On non-crossing and non-nesting set partitions in types A, B and C

Christian Stump
$62^{\text {ème }}$ Séminaire Lotharingien de Combinatoire

February 25, 2009

Overview

Non-crossing and non-nesting set partitions

Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Overview

Non-crossing and non-nesting set partitions

Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Set partitions

Let $\mathcal{B} \vdash[n]=\{1, \ldots, n\}$ be a set partition.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$

Set partitions

Let $\mathcal{B} \vdash[n]=\{1, \ldots, n\}$ be a set partition.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$

Set partitions

Let $\mathcal{B} \vdash[n]=\{1, \ldots, n\}$ be a set partition.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$

Set partitions

Let $\mathcal{B} \vdash[n]=\{1, \ldots, n\}$ be a set partition.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$

Set partitions

Let $\mathcal{B} \vdash[n]=\{1, \ldots, n\}$ be a set partition.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$

Set partitions

Let $\mathcal{B} \vdash[n]=\{1, \ldots, n\}$ be a set partition.
Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$

Non-crossing set partitions

A set partition $\mathcal{B} \vdash[n]$ is called

- non-crossing, if for $a<b<c<d$ such that a, c are contained in a block B of \mathcal{B}, while b, d are contained in a block B^{\prime} of \mathcal{B}, then $B=B^{\prime}$:

Non-crossing set partitions

A set partition $\mathcal{B} \vdash[n]$ is called

- non-crossing, if for $a<b<c<d$ such that a, c are contained in a block B of \mathcal{B}, while b, d are contained in a block B^{\prime} of \mathcal{B}, then $B=B^{\prime}$:

Example
$\mathcal{B}=\{\{1,7,9\},\{2,5,6\},\{3,4\},\{8\}\} \vdash[9]$ is non-crossing:

Non-nesting set partitions

A set partition $\mathcal{B} \vdash[n]$ is called

- non-nesting, if for $a<b<c<d$ such that a, d are contained in a block B of \mathcal{B}, while b, c are contained in a block B^{\prime} of \mathcal{B}, then $B=B^{\prime}$:

Non-nesting set partitions

A set partition $\mathcal{B} \vdash[n]$ is called

- non-nesting, if for $a<b<c<d$ such that a, d are contained in a block B of \mathcal{B}, while b, c are contained in a block B^{\prime} of \mathcal{B}, then $B=B^{\prime}$:

Example

$$
\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]:
$$

Bijections between non-crossing and non-nesting set partitions

There exist several bijections different between non-crossing and non-nesting set partitions, e.g.:

- A bijection preserving the type (C.A. Athanasiadis),
- a bijection sending the sum of the major index and the inverse major index to the area statistic (St.),
- a bijection preserving openers and closers and thereby the \# of blocks (A. Kasraoui \& J. Zeng, C. Krattenthaler).

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Openers and closers of a set partition on a totally ordered set S are defined by

$$
\begin{aligned}
\mathrm{op}(\mathcal{B}) & :=S \backslash\{\max (B): B \in \mathcal{B}\} \\
\mathrm{cl}(\mathcal{B}) & :=S \backslash\{\min (B): B \in \mathcal{B}\}
\end{aligned}
$$

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Openers and closers of a set partition on a totally ordered set S are defined by

$$
\begin{aligned}
\mathrm{op}(\mathcal{B}) & :=S \backslash\{\max (B): B \in \mathcal{B}\} \\
\mathrm{cl}(\mathcal{B}) & :=S \backslash\{\min (B): B \in \mathcal{B}\}
\end{aligned}
$$

Example
$\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]$

This gives $\operatorname{op}(\mathcal{B})=\{1,2,3,5,7\}$.

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Openers and closers of a set partition on a totally ordered set S are defined by

$$
\begin{aligned}
\mathrm{op}(\mathcal{B}) & :=S \backslash\{\max (B): B \in \mathcal{B}\} \\
\mathrm{cl}(\mathcal{B}) & :=S \backslash\{\min (B): B \in \mathcal{B}\}
\end{aligned}
$$

Example
$\mathcal{B}=\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\} \vdash[9]$

This gives $\mathrm{cl}(\mathcal{B})=\{4,5,6,7,9\}$.

