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I. The cyclic sieving phenomenon
(CSP) (–, Stanton, and White 2004)

Given

• a finite set X, and

• a polynomial X(t) ∈ Z[t], and

• a cyclic group C = 〈c〉 ∼= Z/nZ permuting X,

say the triple (X, X(t), C) exhibits the CSP

if for any element cm in C, the number

of elements of X which cm fixes is

|Xcm
| = [X(t)]

t=

(

e
2πi
n

)m

In particular, |X| = X(1).
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In examples,

– most often X(t) ∈ N[t],

– sometimes X(t) is a generating function

for X of the form

X(t) =
∑

x∈X

ts(x),

– sometimes a Hilbert series

X(t) = Hilb(U, t)

:=
∑

d≥0

dim(Ud) td

for some interesting graded

vector space/ring/representation

U =
⊕

d≥0

Ud.
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Special case when C = Z/2Z:

Stembridge’s t = −1 phenomenon (1994):

[X(t)]t=−1 = |Xc|

for some involution c : X → X.

This turned out to be useful in organizing some

results enumerating plane partitions with sym-

metry.
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I. Example 1– subsets

X := k-subsets of {1,2, . . . , n}

X(t) := t-binomial coefficient
[

n
k

]

t

=
[n]!t

[k]!t[n− k]!t
,

with [n]!t := [n]t · · · [2]t[1]t

[n]t := 1 + t + t2 + · · ·+ tn−1 =
1− tn

1− t

C := 〈(123 · · ·n)〉 ∼= Z/nZ

cyclically permuting {1,2, . . . , n},

and therefore also permuting k-subsets .

THM (–, Stanton, White 2004)

This triple (X, X(t), C) exhibits the CSP.
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Example 1 (continued)

For n = 4, k = 2, the set

X = {12,13,14,23,24,34}

carries this action of C = Z4:

12

23

34

14

13

24

X(t) =

[

4
2

]

t

=
[4]t[3]t

[2]t
= 1 + t + 2t2 + t3 + t4

evaluates at 4th-roots of unity as

X(ω) =







6(= |X|) if ω = 1

2(= |Xc2|) if ω = −1

0(= |Xc| = |Xc3|) if ω = ±i.
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Alternate phrasing of CSP:

in the unique expansion

X(t) ≡ a0+a1t+a2t2+· · ·+an−1tn−1 mod tn−1

ai counts the C-orbits on X for which

the C-stabilizer has order dividing i.

In particular,

a0 is the number of C-orbits in total,

a1 is the number of C-orbits which are free.

E.g. above

X(t) = 1 + t + 2t2 + t3 + t4

≡ 2 + t + 2t2 + t3 mod t4 − 1

12

23

34

14

13

24
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A few remarks on Example 1...

REMARK:

One also has the CSP for (X, X(t), C) with

same set X equal to all k-subsets of {1,2, . . . , n}

same set X(t) =

[

n
k

]

t

,

different cyclic group

C = 〈(123 · · ·n− 1)(n)〉 ∼= Z/(n− 1)Z.

But then it fails for any other

cyclic subgroup C of permutations which is

not a subgroup of 〈(123 · · ·n)〉

or 〈(123 · · ·n− 1)(n)〉 !
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REMARK:

X(t) =

[

n
k

]

t

has many interpretations;

we emphasize one from invariant theory...

Let S := C[x1, . . . , xn], with symmetric group

Sn permuting variables. Then one has

X(t) =

[

n
k

]

t

=
1

(1− t) · · · (1− tk) · (1− t) · · · (1− tn−k)

/
1

(1− t) · · · (1− tn)

= Hilb(SSk×Sn−k, t)/Hilb(SSn, t)

= Hilb(SSk×Sn−k/(SSn
+ ), t).

Note that one can think of our set X as

k − subsets of {1,2, . . . , n} ←→ Sn/(Sk ×Sn−k).
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III. Keywords

Some examples of CSP’s we have encountered,

conjecturally in at least one case:

– X = k-dimensional subspaces of (Fq)n

(that is, q-Example 1, which led to Talks 2, 3)

– X =multisets

– X =Polya colorings

– X =polygon triangulations/dissections

( W -clusters)

– X =noncrossing partitions

( W -noncrossing partitions)

– X =nonnesting partitions

( W -nonnesting partitions)

–X =rectangular-shaped tableaux

–X =alternating sign matrices
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IV. “Bad” versus “Good” proofs

Given (X, X(t), C), a “bad” way to prove

|Xcm
| = [X(t)]

t=

(

e
2πi
n

)m

(i) evaluates the right side

(often via a product formula for X(t),

(ii) counts the left side,

(often via good ol’ combinatorics),

(iii) equates the answers!
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Here’s a “good” way to prove

|Xcm
| = [X(t)]

t=

(

e
2πi
n

)m .

