Cumulants and classical umbral calculus

Pasquale Petrullo

62nd Séminaire Lotharingien de Combinatoire Heilsbronn (Germany)

February, 22-25, 2009

Techniques

Classical umbral calculus was introduced in 1994 by Rota and Taylor [RT]. We refer the setting developed by Di Nardo and Senato [DNS].

[DNS] E. DI NARDO, D. SENATO, *Umbral nature of Poisson random variable*, in: H. Crapo and D. Senato eds., Algebraic combinatorics and computer science, Springer Verlag, Italia, (2001), 245-266.

[RT] G.-C. ROTA, B.D. TAYLOR, *The classical umbral calculus*, SIAM J. Math. Anal. **25** (1994), 694-71.

Results

- we show how generalized umbral Abel polynomials $A_n^{(k)}(x,\alpha) = x(x+k\cdot\alpha)^{n-1}$ encode the formulae connecting a sequence of moments to its classical cumulants, free cumulants and boolean cumulants,
- ② we prove that the convolutions $a \star b$ (classical), $a \boxplus b$ (free) and $a \uplus b$ (boolean) are represented by umbrae $\alpha(k)\gamma$ such that

$$A_n^{(k)}(\alpha_{(k)}\gamma) = A_n^{(k)}(\alpha) + A_n^{(k)}(\gamma).$$

[DNPS] E. DI NARDO, P. PETRULLO, D. SENATO, *Cumulants, convolutions and volume polynomial*, preprint.

[P] P. Petrullo, A symbolic treatment of Abel polynomials, preprint.

Classical cumulants

Consider $a=(a_n)_{n\geq 1}$ and $k_a=(k_n)_{n\geq 1}$ and their exponential generating functions

$$M(z) = 1 + \sum_{n \geq 1} a_n \frac{z^n}{n!}, \quad K(z) = 1 + \sum_{n \geq 1} k_n \frac{z^n}{n!}.$$

If we have

$$M(z) = e^{K(z)-1},$$

then $k_n(a) = k_n$ is the *n*-th (formal) classical cumulant of a.

Free cumulants and boolean cumulants

Consider $a=(a_n)_{n\geq 1}$, $r_a=(r_n)_{n\geq 1}$ and $s_a=(s_n)_{n\geq 1}$ with ordinary generating functions

$$M(z)=1+\sum_{n\geq 1}a_nz^n,\quad R(z)=1+\sum_{n\geq 1}r_nz^n \text{ and } S(z)=\sum_{n\geq 1}s_nz^n,$$

such that

$$M(z) = \frac{1}{1 - S(z)} = \frac{1}{z} [zR(z)]^{<-1>},$$

then $r_n(a) = r_n$ is the *n*-th (formal) free cumulants of *a*, and $s_n(a) = s_n$ is the *n*-th (formal) boolean cumulants of *a*.

Convolutions

Cumulants linearize convolutions. Given $a=(a_n)_{n\geq 1}$ and $b=(b_n)_{n\geq 1}$, we denote by $a\star b$, $a\boxplus b$ and $a\uplus b$ the sequences such that

$$k_n(a \star b) = k_n(a) + k_n(b)$$
 (classical convolution),
 $r_n(a \boxplus b) = r_n(a) + r_n(b)$ (free convolution),
 $s_n(a \uplus b) = s_n(a) + s_n(b)$ (boolean convolution).

Cumulants via Moebius inversion formula

We have (see [S] and [SW])

$$a_n = \sum_{\pi \in \Pi_n} k_{\pi}(a) \Longleftrightarrow k_n(a) = \sum_{\pi \in \Pi_n} \mu_{\Pi}(\pi, 1_n) a_{\pi},$$
 $a_n = \sum_{\pi \in NC_n} r_{\pi}(a) \Longleftrightarrow r_n(a) = \sum_{\pi \in NC_n} \mu_{NC}(\pi, 1_n) a_{\pi},$ $a_n = \sum_{\pi \in I_n} s_{\pi}(a) \Longleftrightarrow s_n(a) = \sum_{\pi \in I_n} \mu_{I}(\pi, 1_n) a_{\pi}.$

[S] R. Speicher, Free probability theory and noncrossing partitions, Sém. Loth. Combin., (1997) **B39C**, 38pp.