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Observation
Let $O, C \subseteq S$ for some finite, totally ordered set S. Then there exists a unique non-crossing set partition \mathcal{B} and a unique non-nesting set partition \mathcal{B}^{\prime} on S with

$$
\operatorname{op}(\mathcal{B})=\operatorname{op}\left(\mathcal{B}^{\prime}\right)=O \quad, \quad \operatorname{cl}(\mathcal{B})=\operatorname{cl}\left(\mathcal{B}^{\prime}\right)=C
$$

if and only if $|O|=|C|$ and for $i \in\{1, \ldots,|S|\}$,

$$
\left|O \cap\left\{s_{1}, \ldots, s_{i-1}\right\}\right| \geq\left|C \cap\left\{s_{1}, \ldots, s_{i}\right\}\right| .
$$

Idea (following A. Kasraoui, J. Zeng)

- NC: connect the i-th closer to the last unused opener,
- NN: connect the i-th closer to the first unused opener.

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Example (Non-crossing, i-th closer - last unused opener) Let $\operatorname{op}(\mathcal{B}):=\{1,2,3,5,7\}, \mathrm{cl}(\mathcal{B}):=\{4,5,6,7,9\} \subseteq[9]$. Then

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Example (Non-nesting, i-th closer - first unused opener)
Let $\operatorname{op}\left(\mathcal{B}^{\prime}\right):=\{1,2,3,5,7\}, \operatorname{cl}\left(\mathcal{B}^{\prime}\right):=\{4,5,6,7,9\} \subseteq[9]$. Then

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Example (Non-crossing, i-th closer - last unused opener) Let $\operatorname{op}(\mathcal{B}):=\{1,2,3,5,7\}, \mathrm{cl}(\mathcal{B}):=\{4,5,6,7,9\} \subseteq[9]$. Then

Example (Non-nesting, i-th closer - first unused opener) Let $\operatorname{op}\left(\mathcal{B}^{\prime}\right):=\{1,2,3,5,7\}, \mathrm{cl}\left(\mathcal{B}^{\prime}\right):=\{4,5,6,7,9\} \subseteq[9]$. Then

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Example (Non-crossing, i-th closer - last unused opener) Let $\operatorname{op}(\mathcal{B}):=\{1,2,3,5,7\}, \mathrm{cl}(\mathcal{B}):=\{4,5,6,7,9\} \subseteq[9]$. Then

Example (Non-nesting, i-th closer - first unused opener) Let $\operatorname{op}\left(\mathcal{B}^{\prime}\right):=\{1,2,3,5,7\}, \operatorname{cl}\left(\mathcal{B}^{\prime}\right):=\{4,5,6,7,9\} \subseteq[9]$. Then

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Example (Non-crossing, i-th closer - last unused opener) Let $\operatorname{op}(\mathcal{B}):=\{1,2,3,5,7\}, \mathrm{cl}(\mathcal{B}):=\{4,5,6,7,9\} \subseteq[9]$. Then

Example (Non-nesting, i-th closer - first unused opener) Let $\operatorname{op}\left(\mathcal{B}^{\prime}\right):=\{1,2,3,5,7\}, \operatorname{cl}\left(\mathcal{B}^{\prime}\right):=\{4,5,6,7,9\} \subseteq[9]$. Then

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Example (Non-crossing, i-th closer - last unused opener) Let $\operatorname{op}(\mathcal{B}):=\{1,2,3,5,7\}, \mathrm{cl}(\mathcal{B}):=\{4,5,6,7,9\} \subseteq[9]$. Then

Example (Non-nesting, i-th closer - first unused opener) Let $\operatorname{op}\left(\mathcal{B}^{\prime}\right):=\{1,2,3,5,7\}, \mathrm{cl}\left(\mathcal{B}^{\prime}\right):=\{4,5,6,7,9\} \subseteq[9]$. Then

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Example (Non-crossing, i-th closer - last unused opener) Let $\operatorname{op}(\mathcal{B}):=\{1,2,3,5,7\}, \mathrm{cl}(\mathcal{B}):=\{4,5,6,7,9\} \subseteq[9]$. Then