(i) Find a natural graded vector space

U = ⊕d≥0Ud

with

X(t) = Hilb(U, t).

Then the C-action on U defined by having

c act as the scalar (e
2πi
n )d on Ud

has the trace of cm on U equal to

∑

d≥0

dim(Ud) (e
2πi
n )dm = [X(t)]

t=

(

e
2πi
n

)m
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(ii) Define a permutation representation C[X]

of C having C-basis elements

{ex}x∈X

and C-action by permuting the basis:

c(ex) = ec(x).

Then the trace of cm on C[X] equals |Xcm
|.
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(iii) Prove that as C-representations,

C[X] ∼= U.

Then cm should have the same trace in both:

|Xcm
| = [X(t)]

t=

(

e
2πi
n

)m .

Harder than it looks, of course!

Sadly, many of our CSP proofs are“bad”,

but some have been replaced by “good” ones.

MORAL: t is a grading variable in many

CSP’s.
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V. Example 1, the “good” way

via invariant theory

Let V = Cn, and

W a finite subgroup of GL(V ) = GLn(C).

Then W acts on S = C[x1, . . . , xn]

via linear substitutions variables.

THM (Shephard-Todd, Chevalley 1955)

When the group W is generated by reflections

(= elements r with V r a hyperplane),

there is an isomorphism of W -representations

between the coinvariant algebra and the left-

regular represenation:

S/(SW
+ ) ∼= C[W ].

We need more....
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Say that an element c in a finite reflection

group W is regular if it has an eigenvector v

that avoids all of the reflection hyperplanes.

Hence c(v) = ω · v for a root-of-unity ω in C.

THM (T.A. Springer 1972)

Let C = 〈c〉 be generated by a regular

element c in a finite reflection group W .

Then the Shephard-Todd/Chevalley isomorphism

S/(SW
+ ) ∼= C[W ].

extends to one of W × C-representations,

with W acting as before, but C acting...

– on left, via scalar substitutions

c(xi) = ωxi,

– on right, via right-translation: c(ew) = ewc.
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Now given any subgroup W ′ of W

(think W = Sn and W ′ = Sk ×Sn−k)

take the W ′-fixed spaces

in Springer’s W × C-isomorphism,

leaving a C-isomorphism:

(

S/(SW
+ )

)W ′ ∼= C[W ]W
′

Then say some magic words turning this into...

SW ′/(SW
+) ∼= C[W ′\W ]

The left side is our U modelling

X(t) = Hilb(SW ′/(SW
+ ), t) =

Hilb(SW ′, t)

Hilb(SW , t)

The right side is C[X] where X = W ′\W ,

and C acts by right-translating cosets:

c(W ′w) = W ′wc.
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Equating traces of cm on both sides gives...

COR(–,Stanton,White 2004)

For a regular element c in a

complex reflection group W ,

and any subgroup W ′,

the triple (X, X(t), C) in which

X = W/W ′

C = 〈c〉 left-translating cosets

X(t) = Hilb(SW ′/(SW
+ ), t) =

Hilb(SW ′, t)

Hilb(SW , t)

always exhibits the CSP.
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Example 1 comes from

W = Sn,

W ′ = Sk ×Sn−k,

c = (123 · · ·n) or c = (123 · · ·n− 1)(n):

Note that setting ζn := e
2πi
n ,

then c = (123 · · ·n) is regular because

it has ζn-eigenvector

(1, ζ1
n, ζ2

n, . . . , ζn−1
n )

while c = (123 · · ·n− 1)(n) is regular because

it has ζn−1-eigenvector

(1, ζ1
n−1, ζ2

n−1, . . . , ζn−2
n−1 ,0).
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Talk 2: Invariant theory

Outline

I. Example 1: subsets.

II. q-Example 1: subspaces.

III. A general Springer-type theorem

(with Bram Broer,

Larry Smith,

and Peter Webb)
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I. Recall the CSP and Example 1

Recall (X, X(t), C) exhibits the CSP

if for any element cm in C, the number

of elements of X which cm fixes is

|Xcm
| = [X(t)]

t=

(

e
2πi
n

)m

21



Example 1 was

X = k-subsets of{1,2, . . . , n} = Sn/(Sk ×Sn−k)

