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Techniques

Classical umbral calculus was introduced in 1994 by Rota and
Taylor [RT]. We refer the setting developed by Di Nardo and
Senato [DNS].

[DNS] E. Di Nardo, D. Senato, Umbral nature of Poisson random
variable, in: H. Crapo and D. Senato eds., Algebraic combinatorics and
computer science, Springer Verlag, Italia, (2001), 245-266.

[RT] G.-C. Rota, B.D. Taylor, The classical umbral calculus, SIAM

J. Math. Anal. 25 (1994), 694-71.
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Results

1 we show how generalized umbral Abel polynomials
A(k)

n (x , α) = x(x + k.α)n−1 encode the formulae connecting a
sequence of moments to its classical cumulants, free
cumulants and boolean cumulants,

2 we prove that the convolutions a ? b (classical), a � b (free)
and a ] b (boolean) are represented by umbrae α(k)γ such that

A(k)
n (α(k)γ) = A(k)

n (α) + A(k)
n (γ).

[DNPS] E. Di Nardo, P. Petrullo, D. Senato, Cumulants,
convolutions and volume polynomial, preprint.

[P] P. Petrullo, A symbolic treatment of Abel polynomials, preprint.
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Classical cumulants

Consider a = (an)n≥1 and ka = (kn)n≥1 and their exponential
generating functions

M(z) = 1 +
∑
n≥1

an
zn

n!
, K (z) = 1 +

∑
n≥1

kn
zn

n!
.

If we have
M(z) = eK(z)−1,

then kn(a) = kn is the n-th (formal) classical cumulant of a.
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Free cumulants and boolean cumulants

Consider a = (an)n≥1, ra = (rn)n≥1 and sa = (sn)n≥1 with ordinary
generating functions

M(z) = 1 +
∑
n≥1

anz
n, R(z) = 1 +

∑
n≥1

rnz
n and S(z) =

∑
n≥1

snz
n,

such that

M(z) =
1

1− S(z)
=

1

z
[zR(z)]<−1>,

then rn(a) = rn is the n-th (formal) free cumulants of a, and
sn(a) = sn is the n-th (formal) boolean cumulants of a.
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Convolutions

Cumulants linearize convolutions. Given a = (an)n≥1 and
b = (bn)n≥1, we denote by a ? b, a � b and a ] b the sequences
such that

kn(a ? b) = kn(a) + kn(b) (classical convolution),

rn(a � b) = rn(a) + rn(b) (free convolution),

sn(a ] b) = sn(a) + sn(b) (boolean convolution).
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Cumulants via Moebius inversion formula

We have (see [S] and [SW])

an =
∑
π∈Πn

kπ(a)⇐⇒ kn(a) =
∑
π∈Πn

µΠ(π, 1n)aπ,

an =
∑
π∈NCn

rπ(a)⇐⇒ rn(a) =
∑
π∈NCn

µNC (π, 1n)aπ,

an =
∑
π∈In

sπ(a)⇐⇒ sn(a) =
∑
π∈In

µI (π, 1n)aπ.

[S] R. Speicher, Free probability theory and noncrossing partitions, Sém.

Loth. Combin., (1997) B39C, 38pp.

[SW] R. Speicher, R. Woroudi, Boolean convolution, in: Free Probability

Theory (Waterloo, ON, 1995), American Mathematical Society, Providence, RI,

1997, 267-279.
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The classical umbral calculus

The classical umbral calculus consists of the following data:

1 the alphabet A = {α, β, . . .} the of umbrae
2 the linear functional E : R[A]→ R evaluation, such that

E [1] = 1
E [αiβj · · · γk ] = E [αi ]E [βj ] · · ·E [γk ] (uncorrelation property)

3 two special umbrae ε (augmentation) and u (unity) such that

E [εn] = δ0,n, for n = 0, 1, 2, . . .

and
E [un] = 1, for n = 0, 1, 2, . . .

4 N.B.we assume R = C[x ]
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Generating functions, umbral equivalence, similarity

1 if E [αn] = an we say α represents the sequence a = (an)n≥1, or an is
the n-th moment of α

2 the generating function of α is the exponential formal power series

fα(z) = E [eαz ] = 1 +
∑
n≥1

an
zn

n!
,

so that
E [αn] = n![zn]fα(z)

3 umbral equivalence “'”:

α ' γ ⇔ E [α] = E [γ] so that eαz ' fα(z)

4 similarity “≡”:

α ≡ γ ⇔ E [αn] = E [γn] for all n ≥ 0⇔ fα(z) = fγ(z)
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Dot operation and composition umbra

1 the Bell umbra β and the singleton umbra χ have generating
functions

fβ(t) = eez−1 and fχ(z) = 1 + z ,

2 n.α (n ∈ Z) denotes an umbra such that

fn.α(z) = fα(z)n,

3 the dot operation of γ with α is an umbra γ.α such that

fγ.α(z) = fγ [log fα(z)],

4 composition umbra: dot operation is associative (but
noncommutative), so that

fγ.β.α(z) = fγ [fα(z)− 1].
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Derivative, compositional inverse and Lagrange involution