Example (Non-nesting, i-th closer - first unused opener) Let $\operatorname{op}\left(\mathcal{B}^{\prime}\right):=\{1,2,3,5,7\}, \operatorname{cl}\left(\mathcal{B}^{\prime}\right):=\{4,5,6,7,9\} \subseteq[9]$. Then

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Example (Non-crossing, i-th closer - last unused opener) Let $\operatorname{op}(\mathcal{B}):=\{1,2,3,5,7\}, \mathrm{cl}(\mathcal{B}):=\{4,5,6,7,9\} \subseteq[9]$. Then

Example (Non-nesting, i-th closer - first unused opener) Let $\operatorname{op}\left(\mathcal{B}^{\prime}\right):=\{1,2,3,5,7\}, \operatorname{cl}\left(\mathcal{B}^{\prime}\right):=\{4,5,6,7,9\} \subseteq[9]$. Then

Bijections between non-crossing and non-nesting set partitions preserving openers and closers

Theorem
There exists a unique bijection between non-crossing and non-nesting set partitions preserving openers and closers.

Corollary

- The bijection by A. Kasraoui and J. Zeng which interchanges crossings and nestings preserves openers and closers,
- the bijection by C. Krattenthaler between k-crossing and k-nesting set partitions preserves openers and closers.
\Rightarrow For non-crossing and non-nesting set partitions both bijections coincide.

Generalizations of non-crossing and non-nesting set partitions

Non-crossing and non-nesting set partitions were generalized to other (classical) reflection groups:

- non-crossing: as intersection lattices of Coxeter arrangements (V. Reiner),
- non-nesting: as anti-chains in the root poset (A. Postnikov), and later reinterpreted in terms of
- set partitions on $[\pm n]$ or $[\pm n] \cup\{0\}$ (C.A. Athanasiadis).

Remark

- Recently, A. Fink and B.I. Giraldo generalized Athanasiadis' type-preserving bijection to all classical reflection groups.
- The bijection sending the area to the sum of the major and the inverse major index can be generalized to types B and C but fails to exist in type D.

Overview

Non-crossing and non-nesting set partitions

Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Non-crossing set partitions of types B and C

 A non-crossing set partition of type B and of type C is a set partition \mathcal{B} on $[\pm n]:=\{1,2, \ldots, n,-1,-2, \ldots,-n\}$ such that$$
B \in \mathcal{B} \Leftrightarrow-B \in \mathcal{B},
$$

and which is non-crossing in the crossing order

$$
1<2<\ldots<n<-1<-2<\ldots<-n .
$$

Example
$\mathcal{B}=\{\{1,2,-5\},\{3,4,-3,-4\},\{5,-1,-2\}\} \vdash[\pm 5]$ is non-crossing of types B and C :

Openers and closers for non-crossing set partitions of types B and C

Observation

Let $O, C \subseteq[n]$. Then there exists a unique non-crossing set partition \mathcal{B} of types B and C on $[\pm n]$ with $\operatorname{op}(\mathcal{B}) \cap[n]=O$ and $\operatorname{cl}(\mathcal{B}) \cap[n]=C$ if and only if for all i,

$$
\left|O \cap\left\{s_{1}, \ldots, s_{i}\right\}\right| \geq\left|C \cap\left\{s_{1}, \ldots, s_{i}\right\}\right|
$$

Idea

1. complete the "positive part"
2. reflect it to the "negative part" and
3. connect both parts.

Openers and closers for non-crossing set partitions of types B and C

Example
Let

$$
\begin{array}{rll}
\mathrm{op}(\mathcal{B}) \cap[n]:=\{1,2,3,4,5\} & \subseteq[5] \\
\operatorname{cl}(\mathcal{B}) \cap[n]:=\{2,4\} & \subseteq[5] .
\end{array}
$$

Then we get

$$
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & -1 & -2 & -3 & -4 & -5
\end{array}
$$

Openers and closers for non-crossing set partitions of types B and C

Example
Let

$$
\begin{array}{rll}
\operatorname{op}(\mathcal{B}) \cap[n]:=\{1,2,3,4,5\} & \subseteq[5] \\
\operatorname{cl}(\mathcal{B}) \cap[n]:=\{2,4\} & \subseteq[5] .
\end{array}
$$

