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We use an approach of Okounkov and Reshetikhin to derive trace gen-
erating functions of

• Reverse plane partitions (Gansner’s Hook Formula),

• Diagonally strict reverse plane partitions,

• and more ...



Diagrams and Shifted Diagrams

For a partition λ, we denote its diagram by D(λ):

D(λ) = {(i, j) ∈ P2 : 1 ≤ j ≤ λi}.
For a strict partition µ, we denote its shifted diagram by S(µ):

S(µ) = {(i, j) ∈ P2 : i ≤ j ≤ µi + i− 1}.
Example :

D((4, 3, 1)) S((4, 3, 1))



Reverse Plane Partitions

A (weak) reverse plane partition of shape λ is an array of non-negative
integers

π =

π1,1 π1,2 · · · · · · π1,λ1
π2,1 π2,2 · · · π2,λ2

... ...
πr,1 πr,2 · · · πr,λr

(i.e., a map D(λ) −→ N) satisfying

πi,j ≤ πi,j+1, πi,j ≤ πi+1,j.

Let R(D(λ)) be the set of reverse plane partitions of shape λ :

R(D(λ)) = {π : reverse plane partition of shape λ}.



A shifted (weak) reverse plane partition of shifted shape µ is an array
of non-negative integers

σ =

σ1,1 σ1,2 σ1,3 · · · · · · σ1,µ1
σ2,2 σ2,3 · · · σ2,µ2+1

. . .
σr,r · · · σr,µr+r−1

(i.e., a map S(µ) −→ N) satisfying

σi,j ≤ σi,j+1, σi,j ≤ σi+1,j.

Let R(S(µ)) be the set of shifted reverse plane partitions of shape µ :

R(S(µ)) = {σ : shifted reverse plane partition of shape µ}.



Trace and Trace Generating Function
Given a reverse (shifted) plane partition π = (πi,j), we define the k-th

trace tk(π) by

tk(π) =
∑

i

πi,i+k.

We are interested in the trace generating function∑
π

∏

k

q
tk(π)
k .

Example :

π =
0 1 3 3
1 1 3
2 4

has the traces

· · · , t−3(π) = 0,
t−2(π) = 2, t−1(π) = 5,
t0(π) = 1, t1(π) = 4,
t2(π) = 3, t3(π) = 3,
t4(π) = 0, · · · .



Hook and Shifted Hook
For a partition λ and a cell (i, j) ∈ D(λ) of the Ferrers diagram, the

hook at (i, j) in D(λ) is defined by

HD(λ)(i, j) = {(i, j)} ∪ {(i, l) ∈ D(λ) : l > j}
∪ {(k, j) ∈ D(λ) : k > i}.

For a strict partition µ and a cell (i, j) ∈ S(µ) of the shifted diagram,
the shifted hook at (i, j) in S(µ) is defined by

HS(µ)(i, j) = {(i, j)} ∪ {(i, l) ∈ S(µ) : l > j}
∪ {(k, j) ∈ S(µ) : k > i}
∪ {(j + 1, l) ∈ S(µ) : l > j}.



Example :

The hook at (2, 2) The shifted hook at (2, 3)
in D((7, 5, 3, 3, 1)) in S((7, 6, 4, 3, 1))



Theorem 1 (Gansner)
(1) For a partition λ, the trace generating function of R(D(λ)) is given
by ∑

π∈R(D(λ))

∏

k

q
tk(π)
k =

∏

x∈D(λ)

1

1− q[HD(λ)(x)]
,

where we put

q[H ] =
∏

(k,l)∈H

ql−k

for a finite subset H ⊂ P2.
(2) For a strict partition µ, the trace generating function of R(S(µ)) is
given by

∑

σ∈R(S(µ))

∏

k≥0

q
tk(σ)
k =

∏

x∈S(µ)

1

1− q[HS(µ)(x)]
.



Proof of Theorem 1
A reverse plane partition π is decomposed into two shifted reverse plane

partitions

π+ = (πi,j)1≤i≤j, and π− = (πj,i)1≤i≤j

with the same profile. So we compute the trace generating function of
shifted reverse plane partitions with a given profile.