[SW] R. SPEICHER, R. WOROUDI, *Boolean convolution*, in: Free Probability Theory (Waterloo, ON, 1995), American Mathematical Society, Providence, RI, 1997, 267-279.

The classical umbral calculus

The *classical umbral calculus* consists of the following data:

- **1** the *alphabet* $A = \{\alpha, \beta, ...\}$ the of *umbrae*
- ② the linear functional $E: R[A] \rightarrow R$ evaluation, such that
 - E[1] = 1
 - $E[\alpha^i \beta^j \cdots \gamma^k] = E[\alpha^i] E[\beta^j] \cdots E[\gamma^k]$ (uncorrelation property)
- **1** two special umbrae ε (augmentation) and u (unity) such that

$$E[\varepsilon^n] = \delta_{0,n}, \text{ for } n = 0, 1, 2, ...$$

and

$$E[u^n] = 1$$
, for $n = 0, 1, 2, ...$

4 N.B.we assume $R = \mathbb{C}[x]$

Generating functions, umbral equivalence, similarity

- ① if $E[\alpha^n] = a_n$ we say α represents the sequence $a = (a_n)_{n \ge 1}$, or a_n is the n-th moment of α
- $oldsymbol{Q}$ the generating function of lpha is the exponential formal power series

$$f_{\alpha}(z) = E[e^{\alpha z}] = 1 + \sum_{n \geq 1} a_n \frac{z^n}{n!},$$

so that

$$E[\alpha^n] = n![z^n]f_\alpha(z)$$

umbral equivalence "≃":

$$\alpha \simeq \gamma \Leftrightarrow E[\alpha] = E[\gamma]$$
 so that $e^{\alpha z} \simeq f_{\alpha}(z)$

similarity "≡":

$$\alpha \equiv \gamma \Leftrightarrow E[\alpha^n] = E[\gamma^n] \text{ for all } n \geq 0 \Leftrightarrow f_\alpha(z) = f_\gamma(z)$$

Dot operation and composition umbra

• the Bell umbra β and the singleton umbra χ have generating functions

$$f_{eta}(t)=\mathrm{e}^{\mathrm{e}^z-1}$$
 and $f_{\chi}(z)=1+z,$

 \bullet $n.\alpha$ $(n \in \mathbb{Z})$ denotes an umbra such that

$$f_{n,\alpha}(z) = f_{\alpha}(z)^n,$$

3 the dot operation of γ with α is an umbra $\gamma \cdot \alpha$ such that

$$f_{\gamma,\alpha}(z) = f_{\gamma}[\log f_{\alpha}(z)],$$

composition umbra: dot operation is associative (but noncommutative), so that

$$f_{\gamma,\beta,\alpha}(z) = f_{\gamma}[f_{\alpha}(z) - 1].$$

Derivative, compositional inverse and Lagrange involution

① the compositional inverse of α is an umbra $\alpha^{<-1>}$ such that $\alpha^{<-1>} \cdot \beta \cdot \alpha \equiv \alpha \cdot \beta \cdot \alpha^{<-1>} \equiv \chi$, so that

$$f_{\alpha^{<-1>}}(z) - 1 = [f_{\alpha}(z) - 1]^{<-1>},$$

2 the derivative of α is an umbra α_D such that $\alpha_D{}^n \simeq \alpha^{n-1}$, that is

$$f_{\alpha_D}(z) = 1 + z f_{\alpha}(z),$$

 \bullet if $\alpha \simeq 1$ then α_P is defined by

$$\alpha_{DP} \equiv \alpha_{PD} \equiv \alpha$$

• we name the umbra $\mathfrak{L}_{\alpha} \equiv \alpha_{\scriptscriptstyle D}^{<-1>_{\scriptscriptstyle P}}$ the noncrossing Fourier transform or Lagrange involution of α . Its generating function is

