M on [2n-2] by letting $\{i, j\}$ be a block of M if i and j are the labels of siblings.

From trees to matchings

What about positive paths?

They admit the following decomposition, based on \mathcal{M}.

From this, one can define a bijection between \mathcal{P}_{n} and marked labeled binary trees. They are the same trees but with a distinguished vertex.

What about positive paths?

They admit the following decomposition, based on \mathcal{M}.

From this, one can define a bijection between \mathcal{P}_{n} and marked labeled binary trees. They are the same trees but with a distinguished vertex.

Then it is easy to give a bijection between marked trees with n leaves and matchings on [2n]. It is a simple modification of Bill Chen's bijection.

Summary of bijections

Refinement

A leaf in a binary tree is single if its sibling is an internal node.

Theorem

For all integers n, k, we have bijections between
(1) well-labelled Motzkin paths of size n with k horizontal steps,
(2) labelled binary trees with n leaves, k of which are single leaves, and
(3) matchings on $[2 n-2]$ having k pairs $\{i, j\}$ such that $i \in\{1, \ldots, n\}$ and $j \in\{n+1, \ldots, 2 n-2\}$.

Refinement

A leaf in a binary tree is single if its sibling is an internal node.

Theorem

For all integers n, k, we have bijections between
(1) well-labelled Motzkin paths of size n with k horizontal steps,
(2) matchings on $[2 n-2]$ having k pairs $\{i, j\}$ such that $i \in\{1, \ldots, n\}$ and $j \in\{n+1, \ldots, 2 n-2\}$.

Corollary

The number of well-labelled Motzkin paths of size n having k horizontal steps is 0 if $n-k$ is odd, and otherwise

$$
\binom{n}{k}\binom{n-2}{k} k!(n-k-1)!!(n-k-3)!!
$$

Refinement

We have a similar result for positive paths :

Theorem

For all integers n, k, we have a bijection between
(1) well-labelled positive paths of size n with k horizontal steps, and
(2) matchings on $[2 n]$ having k pairs (i, j) with $i \in\{1, \ldots, n\}$ and $j \in\{n+1, \ldots, 2 n-1\}$.

Refinement

We have a similar result for positive paths :

Theorem

For all integers n, k, we have a bijection between
(1) well-labelled positive paths of size n with k horizontal steps, and
(2) matchings on $[2 n]$ having k pairs (i, j) with $i \in\{1, \ldots, n\}$ and $j \in\{n+1, \ldots, 2 n-1\}$.

Corollary

The number of well-labelled positive paths of size n having k horizontal steps is

$$
\begin{cases}\binom{n}{k}\binom{n-1}{k} k![(n-k-1)!!]^{2} & \text { if } n-k \text { is even, } \\ \binom{n}{k+1}\binom{n-1}{k}(k+1)![(n-k-2)!!]^{2} & \text { otherwise. }\end{cases}
$$

Application to permutation enumeration

Let (\mathbf{p}, σ) be a well-labelled path (in \mathcal{M} or \mathcal{P}). If it has no horizontal step, then the permutation σ determines \mathbf{p}.

Application to permutation enumeration

Let (\mathbf{p}, σ) be a well-labelled path (in \mathcal{M} or \mathcal{P}). If it has no horizontal step, then the permutation σ determines \mathbf{p}.

An ascent of a permutation $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ is an index $i<n$ such that $\sigma_{i}<\sigma_{i+1}$; a descent is an index $i<n$ such that $\sigma_{i}>\sigma_{i+1}$. The up-down sequence of a permutation σ is given by $\mathbf{p}(\sigma)=p_{1} p_{2} \ldots p_{n-1}$ where $p_{i}=1$ (respectively $p_{i}=-1$) if i is a descent (resp. an ascent). The up-down sequence is positive if it forms a positive path, and Dyck if it forms an extended Dyck path.

Application to permutation enumeration

Let (\mathbf{p}, σ) be a well-labelled path (in \mathcal{M} or \mathcal{P}). If it has no horizontal step, then the permutation σ determines \mathbf{p}.

An ascent of a permutation $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ is an index $i<n$ such that $\sigma_{i}<\sigma_{i+1}$; a descent is an index $i<n$ such that $\sigma_{i}>\sigma_{i+1}$. The up-down sequence of a permutation σ is given by $\mathbf{p}(\sigma)=p_{1} p_{2} \ldots p_{n-1}$ where $p_{i}=1$ (respectively $p_{i}=-1$) if i is a descent (resp. an ascent). The up-down sequence is positive if it forms a positive path, and Dyck if it forms an extended Dyck path.

Theorem

For any integer n, the number of permutations of size n having a positive up-down sequence is $[(n-1)!!]^{2}$ if n is even and $[(n-2)!!]^{2}$ otherwise. The number of permutations of size n having a Dyck up-down sequence is $(n-1)!!(n-3)!!$ if n is even and 0 otherwise.