1 the compositional inverse of α is an umbra α<−1> such that
α<−1>.β.α ≡ α.β.α<−1> ≡ χ, so that

fα<−1>(z)− 1 = [fα(z)− 1]<−1>,

2 the derivative of α is an umbra αD such that αD
n ' αn−1, that is

fαD
(z) = 1 + zfα(z),

3 if α ' 1 then αP is defined by

αDP ≡ αP D ≡ α,

4 we name the umbra Lα ≡ αD
<−1>

P the noncrossing Fourier
transform or Lagrange involution of α. Its generating function is

fLα(z) =
1

z
[zfα(z)]<−1>.
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Abel polynomials

1 Abel polynomials An(x , a) are defined by

An(x , a) = x(x − na)n−1,

2 umbral Abel polynomials are obtained by replacing −na with
−n.α, that is

An(x , α) = x(x − n.α)n−1,

3 if f̄ (z) = [zeaz ]<−1> then

1 +
∑
n≥1

An(x , a)
zn

n!
= exf̄ (z),

from which

[x.β.(a.u)D
<−1>]n ' An(x , a) (1).
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Polynomials of binomial type

By replacing a with α in (1) we have

(x.β.αD
<−1>)n ' An(x , α), (1u)

from which, if f̄ (z) = [zfα(z)]<−1> then

1 +
∑
n≥1

pn(x)
zn

n!
= exf̄ (z) ' u +

∑
n≥1

An(x , α)
zn

n!
,

so that “all polynomials of binomial type are represented by Abel
polynomials”(see [RST])

[RST] G.-C. Rota, J. Shen, B.D. Taylor, All polynomials of

binomial type are represented by Abel plynomials, Ann. Scuola Norm.

Sup. Pisa Cl. Sci. (1997) 25, no. 1, 731-738.
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Abel polynomials and Lagrange inversion formula: I

1 by setting x = χ in (1) we recover

(−na)n−1 = n![zn][zeaz ]<−1>,

2 x = χ in (1u) gives

(−n.α)n−1 ' n![zn][zeαz ]<−1>,

3 if we intend [zeαz ]<−1> ' [zfα(z)]<−1>, then we have the
Lagrange inversion formula

1

n
[zn−1]

(
1

fα(z)

)n

= [zn][zfα(z))]<−1>.
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Abel polynomials and Lagrange inversion formula: II

1 by replacing x with another umbra γ we have

(γ.β.αD
<−1>)n ' An(γ, α) (?)

2 since
(γ.β.αD

<−1>)n ' n![zn]fγ
(
[zfα(z)]<−1>

)
and

An(γ, α) '
n−1∑
i=0

(
n − 1

i

)
γ i+1(−n.α)n−1−i ' (n−1)![zn−1]f ′γ(z)

(
1

fα(z)

)n

,

then we recover a more general version of Lagrange inversion

[zn]fγ ([zfγ(z)]<−1>) =
1

n
[zn−1]f ′γ(z)

(
1

fα(z)

)n
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Generalized umbral Abel polynomials

We define generalized umbral Abel polynomials

A(k)

n (x , α) = x(x + k.α)n−1.

We set A(k)
n (α) = A(k)

n (α, α). A combinatorial treatment of k = n is given
in [PS].

Theorem (First Abel Inversion Theorem)

γn ' A(k)

n (α), for n = 1, 2, . . .

if and only if
αn ' A(−k)

n (γ, α) for n = 1, 2, . . . .

[PS] P. Petrullo, D. Senato, An instance of umbral methods in

representation theory: the parking function module, arXiv: 0807.4840v2.
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Abel polynomials and Lagrange inversion formula: III

Theorem (Abel form of LIF)

A(k)
n (Lα) ' A(n+k)

n (−1.α) ' −A(−(n+k+2))
n (α)

Proof.

k 6= −1⇒ [zn]{[zf (α, z)]<−1>}k+1 =
k + 1

n
[zn−k−1]

(
1

f (α, z)

)n

(2)

k = −1⇒ [zn] log

(
1

z
[zf (α, z)]<−1>

)
=

1

n
[zn]

(
1

f (α, z)

)n

(3)
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Second inversion rule

Theorem (Second Abel Inversion Theorem)

γn ' A(n+k)
n (α), for n = 1, 2, . . .

if and only if

αn ' A(−(n+k))
n (γ,L−1.α), for n = 1, 2, . . . .
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Cumulant umbrae

If a = (an)n≥1, let αn ' an = n!a′n and a′ = (a′n)n≥1. We define
κα, ηα and Kα to be such that

α ≡ β.κα,

α ≡ ū.β.ηα,

α ≡ L−1.Kα ,

where ū ≡ −1.− χ. In this way

κα
n ' kn(a),

ηα
n ' n!sn(a′),

Kα
n ' n!rn(a′).
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Abel parametrization for classical cumulants

1 we have
κα

n ' α(α− 1.α)n−1 = A(−1)
n (α),

2 by applying First Abel Inversion Theorem

αn ' κα(κα + α)n−1 = A(1)
n (κα, α), (4)

3 identity (4) is a result of Rota-Shen [RS], the umbra κα has
been deeply studied by Di Nardo-Senato [DNS]

[RS] G.-C. Rota, J. Shen, On the combinatorics of cumulants, J. Combin.