Let ρ and ν be two strict partitions such that S(ρ) ⊃ S(ν). A shifted
skew plane partition of shifted skew shape ρ/ν is a map σ : S(ρ) −
S(ν) −→ N satisfying

σi,j ≥ σi,j+1, σi,j ≥ σi+1,j.



Then

a reverse shifted plane partition of shifted shape µ

can be viewed as

a shifted skew plane partition of shifted skew shape δN/ν

where N ≥ µ1, δN = (N,N − 1, · · · , 2, 1) and ν is given by

{µ1, · · · , µp} t {ν1, · · · , νq} = {1, 2, · · · , N}.
Example :

0 0 1 2 3 3
1 2 3 3 3

2 4

∗ ∗ ∗ ∗ 3 3
∗ ∗ ∗ 3 3
∗ 4 3 2

2 2 1
1 0

0
shifted reverse plane partition shifted skew plane partition

of shifted shape (6, 5, 2) of shifted skew shape δ6/(4, 3, 1).



Hence it is enough to compute the trace generating function of shifted
skew plane partitions with a given shifted skew shape δN/ν and a given
profile τ .

Given a shifted skew array of non-negative integers σ of shifted skew
shape δN/ν, we define

σ[t] = (σi,i+t)i (t = 0, 1, 2 · · · ).
Example :

If σ =

∗ ∗ ∗ ∗ 3 3
∗ ∗ ∗ 3 3
∗ 4 3 2

2 2 1
1 0

0

, then we have
σ[0] = (2, 1, 0), σ[1] = (4, 2, 0),
σ[2] = (3, 1), σ[3] = (3, 2),
σ[4] = (3, 3), σ[5] = (3).



A key is the following observation.

Lemma The following are equivalent:

(i) σ is a shifted skew plane partition.

(ii) Each σ[t] is a partition and{
σ[t− 1] ≺ σ[t] if t ∈ {ν1, · · · , νq},
σ[t− 1] Â σ[t] if t 6∈ {ν1, · · · , νq}.

where we write α Â β if

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ,

i.e., the skew diagram α/β is a horizontal strip.



Let hk and h⊥k be the multiplication and skewing operators on the ring
of symmetric functions Λ associated to the complete symmetric function
hk. Consider the vertex operators

H+(t) =
∑

k≥0

hkt
k, H−(t) =

∑

k≥0

h⊥k tk.

and the operator D(q) : Λ → Λ defined by

D(q)sλ = q|λ|sλ.

First we apply the Pieri rule

H+(t)sλ =
∑

κÂλ

t|κ|−|λ|sκ H−(t)sλ =
∑

κ≺λ

t|λ|−|κ|sκ,

and Lemma above to obtain



Lemma If we define εk by

εk =

{
+ if k 6∈ {ν1, · · · , νq},
− if k ∈ {ν1, · · · , νq},

then we have

D(q0)H
ε1(1)D(q1)H

ε2(1)D(q2)H
ε2(1) · · ·HεN−1(1)D(qN−1)H

εN (1)1

=
∑
τ


∑

σ

∏

k≥0

q
tk(σ)
k


 sτ ,

where the inner summation is taken over all shifted skew plan partitions
with skew shifted shape δN/ν and profile σ[0] = τ .



Example : If ν = (4, 3, 1) and N = 6, then we compute

D(q0)H
−(1)D(q1)H

+(1)D(q2)H
−(1)D(q3)H

−(1)

D(q4)H
+(1)D(q5)H

+(1)1.

* * * *

* * *

*

σ[0]

σ[1]

σ[2]

σ[3]

σ[4]

σ[5]

∅

σ[0] ≺ σ[1] Â σ[2] ≺ σ[3] ≺ σ[4] Â σ[5] Â ∅.



Next, we use the commutation relations

D(q) ◦H+(t) = H+(qt) ◦D(q),

D(q) ◦H−(t) = H−(q−1t) ◦D(q),

to obtain

D(q0)H
ε1(1)D(q1)H

ε2(1)D(q2)H
ε2(1) · · ·HεN−1(1)D(qN−1)H

εN (1)

= Hε1(z
ε1
1 )Hε2(z

ε2
2 ) · · ·HεN (z

εN
N )D(zN ),

where we put
zk = q0q1 · · · qk−1.