C = 〈(123 · · ·n)〉

X(t) =

[

n
k

]

t

=
Hilb(SSk×Sn−k, t)

Hilb(SSn, t)

=
1

(1− t) · · · (1− tk) · (1− t) · · · (1− tn−k)

/
1

(1− t) · · · (1− tn)

where S = C[x1, . . . , xn]

and SSn = C[e1(x), e2(x), . . . , en(x)] with

ei(x) =
∑

|I|=i




∏

i∈I

xi



 .
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I. q-Example 1

For the q-analogue, we take

X = k-dimensional subspaces of F
n
q = G/P

which carries a transitive action of

G := GLn(Fq) = GLFq
(Fn

q )

and P is the parabolic subgroup

fixing some particular k-subspace.
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Where do we get a cyclic action on X?

Any element c inside G = GLn(Fq)

could be taken to generate the cyclic group C.

But the correct q-analogue of c = (123 · · ·n)

turns out to be a Singer cycle c,

that is, a generator for the (cyclic!) group

F
×
qn
∼= Z/(qn − 1)/Z

embedded into

G := GLn(Fq)
∼= GLFq

(Fn
q )
∼= GLFq

(Fqn)

by picking any Fq-vector space isomorphism

Fn
q
∼= Fqn.
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What X(t) will we take with X = G/P?

Let S := Fq[x1, . . . , xn].

Then the group G = GLn(Fq) acts on S

by linear substitutions of variables,

and so does the subgroup P .

Not surprisingly perhaps, we choose

X(t) =
Hilb(SP , t)

Hilb(SG, t)

But what is this X(t) explicitly?
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THM (L.E. Dickson 1911) The invariant ring

SG = Fq[Dn,0, Dn,1, . . . , Dn,n−1]

for G = GLn(Fq) is a polynomial algebra,

whose generators Dn,i have degrees qn − qi,

and can be written

Dn,i =
∑

i−dim’l subspaces
U⊂(Fn

q )
∗






∏

ℓ(x) 6∈U

ℓ(x)




 .

Hence one has Hilb(SG, t) = 1
n!q,t

where

n!q,t = (1− tq
n−1)(1− tq

n−q) · · · (1− tq
n−qn−1

)
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This was generalized by Mui (1975) to a result

for all of the parabolic subgroups P , showing

that

Hilb(SP , t) =
1

k!q,t · (n− k)!
q,tq

k

Hence their quotient gives an explicit product

formula for

X(t) =
Hilb(SP , t)

Hilb(SG, t)

=
1

k!q,t · (n− k)!
q,tq

k

=:

[

n
k

]

q,t

= the (q, t)-binomial coefficient.
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THM

(–, Stanton, White 2004, via “bad” proof!)

The triple

X = G/P = k-subspaces of F
n
q

X(t) =

[

n
k

]

q,t

C = F
×
qn = 〈c〉 ∼= Z/(qn − 1)Z

exhibits the CSP.

We wanted a better proof,

that explained more examples over Fq,

involving other subgroups of G = GLn(Fq).
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III. A more general Springer theorem

Recall that Springer’s theorem

was about (complex) reflection groups.

INTERESTING FACT:

G = GLn(Fq) is a reflection group!

THM (Serre 1967)

For any field F,

if a finite subgroup G of GLn(F)

acting on S := F[x1, . . . , xn] has

the invariant ring SG a polynomial algebra,

then G must be generated by reflections.
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The converse is false generally,

but true in characteristic zero (Chevalley 1955)

Here “reflections” are still elements r

for which the fixed space (Fn)r is a hyperplane.

But in positive characteristic, it allows

for r to be a transvection, that is,

non-semisimple, of determinant 1, e.g.

r =








1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1








Note one can generate G = GLn(Fq)

using transvections and semisimple reflections.
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When SG is polynomial,

so that G is generated by reflections,

define a regular element c in G

(as before) to be one with an eigenvector v

that avoids all the reflecting hyperplanes.

PROP

An element c in GLn(Fq) is regular

⇔ c is a power of a Singer cycle, that is,

c is in the image of some embedding

F
×
qn →֒ GLn(Fq)
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THM(Broer, –, Smith, Webb, 2007)

Let F be any field, and S = F[x1, . . . , xn].

Let G be a finite subgroup of GLn(F)

with SG polynomial.

