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Summary

Techniques

Classical umbral calculus was introduced in 1994 by Rota and
Taylor [RT]. We refer the setting developed by Di Nardo and
Senato [DNS].

[DNS] E. D1 NARDO, D. SENATO, Umbral nature of Poisson random
variable, in: H. Crapo and D. Senato eds., Algebraic combinatorics and

computer science, Springer Verlag, Italia, (2001), 245-266.

[RT] G.-C. Rota, B.D. TAYLOR, The classical umbral calculus, SIAM
J. Math. Anal. 25 (1994), 694-71.
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Summary

© we show how generalized umbral Abel polynomials
A¥(x,a) = x(x + k.a)"~! encode the formulae connecting a
sequence of moments to its classical cumulants, free
cumulants and boolean cumulants,

@ we prove that the convolutions a % b (classical), al b (free)
and aW b (boolean) are represented by umbrae axyy such that

AP () = AP (@) + AP (7).

[DNPS] E. D1 NARDO, P. PETRULLO, D. SENATO, Cumulants,
convolutions and volume polynomial, preprint.

[P] P. PETRULLO, A symbolic treatment of Abel polynomials, preprint.
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Cumulants

Classical cumulants

Consider a = (ap)n>1 and ks = (kn)n>1 and their exponential
generating functions

z" z
M(Z):1+ E anm, K(Z):1+ E knﬁ
If we have

M(Z) — eK(z)717

then kn(a) = k, is the n-th (formal) classical cumulant of a.
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Cumulants

Free cumulants and boolean cumulants

Consider a = (an)n>1, ra = (rn)n>1 and s; = (sp)n>1 with ordinary
generating functions

z):1+2anz”, —l—i—Zrnz and S(z anz

n>1 n>1 n>1

such that

1
1-5(z2)
then ry(a) = r, is the n-th (formal) free cumulants of a, and
sn(a) = sp is the n-th (formal) boolean cumulants of a.

M(z) = = 2R,
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Cumulants

Convolutions

Cumulants linearize convolutions. Given a = (a,)n>1 and
b = (bn)n>1, we denote by ax b, alH b and aW b the sequences
such that

kn(a* b) = kn(a) + ka(b) (classical convolution),

rn(@a8 b) = rp(a) 4 ra(b) (free convolution),

sp(aW b) = sp(a) + sp(b) (boolean convolution).
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Cumulants

Cumulants via Moebius inversion formula

We have (see [S] and [SW])

ap, = Z kr(a) < kn(a) = Z pn(m, 1,)ar,

wel, well,
ap = Z rr(a) < r(a) = Z pine(m,1n)an,
TeNG, reNG,
ap = Z sr(a) <= sp(a) = Z w(m,1,)ar.
€l nel,

[S] R. SPEICHER, Free probability theory and noncrossing partitions, Sém.
Loth. Combin., (1997) B39C, 38pp.

[SW] R. SPEICHER, R. WOROUDI, Boolean convolution, in: Free Probability
Theory (Waterloo, ON, 1995), American Mathematical Society, Providence, R,
1997, 267-279.
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What is Classical Umbral Calculus?

The classical umbral calculus

The classical umbral calculus consists of the following data:

Q the alphabet A= {a,f,...} the of umbrae
@ the linear functional E : R[A] — R evaluation, such that
o E[1] =1
o E[a/F ---~¥] = E[a/|E[#] - - - E[y*] (uncorrelation property)

© two special umbrae e (augmentation) and u (unity) such that
E[e"] = d0,n, for n=0,1,2,...

and
E[u"] =1, forn=0,1,2,...

© N.B.we assume R = C[x]
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What is Classical Umbral Calculus?

Generating functions, umbral equivalence, similarity

@ if E[a"] = a, we say « represents the sequence a = (ap)n>1, OF a, is
the n-th moment of «

@ the generating function of « is the exponential formal power series
zﬂ
fo(z) = E[e¥*] =1+ Zanﬁa
n>1

so that
E[a"] = n'[2"]f.(2)
© umbral equivalence “~":
a ~ v < E[a] = E[v] so that e** ~ f,(z)

Q similarity
a=vys El"| = E["] forall n >0 & f,(2) = £,(2)
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What is Classical Umbral Calculus?

Dot operation and composition umbra

@ the Bell umbra (8 and the singleton umbra x have generating
functions

fa(t) = et and £, (2) =1 + z,
@ n.a (n € Z) denotes an umbra such that
fral2) = ful2)"
© the dot operation of v with « is an umbra v.« such that
f1.0(2) = £ [log fu(2)],

© composition umbra: dot operation is associative (but
noncommutative), so that

fy.8.a(z) = f,[fa(2) — 1].
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What is Classical Umbral Calculus?