Then we get
1

1 2		4	5	-1	-2	-3	-4	-5

Openers and closers for non-crossing set partitions of types B and C

Example
Let

$$
\begin{array}{rll}
\operatorname{op}(\mathcal{B}) \cap[n]:=\{1,2,3,4,5\} & \subseteq[5] \\
\operatorname{cl}(\mathcal{B}) \cap[n]:=\{2,4\} & \subseteq[5] .
\end{array}
$$

Then we get

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3 | 3 | 5 | | |

Openers and closers for non-crossing set partitions of types B and C

Example
Let

$$
\begin{aligned}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-1,-3\} & \subseteq[\pm 5] \\
\mathrm{cl}(\mathcal{B}):=\{2,4,-1,-2,-3,-4,-5\} & \subseteq[\pm 5]
\end{aligned}
$$

Then we get

Openers and closers for non-crossing set partitions of types B and C

Example
Let

$$
\begin{aligned}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-1,-3\} & \subseteq[\pm 5] \\
\mathrm{cl}(\mathcal{B}):=\{2,4,-1,-2,-3,-4,-5\} & \subseteq[\pm 5]
\end{aligned}
$$

Then we get

Openers and closers for non-crossing set partitions of types B and C

Example
Let

$$
\begin{aligned}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-1,-3\} & \subseteq[\pm 5] \\
\operatorname{cl}(\mathcal{B}):=\{2,4,-1,-2,-3,-4,-5\} & \subseteq[\pm 5]
\end{aligned}
$$

Then we get

Openers and closers for non-crossing set partitions of types B and C

Example
Let

$$
\begin{aligned}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-1,-3\} & \subseteq[\pm 5] \\
\operatorname{cl}(\mathcal{B}):=\{2,4,-1,-2,-3,-4,-5\} & \subseteq[\pm 5]
\end{aligned}
$$

Then we get

Overview

Non-crossing and non-nesting set partitions
 Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Non-nesting set partitions of type C

A non-nesting set partition of type C is a set partition \mathcal{B} on $[\pm n]:=\{1,2, \ldots, n,-n, \ldots-2,-1\}$ such that

$$
B \in \mathcal{B} \Leftrightarrow-B \in \mathcal{B},
$$

and which is non-nesting in the nesting order

$$
1<2<\ldots<n<-n<\ldots<-2<-1 .
$$

Example
$\mathcal{B}=\{\{1,2,4,-4,-2,-1\},\{3,-5\},\{5,-3\}\} \vdash[\pm 5]$ is non-nesting of type C :

Openers and closers for non-nesting partitions of type C

Observation
Let $O, C \subseteq[n]$. Then there exists a unique non-nesting set partition \mathcal{B} of type C on $[\pm n]$ with $\operatorname{op}(\mathcal{B}) \cap[n]=O$ and $\operatorname{cl}(\mathcal{B}) \cap[n]=C$ if and only if for all i,

$$
\left|O \cap\left\{s_{1}, \ldots, s_{i}\right\}\right| \geq\left|C \cap\left\{s_{1}, \ldots, s_{i}\right\}\right|
$$

Idea

1. reflect the "positive part" to the "negative part" and
2. complete the set partition.

Openers and closers for non-nesting partitions of type C

Example

Let

$$
\begin{array}{rll}
\operatorname{op}(\mathcal{B}) \cap[n]:=\{1,2,3,4,5\} & \subseteq[5] \\
\operatorname{cl}(\mathcal{B}) \cap[n]:=\{2,4\} & \subseteq[5] .
\end{array}
$$

Then we get
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & -5 & -4 & -3 & -2 & -1\end{array}$

Openers and closers for non-nesting partitions of type C

Example

Let

$$
\begin{array}{rll}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-4,-2\} & \subseteq[\pm 5], \\
\mathrm{cl}(\mathcal{B}):=\{2,4,-5,-4,-3,-3,-1\} & \subseteq[\pm 5] .
\end{array}
$$

Then we get
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & -5 & -4 & -3 & -2 & -1\end{array}$

Openers and closers for non-nesting partitions of type C

Example

Let

$$
\begin{array}{rll}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-4,-2\} & \subseteq[\pm 5], \\
\mathrm{cl}(\mathcal{B}):=\{2,4,-5,-4,-3,-2,-1\} & \subseteq[\pm 5] .
\end{array}
$$