Let C be the cyclic subgroup generated by

a regular element c in G.

Let H be any subgroup of G.

Then the triple

X = G/H

X(t) =
Hilb(SH , t)

Hilb(SG, t)

C = 〈c〉 left-translating cosets gH

always exhibits the CSP.

MORAL:

This X(t) is the right way to

introduce a grading variable into a set

X = G/H that has a transitive G-action.
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Some ideas of the proof...

IDEA 1 Because char(F) might not be zero,

and SH is not always Cohen-Macaulay,

X(t) =
Hilb(SH , t)

Hilb(SG, t)

6=Hilb(SH/(SG
+)

︸ ︷︷ ︸

SH ⊗SG F
︸ ︷︷ ︸

TorS
G

0
(SH,F)

, t)

However the following corrects this:

X(t) = Hilb(TorS
G

0 (SH , F), t)

−Hilb(TorS
G

1 (SH , F), t)

+ Hilb(TorS
G

2 (SH , F), t)− · · ·

=
n∑

i=0

(−1)iHilb(TorS
G

i (SH , F), t)

So work with all of TorS
G

∗ (SH , F)

not just TorS
G

0 (SH , F) = SH/(SG
+) as in Springer.
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IDEA 2

Let G ⊂ GLn(F) act on V := Fn,

and on S = F[x1, . . . , xn].

Then the surjection V
π
→ V/G

corresponds to the inclusion SG →֒ S.

(Same for V → V/H → V/G

and SG →֒ SH → S.)

Then S/(SG
+) is the coordinate ring

of the fiber π−1(π(0)).

Compare it with the fiber π−1(π(v)), where

v is the eigenvector of the regular element c.

The latter fiber π−1(π(v)) has a free G-action,

and even a fairly simple G× C-action.
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Talk 3: q- and t-analogues

Outline

We’ll see examples of ...

|X| ∈ N

q = 1ր տ t = 1

|Xq| ∈ N[q]
t↔q
←→ X(t) ∈ N[t]

t = 1տ ր t 7→ t
1

q−1 , q = 1

Xq(t)

with CSP for (X, X(t), C) in which

C = 〈c〉 for c an n-cycle in Sn,

and CSP for (Xq, Xq(t), Cq) in which

Cq = 〈cq〉 for cq a Singer cycle in GLn(Fq).
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We’ve seen one such example already with

X = k-subsets of {1,2, . . . , n} = Sn/(Sk ×Sn−k)
Xq = k-subspaces of Fn

q = G/P

|X| =
(
n
k

)

q = 1ր տ t = 1

|Xq| =

[

n
k

]

q

t↔q
←→ X(t) =

[

n
k

]

t

= Hilb(SSk×Sn−k,t)
Hilb(SSn,t)

t = 1տ ր t 7→ t
1

q−1 , q = 1

Xq(t) =

[

n
k

]

q,t

= Hilb(SP ,t)
Hilb(SG,t)
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E.g. n = 2 and k = 1 looks like this...

|X| =
(
2
1

)

q = 1ր տ t = 1

|Xq| =

[

2
1

]

q

t↔q
←→ X(t) =

[

2
1

]

t
= q + 1 = t + 1

t = 1տ ր t 7→ t
1

q−1, q = 1

Xq(t) =

[

2
1

]

q,t

=
2!q,t

1!q,t·1!q,tq

= (1−tq
2−1)(1−tq

2−q)

(1−tq−1)(1−tq
2−q)

= 1−t(q−1)(q+1)

1−tq−1

= [q + 1]tq−1
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An interesting extra feature in this example...

Think of X as partitions λ whose Ferrers

diagram fits inside a k×(n−k) rectangle. Then

X(t) =

[

n
k

]

t

=
∑

λ∈X

t|λ|

|Xq| =

[

n
k

]

q

=
∑

λ∈X

q|λ|

THM (–, Stanton 2008) One has

Xq(t) =

[

n
k

]

q,t

=
∑

λ∈X

wt(λ; q, t)

where

wt(λ; q, t) =
∏

cells x of λ

ta(x)[q]
tq

b(x)−qc(x).

In particular, wt(λ; q, t)→ q|λ|, t|λ|

under the two kinds of limits

that send Xq(t) to |Xq|, X(t).
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This all persists in more general examples.