Derivative, compositional inverse and Lagrange involution

@ the compositional inverse of « is an umbra a<='> such that
a~.[f.a = a.f.a57"” =y, so that

fo<—1>(2) = 1 = [fu(2) = 1]°7*7,
@ the derivative of « is an umbra «,, such that a,” ~ a"~1, that is
fop(2) = 1 + 2fa(2),
@ if a ~ 1 then «; is defined by
Qpp = Qpp = @,

@ we name the umbra £, = a,~"'>, the noncrossing Fourier
transform or Lagrange involution of «. Its generating function is

fo.(2) = S[eh(2)
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Abel polynomials

Abel polynomials

@ Abel polynomials A,(x, a) are defined by

An(x,a) = x(x — na)"1

)

@ umbral Abel polynomials are obtained by replacing —na with
—n.q, that is

An(x, @) = x(x — n.a)"?
Q if f(z) = [ze??]<~*> then
Zn X_ V4
1+2An(x,a)m = f(2),

n>1

)

from which
[x.8.(a.u)p~""7]" ~ Apn(x, a) (1).



Abel polynomials

Polynomials of binomial type

By replacing a with a in (1) we have
(x.B.ap=77)" >~ An(x, ), (1w)

from which, if f(z) = [zf,(2)]<"*> then

1+ pal) 5 = 7@ = w3 An(x,0)

! n!
n>1 n>1

so that “all polynomials of binomial type are represented by Abel
polynomials” (see [RST])

[RST] G.-C. Rorta, J. SHEN, B.D. TAYLOR, All polynomials of
binomial type are represented by Abel plynomials, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (1997) 25, no. 1, 731-738.



Abel polynomials

Abel polynomials and Lagrange inversion formula:

@ by setting x = x in (1) we recover

(—na)™ " = nl[z"][ze™]< 7,
Q@ x = x in (1u) gives

(o)t = alfz"][ze74) <,

@ if we intend [ze®?|<"'> ~ [zf,(2)]="', then we have the
Lagrange inversion formula

e () - @I
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Abel polynomials

Abel polynomials and Lagrange inversion formula: Il

© by replacing x with another umbra ~ we have

(v-B-ap= )" = Ap(v,2) (%)

@ since
(v.B.ap<"7)" ~ nl[2"]f, ([zfa(z)]<_1>)
and

An(v,a) ~ i (nj 1) Y (=na)" T~ (n=1)1[2" Y E (2) (f (Z)>"

then we recover a more general version of Lagrange inversion

2" (e () = 2" 18(2) (f?))
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Abel polynomials

Generalized umbral Abel polynomials

We define generalized umbral Abel polynomials
AB(x, o) = x(x + k.a)" L.

We set A¥(a) = A9 (a, ). A combinatorial treatment of k = n is given
in [PS].

Theorem (First Abel Inversion Theorem)

v~ A¥(a), forn=1,2,...

if and only if
a" ~ AT (y,«) forn=1,2,....

[PS] P. PETRULLO, D. SENATO, An instance of umbral methods in
representation theory: the parking function module, arXiv: 0807.4840v2.
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Abel polynomials

Abel polynomials and Lagrange inversion formula: Ill

Theorem (Abel form of LIF)
AB(L,) =~ ArH(—1.a) = —AL ) (o)

n

n <—1>7 k+1 k+ 10 n-k-1 ! '
k# =1 = [2"[zf (0, )] 7} = ——[z ](f(a,Z)) .

k= —1= [z"log <%[zf(a,z)]<*1>) _ %[z"] <f(oi Z)>n 3)
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Abel polynomials

Second inversion rule

Theorem (Second Abel Inversion Theorem)

"~ ArR(q), forn=1,2,...

if and only if

a ~ AT (y gL, forn=1,2,....
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Umbral theory of cumulants

Cumulant umbrae

If a=(an)n>1, let @" ~ a, = nla), and & = (a},),>1. We define
Ka, Mo and K, to be such that
= B.Ka,
u.0.nq,
= £:—]..fi}u

where U = —1. — x. In this way

ko =~ knp(a),
Na" nlsy(a),

Ra" = nlry(d).