Theory Ser. A (2000) 91, 283-304.

[DNS] E. Di Nardo, D. Senato, An umbral setting for cumulants and

factorial moments, European J. Combin. (2006) 27, 394-413.
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Abel parametrization for free and boolean cumulants

1 we have
ηα

n ' α(α− 2.α)n−1 = A(−2)
n (α)

and
Kα

n ' α(α− n.α)n−1 = A(−n)
n (α),

2 by using First Abel Inversion Theorem and Abel form of LIF
we obtain

αn ' ηα(ηα + 2.α)n−1 = A(2)
n (ηα, α)

and
αn ' Kα(Kα + n.Kα)n−1 = A(n)

n (Kα).
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Mixed parametrization

Second Abel inversion Theorem gives

Theorem (Mixed Abel parametrization of cumulants)

κα
n ' A(1)

n (ηα, α) ' A(n−1)
n (Kα),

ηα
n ' A(−1)

n (κα, α) ' A(n−2)
n (Kα),

Kα
n ' A(1−n)

n (κα, α) ' A(2−n)
n (ηα, α).
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From the parametrization to the formulae: an example

If αn ' an then we have

α(α + γ.α)n '
∑
µ`n

dµ(γ)`(µ)−1aµ,

where µ = (µ1, µ2, . . .) = [1m1 2m2 . . .], aµ = aµ1aµ2 . . .,
`(µ) = m1 + m2 + · · · , and

dµ =
n!

µ1!µ2! · · ·m1!m2! · · ·
.

Since ηα
n ' n!sn and Kα

n ' n!rn, from

ηα
n ' Kα(Kα + (n − 2).Kα)n−1,

we obtain

sn =
∑
µ`n

(n − 2)`(µ)−1

m1!m2! · · ·
rµ.
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Convolution umbrae

1 the disjoint sum of α and γ is an umbra α
.

+ γ such that

(α
.

+ γ)n ' αn + γn,

2 if αn ' an = n!a′n and γn ' bn = n!b′n, then we define α ? γ, α ] γ
and α� γ to be umbrae such that

κα?γ ≡ κα
.

+ κγ ,

ηα]γ ≡ ηα
.

+ ηγ ,

Kα�γ ≡ Kα
.

+ Kγ .

3 in this way

(α ? γ)n ' (a ? b)n,

(α ] γ)n ' n!(a′ ] b′)n,

(α� γ)n ' n!(a′ � b′)n.
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Boolean convolution vs free convolutions

Theorem

Lα�γ ≡ Lα ] Lγ and Lα]γ ≡ Lα � Lγ

Proof.

From α ≡ ū.β.ηα we have ηα
n ' −(−1.α)n. In this way

−1.(α ] γ) ≡ (−1.α)
.

+ (−1.γ).

From α ≡ L−1.Kα we have Kα ≡ −1.Lα, so that

Lα�γ ≡ −1.Kα�γ ≡ −1.(Kα
.

+ Kα),

that is Lα�γ ≡ Lα ] Lγ . Second similarity is analogous.
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Abel-type convolutions

We call Abel-type convolution of α and γ every umbra α(k)γ such
that

A(k)
n (α(k)γ) = A(k)

n (α) + A(k)
n (γ).

Then, if k = −1 then

α(−1)γ ≡ α + γ,

otherwise

α(k)γ ≡ 1

1 + k
.
[
(1 + k).α

.
+ (1 + k).γ

]
,

where, in general (α
.

+ γ)n ' αn + γn
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Convolution umbrae via Abel-type convolutions

Theorem

α(−1)γ ≡ α ? γ,

α(−2)γ ≡ α ] γ,

(α(−n)γ)n ' (α� γ)n.

Proof.

Via Abel parametrization.
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Alphabets and umbrae

1 given a formal power series f (z), Lascoux [L] consider the alphabet
A such that

f (z) = Hz(A) and f (z)k = Hz(kA),

where Hz(A) = 1 +
∑

n≥1 hn(A)zn,

2 if eαz ' f (z) = Hz(A) and eγz ' g(z) = Hz(B) then we have

E [αn] = hn(A),

E [(k.α)n] = hn(kA)

and
E [(α + γ)n] = hn(A + B).

[L] A. Lascoux, Alphabet splitting, in: Algebraic combinatorics and

computer science, Springer Verlag, Italia, (2001), 431-444.
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Summary

1 polynomials A(k)
n (x , α) = x(x + k.α)n−1 encode Lagrange

inversion formula, for instance

A(k)
n (Lα) ' A(n+k)

n (−1.α),

2 cumulants are represented by α(α− k.α)n−1, with k = 1, 2, n,

3 convolutions are represented by umbrae α(k)γ such that

A(k)
n (α(k)γ) = A(k)

n (α) + A(k)
n (γ).

4 umbrae encode the alphabet splitting.
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Thanks

Thank you
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