$$f_{\mathfrak{L}_{\alpha}}(z) = \frac{1}{z} [zf_{\alpha}(z)]^{<-1>}.$$

Abel polynomials

1 Abel polynomials $A_n(x, a)$ are defined by

$$A_n(x,a) = x(x-na)^{n-1},$$

2 umbral Abel polynomials are obtained by replacing -na with $-n.\alpha$, that is

$$A_n(x,\alpha) = x(x - n \cdot \alpha)^{n-1},$$

3 if $\bar{f}(z) = [ze^{az}]^{<-1>}$ then

$$1+\sum_{n\geq 1}A_n(x,a)\frac{z^n}{n!}=e^{x\bar{f}(z)},$$

from which

$$[x.\beta.(a.u)_D^{<-1>}]^n \simeq A_n(x,a)$$
 (1).

Polynomials of binomial type

By replacing a with α in (1) we have

$$(x \cdot \beta \cdot \alpha_D^{<-1>})^n \simeq A_n(x,\alpha), \qquad (1u)$$

from which, if $\bar{f}(z) = [zf_{\alpha}(z)]^{<-1>}$ then

$$1+\sum_{n\geq 1}p_n(x)\frac{z^n}{n!}=e^{x\bar{f}(z)}\simeq u+\sum_{n\geq 1}A_n(x,\alpha)\frac{z^n}{n!},$$

so that "all polynomials of binomial type are represented by Abel polynomials" (see [RST])

[RST] G.-C. ROTA, J. SHEN, B.D. TAYLOR, *All polynomials of binomial type are represented by Abel plynomials*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (1997) **25**, no. 1, 731-738.

Abel polynomials and Lagrange inversion formula: I

1 by setting $x = \chi$ in (1) we recover

$$(-na)^{n-1} = n![z^n][ze^{az}]^{<-1>},$$

2 $x = \chi$ in (1u) gives

$$(-n\boldsymbol{\cdot}\alpha)^{n-1} \simeq n![z^n][ze^{\alpha z}]^{<-1>},$$

3 if we intend $[ze^{\alpha z}]^{<-1>} \simeq [zf_{\alpha}(z)]^{<-1>}$, then we have the Lagrange inversion formula

$$\frac{1}{n}[z^{n-1}]\left(\frac{1}{f_{\alpha}(z)}\right)^{n}=[z^{n}][zf_{\alpha}(z))]^{<-1>}.$$

Abel polynomials and Lagrange inversion formula: II

lacktriangledown by replacing x with another umbra γ we have

$$(\gamma \cdot \beta \cdot \alpha_D^{<-1>})^n \simeq A_n(\gamma, \alpha) \qquad (\star)$$

since

$$(\gamma.\beta.\alpha_D^{<-1>})^n \simeq n![z^n]f_{\gamma}([zf_{\alpha}(z)]^{<-1>})$$

and

$$A_n(\gamma,\alpha) \simeq \sum_{i=0}^{n-1} \binom{n-1}{i} \gamma^{i+1} (-n \cdot \alpha)^{n-1-i} \simeq (n-1)! [z^{n-1}] f_{\gamma}'(z) \left(\frac{1}{f_{\alpha}(z)}\right)^n,$$

then we recover a more general version of Lagrange inversion

$$[z^n]f_{\gamma}\left([zf_{\gamma}(z)]^{<-1>}\right) = \frac{1}{n}[z^{n-1}]f_{\gamma}'(z)\left(\frac{1}{f_{\alpha}(z)}\right)^n$$

Generalized umbral Abel polynomials

We define generalized umbral Abel polynomials

$$A_n^{(k)}(x,\alpha) = x(x+k\cdot\alpha)^{n-1}.$$

We set $A_n^{(k)}(\alpha) = A_n^{(k)}(\alpha, \alpha)$. A combinatorial treatment of k = n is given in [PS].