12
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Umbral theory of cumulants

Abel parametrization for classical cumulants

© we have
ko ~ oo — 1.a)" 1 = ALY(a),

@ by applying First Abel Inversion Theorem
" ~ k(Ko + )" = AD(kq, @), (4)

© identity (4) is a result of Rota-Shen [RS], the umbra r, has
been deeply studied by Di Nardo-Senato [DNS]

[RS] G.-C. RoTa, J. SHEN, On the combinatorics of cumulants, J. Combin.
Theory Ser. A (2000) 91, 283-304.

[DNS] E. D1 NARDO, D. SENATO, An umbral setting for cumulants and
factorial moments, European J. Combin. (2006) 27, 394-413.
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Umbral theory of cumulants

Abel parametrization for free and boolean cumulants

©Q we have
na" =~ afa —2.a)" 1 = A2 (a)

and
A"~ afa — na)"t = ACD(a),

@ by using First Abel Inversion Theorem and Abel form of LIF
we obtain

a ~na(Ne + 2.0()"71 = AP (94, a)

and
"~ Ry (R + n.8,)" = AD(R,).
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Umbral theory of cumulants

Mixed parametrization

Second Abel inversion Theorem gives

Theorem (Mixed Abel parametrization of cumulants)

Ko = AD(ny, o) ~ AT(],),

Na" = ALY kg, ) ~ AT2(R,),
Ra" 2 AL (K, @) = A2 (14, a).
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Umbral theory of cumulants

From the parametrization to the formulae: an example

If " ~ a, then we have

ala+vy.a)" Zd )—13u5

pkn

where 1 = (p1, po,...) =[1™M2™ .. ], ay = ag,au, - - -
lpu)=my+my+---, and

nl

alpial - mtmy! -

d, =

Since 7, ~ n!s, and &," ~ n!r,, from
Na" =~ Ra(Ra + (n—2).8,)" 1,

we obtain

("= 2)g(u)-1
Sy = Z Py

mylmol- -
ey mm
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Umbral theory of cumulants

Convolution umbrae

@ the disjoint sum of o and ~ is an umbra « + ~ such that
) 0 Y
(a+7)"~a"+9",

Q if a" ~ a, = nla), and " ~ b, = n!b], then we define a x v, a W~
and o H~ to be umbrae such that

Koxy = Ko + ko,
T]aLirJ'y = Na + 7777
Romy = Rot Ry

© in this way
(ax¥)" =~ (axb),,
(ayy)" nl(a"Wb'),,
(aBH)" nl(a’ Bb),.
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Umbral theory of cumulants

Boolean convolution vs free convolutions

Loy = Lo WLy and Lowy = £, H L,

Proof.

From o = .8.ma we have no" ~ —(—1.)". In this way

—1.(aWy) = (~1.a) + (-1.7).
From ao = £_1.4, we have R, = —1.£,, so that
Loiy = —1.8omy = —1.(fa + Ra),

that is £,m, = £o W £,. Second similarity is analogous. O
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Umbral theory of cumulants

Abel-type convolutions

We call Abel-type convolution of o and  every umbra aqxyy such
that
AP (awry) = AR (@) + AP (7).

Then, if k = —1 then
a-nyy=a+7,
otherwise

e [(1 + k) 4 (14 K)ay]

11k

where, in general (a 4 7)" ~ a" + 4"

Pasquale Petrullo Cumulants and classical umbral calculus



Umbral theory of cumulants

Convolution umbrae via Abel-type convolutions

Q-1 = a % 7,
a2y = adry,
(a=ny)" = (a B )"

Via Abel parametrization. [
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Final remarks

Alphabets and umbrae

© given a formal power series f(z), Lascoux [L] consider the alphabet
A such that

f(z) = Hz(A) and f(2)* = H(kA),
where H,(A) =1+ )" o, ha(A)Z",
Q if e** ~ f(z) = H,(A) a_nd e"? ~ g(z) = H,(B) then we have
E[a"] = hn(A),
E[(k-a)"] = hy(kA)
and
E[(a+7)"] = hn(A +B).

[L] A. Lascoux, Alphabet splitting, in: Algebraic combinatorics and
computer science, Springer Verlag, Italia, (2001), 431-444.

Pasquale Petrullo Cumulants and classical umbral calculus



Final remarks

Summary

@ polynomials AY(x, @) = x(x + k.a)"~! encode Lagrange
inversion formula, for instance
AR(g) ~ AP (—1.a),

n

@ cumulants are represented by a(a — k.a)" !, with k = 1,2, n,

© convolutions are represented by umbrae aqxyy such that
A () = AP (0) + AL(3).

@ umbrae encode the alphabet splitting.
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Final remarks

Thank you
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