Further, by using the commutation relation

H−(s) ◦H+(t) =
1

1− st
H+(t) ◦H−(s),

we can derive

Hε1(z
ε1
1 )Hε2(z

ε2
2 ) · · ·HεN (z

εN
N )

=
∏

νi<µj

1

1− z−1
νi zµj

p∏

j=1

H+(zµj)

q∏

i=1

H−(zνi).

Recall that µ = (µ1, · · · , µp), ν = (ν1, · · · , νq) and

{µ1, · · · , µp} t {ν1, · · · , νq} = {1, 2, · · · , N}.



Finally, by using the Cauchy identity
n∏

i=1

H+(ti) · 1 =
∑
τ

sτ (t1, · · · , tn)sτ ,

we have

Proposition The trace generating function of shifted skew plane par-
titions of shape δN/ν with profile τ is given by

∑
σ

∏

k≥0

q
tk(σ)
k =

∏
νi<µj

1

1− z−1
νi zµj

· sτ (zµ1, · · · , zµp),

where {µ1, · · · , µp} t {ν1, · · · , νq} = {1, 2, · · · , N}, and

zk = q0q1 · · · qk−1.



Now Theorem 1 (1) follows from the Cauchy identity

∑
τ

sτ (x1, · · · , xm)sτ (y1, · · · , yn) =

m∏

i=1

n∏

j=1

1

1− xiyj
,

and (2) follows from the Schur–Littlewood identity

∑
τ

sτ (x1, · · · , xm) =

m∏

i=1

1

1− xi

∏

1≤i<j≤m

1

1− xixj
.

This completes the proof of Theorem 1.



Generalization

We can play the same game for

(1) Schur’s P functions,

(2) Hall–Littlewood functions, or Macdonald functions

instead of Schur functions to obtain

(1) trace generating functions for diagonally strict reverse plane partitions,

(2) weighted trace generating functions for reverse plane partitions,

respectively (see also Foda–Wheeler-Zuparic, Vuletić).



Diagonally Strict Reverse Plane Partitions

We say that a reverse (shifted) plane partition π is diagonally strict if

πi,j < πi+1,j+1 if the both sides are positive.

If a reverse plane partition π is diagonally strict, then we see that, for
each k, the skew diagram

π−1(k) = {(i, j) ∈ P2 : πij = k}
contains no , so it is a disjoint union of rim hooks. We put

pk(π) = the number of connected components of π−1(k),

p(π) =
∑

k

pk(π).



Example : If

π =
0 1 3 3
1 1 3
2 3

,

then we have

p1(π) = 1, p2(π) = 1, p3(π) = 2, p(π) = 4.

Theorem 2 For a partition λ, the trace generating function of diago-
nally strict reverse plane partitions of shape λ is given by

∑
π

2p(π)
∏

k

q
tk(π)
k =

∏

x∈D(λ)

1 + q[HD(λ)(x)]

1− q[HD(λ)(x)]
.



Weighted Trace Generating Function (HL case)

Theorem 3 For a partition λ, the weighted trace generating function
of reverse plane partitions of shape λ is given by

∑
π

Aπ(t)
∏

k

q
tk(π)
k =

∏

x∈D(λ)

1− t · q[HD(λ)(x)]

1− q[HD(λ)(x)]
.

Remark : We have

Aπ(0) = 1,

Aπ(−1) =

{
2p(π) if π is diagonally strict,

0 otherwise.

So Theorem 3 reduces to Theorem 1 (1) and Theorem 2 if t = 0 and
t = −1 respectively.



The weight Aπ(t) is defined as follows.
Given a skew diagram θ and a cell (i, j) ∈ θ, the level hθ(i, j) is defined

by

hθ(i, j) =
the smallest positive integer k
satisfying (i− k, j − k) 6∈ θ.

Then, for each l,
{(i, j) ∈ θ : hθ(i, j) = l}

is a disjoint union of rim hooks. Each connected component is called a
border component of level l. We set

Pθ(t) =
∏

l≥1

(1− tl)# border components of level l.



Example : If θ = (6, 5, 5, 2)/(2, 1), then

2
1

2
1
1

2
1
1

2
2
1

3
2
1 1

and
Pθ(t) = (1− t)(1− t2)2(1− t3).

Then the weight Aπ(t) of a reverse plane partition π is defined by

Aπ(t) =
∏

k≥1

Pπ−1(k)(t).