Theorem (First Abel Inversion Theorem)

$$\gamma^n \simeq A_n^{(k)}(\alpha)$$
, for $n = 1, 2, \dots$

if and only if

$$\alpha^n \simeq A_n^{(-k)}(\gamma, \alpha)$$
 for $n = 1, 2, \dots$

[PS] P. Petrullo, D. Senato, An instance of umbral methods in representation theory: the parking function module, arXiv: 0807.4840v2.

Abel polynomials and Lagrange inversion formula: III

Theorem (Abel form of LIF)

$$A_n^{(k)}(\mathfrak{L}_{lpha}) \simeq A_n^{(n+k)}(-1.lpha) \simeq -A_n^{(-(n+k+2))}(lpha)$$

Proof.

$$k \neq -1 \Rightarrow [z^n]\{[zf(\alpha,z)]^{<-1>}\}^{k+1} = \frac{k+1}{n}[z^{n-k-1}]\left(\frac{1}{f(\alpha,z)}\right)^n$$
 (2)

$$k = -1 \Rightarrow [z^n] \log \left(\frac{1}{z} [zf(\alpha, z)]^{<-1>} \right) = \frac{1}{n} [z^n] \left(\frac{1}{f(\alpha, z)} \right)^n$$
(3)

Second inversion rule

Theorem (Second Abel Inversion Theorem)

$$\gamma^n \simeq A_n^{(n+k)}(\alpha)$$
, for $n = 1, 2, \dots$

if and only if

$$\alpha^n \simeq A_n^{(-(n+k))}(\gamma, \mathfrak{L}_{-1,\alpha}), \text{ for } n=1,2,\ldots.$$

Cumulant umbrae

If $a=(a_n)_{n\geq 1}$, let $\alpha^n\simeq a_n=n!a_n'$ and $a'=(a_n')_{n\geq 1}$. We define κ_α , η_α and \mathfrak{K}_α to be such that

$$\alpha \equiv \beta \cdot \kappa_{\alpha},
\alpha \equiv \bar{u} \cdot \beta \cdot \eta_{\alpha},
\alpha \equiv \mathfrak{L}_{-1} \cdot \mathfrak{K}_{\alpha},$$

where $\bar{u} \equiv -1. - \chi$. In this way

$$\kappa_{\alpha}{}^{n} \simeq k_{n}(a),$$
 $\eta_{\alpha}{}^{n} \simeq n! s_{n}(a'),$
 $\mathfrak{R}_{\alpha}{}^{n} \simeq n! r_{n}(a').$

Abel parametrization for classical cumulants

we have

$$\kappa_{\alpha}^{n} \simeq \alpha(\alpha - 1.\alpha)^{n-1} = A_{n}^{(-1)}(\alpha),$$

by applying First Abel Inversion Theorem

$$\alpha^{n} \simeq \kappa_{\alpha} (\kappa_{\alpha} + \alpha)^{n-1} = A_{n}^{(1)} (\kappa_{\alpha}, \alpha), \qquad (4)$$

ullet identity (4) is a result of Rota-Shen [RS], the umbra κ_{α} has been deeply studied by Di Nardo-Senato [DNS]

[RS] G.-C. ROTA, J. SHEN, *On the combinatorics of cumulants*, J. Combin. Theory Ser. A (2000) **91**, 283-304.

[DNS] E. DI NARDO, D. SENATO, An umbral setting for cumulants and factorial moments, European J. Combin. (2006) **27**, 394-413.