For any composition α = (α1, . . . , αℓ)

of n, consider the Young subgroup

Sα := Sα1 × · · · ×Sαℓ

inside Sn,

and the corresponding parabolic subgroup

Pα inside G = GLn(Fq) that stabilizes

some particular flag of subspaces

having dimensions

D(α) := (α1, α1 + α2, α1 + α2 + α3, . . .)
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One then finds the same story with

X = Sn/Sα

Xq = G/Pα

together with the usual q− or t−multinomial

coefficients

X(t) =

[

n
α

]

t

|Xq| =

[

n
α

]

q

and the (q, t)-multinomial

Xq(t) =

[

n
α

]

q,t

:=
Hilb(SPα, t)

Hilb(SG, t)
.
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Here one can think of X as

X = {w ∈ Sn : Des(w)⊆D(α)}

where Des(w) is the usual

descent set of a permutation w. Then

X(t) =

[

n
α

]

t

=
∑

w∈X

tℓ(w)

|Xq| =

[

n
α

]

q

=
∑

w∈X

qℓ(w)

with ℓ(w) the length/inversion number of w.

THM (–, Stanton 2008) One has

Xq(t) =

[

n
α

]

q,t

=
∑

w∈X

wt(w; q, t)

where wt(w; q, t) has a summation-of-products

expression as before.
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This suggests consideration of the

more refined descent classes

X = {w ∈ Sn : Des(w)=D(α)}

and their length generating functions

X(t) :=
∑

w∈X

tℓ(w)

|Xq| :=
∑

w∈X

qℓ(w)

as well as

Xq(t) :=
∑

w∈X

wt(w; q, t)

where wt(w; q, t) is the same weight that ap-

peared before.

Can we say anything meaningful about these?
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Yes- two things. Firstly,

MacMahon’s determinantal formula for descent

class sizes

|X| = n! det

(

1

(αi + αi+1 + · · ·+ αj)!

)

i,j=1,...,ℓ

which was generalized by Stanley to

X(t) = [n]!t det

(

1

[αi + αi+1 + · · ·+ αj]!t

)

i,j=1,...,ℓ

|Xq| = [n]!q det

(

1

[αi + αi+1 + · · ·+ αj]!q

)

i,j=1,...,ℓ

generalizes further to

THM(–, Stanton 2008)

Xq(t) = [n]!q,t det








1

[αi + αi+1 + · · ·+ αj]!
q,tq
∑i−1

m=1 αi








i,j

where

[n]!q,t := (1− tq
n−1)(1− tq

n−q) · · · (1− tq
n−qn−1

).
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Secondly, one has homological and

invariant theory interpretations.

The size of the descent class |X| gives

the dimension of the top (and only)

homology group for the

α-rank-selected subcomplex of the

Coxeter complex for Sn,

or the order complex of the Boolean algebra.

Call this homology Sn-representation χα.

The polynomial |Xq| =
∑

w∈X qℓ(w) was shown

by Björner (1984) to give

the dimension of the top (and only)

homology group for the

α-rank-selected subcomplex of the

of the Tits building for GLn(Fq),

or the order complex of the subspace lattice.

Call this homology GLn(Fq)-representation χα
q .
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On the other hand, one can show the following

THM(–, Stanton 2008)

X(t) :=
∑

w∈X

tℓ(w) =
Hilb(M, t)

Hilb(SSn, t)

where M := HomSn
(χα, S), and

Xq(t) :=
∑

w∈X

wt(w; q, t) =
Hilb(Mq, t)

Hilb(SG), t

where Mq := HomG(χα
q , S).
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In the special case α = 1n,

this last result is related to work of

the topologists N. Kuhn and S. Mitchell (1984).

They were interested in knowing exactly

how many copies of the Steinberg module

of GLn(Fq) occur in each graded component

of S = Fq[x1, . . . , xn].
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An incomplete picture for column-strict tableaux

Let X be all column-strict tableaux

of a skew-shape λ/µ with entries in {0,1, . . . , n}.

An appropriate t-analogue is the

principally specialized Schur function

X(t) := sλ/µ(1, t, t2, . . . , tn).

This can then be generalized to a suitable

(q, t)-analogue Xq(t) that has many of

the good properties we have seen,

including a product formulae,

and X(t) as an appropriate limit.
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These polynomials Xq(t) in fact are lifts from

Fq[t] to Z[t] of principal specializations of

Macdonald’s “7th variation”

on Schur functions from SLC 1992.

QUESTION

What is the algebraic meaning

(e.g. invariant-theoretic, Hilbert series)

for these (q, t)-analogues Xq(t)?
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