Abel parametrization for free and boolean cumulants

we have

$$\eta_{\alpha}^{n} \simeq \alpha(\alpha - 2.\alpha)^{n-1} = A_{n}^{(-2)}(\alpha)$$

and

$$\mathfrak{K}_{\alpha}^{n} \simeq \alpha(\alpha - n \cdot \alpha)^{n-1} = A_{n}^{(-n)}(\alpha),$$

by using First Abel Inversion Theorem and Abel form of LIF we obtain

$$\alpha^n \simeq \eta_\alpha (\eta_\alpha + 2 \cdot \alpha)^{n-1} = A_n^{(2)}(\eta_\alpha, \alpha)$$

and

$$\alpha^n \simeq \mathfrak{K}_{\alpha}(\mathfrak{K}_{\alpha} + n.\mathfrak{K}_{\alpha})^{n-1} = A_n^{(n)}(\mathfrak{K}_{\alpha}).$$

Mixed parametrization

Second Abel inversion Theorem gives

Theorem (Mixed Abel parametrization of cumulants)

$$\kappa_{\alpha}^{\ n} \simeq A_{n}^{(1)}(\eta_{\alpha}, \alpha) \simeq A_{n}^{(n-1)}(\mathfrak{K}_{\alpha}),$$

$$\eta_{\alpha}^{\ n} \simeq A_{n}^{(-1)}(\kappa_{\alpha}, \alpha) \simeq A_{n}^{(n-2)}(\mathfrak{K}_{\alpha}),$$

$$\mathfrak{K}_{\alpha}^{\ n} \simeq A_{n}^{(1-n)}(\kappa_{\alpha}, \alpha) \simeq A_{n}^{(2-n)}(\eta_{\alpha}, \alpha).$$

From the parametrization to the formulae: an example

If $\alpha^n \simeq a_n$ then we have

$$\alpha(\alpha + \gamma \boldsymbol{\cdot} \alpha)^n \simeq \sum_{\mu \vdash n} d_{\mu}(\gamma)_{\ell(\mu)-1} a_{\mu},$$

where
$$\mu=(\mu_1,\mu_2,\ldots)=[1^{m_1}2^{m_2}\ldots]$$
, $a_{\mu}=a_{\mu_1}a_{\mu_2}\ldots$, $\ell(\mu)=m_1+m_2+\cdots$, and

$$\mathrm{d}_{\mu} = \frac{n!}{\mu_1! \mu_2! \cdots m_1! m_2! \cdots}.$$

Since $\eta_{\alpha}{}^{n} \simeq n! s_{n}$ and $\mathfrak{K}_{\alpha}{}^{n} \simeq n! r_{n}$, from

$$\eta_{\alpha}^{n} \simeq \mathfrak{K}_{\alpha} (\mathfrak{K}_{\alpha} + (n-2) \mathfrak{K}_{\alpha})^{n-1},$$

we obtain

$$s_n = \sum_{\mu \vdash n} \frac{(n-2)_{\ell(\mu)-1}}{m_1! m_2! \cdots} r_{\mu}.$$

Convolution umbrae

1 the disjoint sum of α and γ is an umbra $\alpha \dotplus \gamma$ such that

$$(\alpha + \gamma)^n \simeq \alpha^n + \gamma^n$$

② if $\alpha^n \simeq a_n = n! a_n'$ and $\gamma^n \simeq b_n = n! b_n'$, then we define $\alpha \star \gamma$, $\alpha \uplus \gamma$ and $\alpha \boxplus \gamma$ to be umbrae such that

$$\begin{array}{rcl} \kappa_{\alpha\star\gamma} & \equiv & \kappa_{\alpha} \dotplus \kappa_{\gamma}, \\ \eta_{\alpha\uplus\gamma} & \equiv & \eta_{\alpha} \dotplus \eta_{\gamma}, \\ \mathfrak{K}_{\alpha\boxminus\gamma} & \equiv & \mathfrak{K}_{\alpha} \dotplus \mathfrak{K}_{\gamma}. \end{array}$$

in this way

$$(\alpha \star \gamma)^n \simeq (a \star b)_n,$$

$$(\alpha \uplus \gamma)^n \simeq n!(a' \uplus b')_n,$$

$$(\alpha \boxplus \gamma)^n \simeq n!(a' \boxplus b')_n.$$

Boolean convolution vs free convolutions

Theorem

$$\mathfrak{L}_{\alpha \boxplus \gamma} \equiv \mathfrak{L}_{lpha} \uplus \mathfrak{L}_{\gamma}$$
 and $\mathfrak{L}_{\alpha \uplus \gamma} \equiv \mathfrak{L}_{lpha} \boxplus \mathfrak{L}_{\gamma}$

Proof.

From $\alpha \equiv \bar{u} \cdot \beta \cdot \eta_{\alpha}$ we have $\eta_{\alpha}^{\ n} \simeq -(-1 \cdot \alpha)^n$. In this way

$$-1.(\alpha \uplus \gamma) \equiv (-1.\alpha) \dotplus (-1.\gamma).$$

From $\alpha \equiv \mathfrak{L}_{-1.\mathfrak{K}_{\alpha}}$ we have $\mathfrak{K}_{\alpha} \equiv -1.\mathfrak{L}_{\alpha}$, so that

$$\mathfrak{L}_{\alpha \boxplus \gamma} \equiv -1.\mathfrak{K}_{\alpha \boxplus \gamma} \equiv -1.(\mathfrak{K}_{\alpha} \stackrel{\cdot}{+} \mathfrak{K}_{\alpha}),$$

that is $\mathfrak{L}_{\alpha \boxplus \gamma} \equiv \mathfrak{L}_{\alpha} \uplus \mathfrak{L}_{\gamma}$. Second similarity is analogous.

Abel-type convolutions

We call Abel-type convolution of α and γ every umbra $\alpha(\mathbf{k})\gamma$ such that

$$A_n^{(k)}(\alpha_{(k)}\gamma) = A_n^{(k)}(\alpha) + A_n^{(k)}(\gamma).$$

Then, if k = -1 then

$$\alpha_{(-1)}\gamma \equiv \alpha + \gamma$$
,

otherwise

$$lpha_{(k)}\gamma \equiv rac{1}{1+k}.\left[(1+k).lpha \dotplus (1+k).\gamma
ight],$$

where, in general $(\alpha \dotplus \gamma)^n \simeq \alpha^n + \gamma^n$

Convolution umbrae via Abel-type convolutions

Theorem

$$\alpha_{(-1)}\gamma \equiv \alpha \star \gamma,$$
 $\alpha_{(-2)}\gamma \equiv \alpha \uplus \gamma,$

$$(\alpha_{(-n)}\gamma)^n \simeq (\alpha \boxplus \gamma)^n.$$

Proof.

Via Abel parametrization.

Alphabets and umbrae

• given a formal power series f(z), Lascoux [L] consider the alphabet A such that

$$f(z) = H_z(\mathbb{A}) \text{ and } f(z)^k = H_z(k\mathbb{A}),$$

where
$$H_z(\mathbb{A})=1+\sum_{n\geq 1}h_n(\mathbb{A})z^n$$
,

② if $e^{\alpha z} \simeq f(z) = H_z(\mathbb{A})$ and $e^{\gamma z} \simeq g(z) = H_z(\mathbb{B})$ then we have

$$E[\alpha^n] = h_n(\mathbb{A}),$$

$$E[(k \cdot \alpha)^n] = h_n(k \mathbb{A})$$

and

$$E[(\alpha + \gamma)^n] = h_n(\mathbb{A} + \mathbb{B}).$$

[L] A. LASCOUX, *Alphabet splitting*, in: Algebraic combinatorics and computer science, Springer Verlag, Italia, (2001), 431-444.

Summary

• polynomials $A_n^{(k)}(x,\alpha) = x(x+k\cdot\alpha)^{n-1}$ encode Lagrange inversion formula, for instance

$$A_n^{(k)}(\mathfrak{L}_\alpha) \simeq A_n^{(n+k)}(-1.\alpha),$$

- **2** cumulants are represented by $\alpha(\alpha k \cdot \alpha)^{n-1}$, with k = 1, 2, n,
- **3** convolutions are represented by umbrae $\alpha_{(k)}\gamma$ such that

$$A_n^{(k)}(\alpha_{(k)}\gamma) = A_n^{(k)}(\alpha) + A_n^{(k)}(\gamma).$$

umbrae encode the alphabet splitting.

Thanks

Thank you