Then we get

1	3	4	5	-5	-4	-3	-2	-1

Openers and closers for non-nesting partitions of type C

Example

Let

$$
\begin{array}{rll}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-4,-2\} & \subseteq[\pm 5], \\
\mathrm{cl}(\mathcal{B}):=\{2,4,-5,-4,-3,-2,-1\} & \subseteq[\pm 5] .
\end{array}
$$

Then we get

5
-5

Openers and closers for non-nesting partitions of type C

Example

Let

$$
\begin{array}{rll}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-4,-2\} & \subseteq[\pm 5], \\
\mathrm{cl}(\mathcal{B}):=\{2,4,-5,-4,-3,-2,-1\} & \subseteq[\pm 5] .
\end{array}
$$

Then we get

Openers and closers for non-nesting partitions of type C

Example

Let

$$
\begin{array}{rll}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-4,-2\} & \subseteq[\pm 5], \\
\mathrm{cl}(\mathcal{B}):=\{2,4,-5,-4,-3,-2,-1\} & \subseteq[\pm 5] .
\end{array}
$$

Then we get

Openers and closers for non-nesting partitions of type C

Example

Let

$$
\begin{array}{rll}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-4,-2\} & \subseteq[\pm 5], \\
\mathrm{cl}(\mathcal{B}):=\{2,4,-5,-4,-3,-2,-1\} & \subseteq[\pm 5] .
\end{array}
$$

Then we get

Overview

> Non-crossing and non-nesting set partitions

> Non-crossing set partitions of types B and C

> Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Non-nesting set partitions of type B

A non-nesting set partition of type B is a set partition \mathcal{B} on $[\pm n] \cup\{0\}:=\{1,2, \ldots, n, 0,-n, \ldots-2,-1\}$ such that

$$
\begin{aligned}
& B \in \mathcal{B} \Leftrightarrow-B \in \mathcal{B}, \\
& B=-B \Leftrightarrow 0 \in B
\end{aligned}
$$

and which is non-nesting in the nesting order

$$
1<2<\ldots<n<0<-n<\ldots<-2<-1 .
$$

Example
$\mathcal{B}=\{\{1,2,4,-5\},\{3,0,-3\},\{5,-4,-2,-1\}\} \vdash[\pm 5] \cup\{0\}$ is non-nesting of type B :

Openers and closers for non-nesting partitions of type B

Observation

Let $O, C \subseteq[n]$. Then there exists a unique non-nesting set partition \mathcal{B} of type B on $[\pm n] \cup\{0\}$ with $\operatorname{op}(\mathcal{B}) \cap[n]=O$ and $\operatorname{cl}(\mathcal{B}) \cap[n]=C$ if and only if for all i,

$$
\left|O \cap\left\{s_{1}, \ldots, s_{i}\right\}\right| \geq\left|C \cap\left\{s_{1}, \ldots, s_{i}\right\}\right|
$$

Idea

1. reflect the "positive part" to the "negative part"
2. if $|O|-|C|$ is odd, insert 0 to the set of openers and closers and
3. complete the set partition.

Openers and closers for non-nesting partitions of type B

Example

Let

$$
\begin{array}{rll}
O \cap[n]:=\{1,2,3,4,5\} & \subseteq & {[5]} \\
\operatorname{cl}(\mathcal{B}) \cap[n]:=\{2,4\} & \subseteq & \subseteq 5] .
\end{array}
$$

Then we get
$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 0 & -5 & -4 & -3 & -2 & -1\end{array}$

Openers and closers for non-nesting partitions of type B

Example

Let

$$
\begin{array}{rll}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,-4,-2\} & \subseteq[\pm 5], \\
\mathrm{cl}(\mathcal{B}):=\{2,4,-5,-4,-3,-3,-1\} & \subseteq[\pm 5] .
\end{array}
$$

Then we get
$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 0 & -5 & -4 & -3 & -2 & -1\end{array}$

Openers and closers for non-nesting partitions of type B

Example

Let

$$
\begin{aligned}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,0,-4,-2\} & \subseteq[\pm 5] \\
\mathrm{cl}(\mathcal{B}):=\{2,4,0,-5,-4,-3,-3,-1\} & \subseteq[\pm 5] .
\end{aligned}
$$

Then we get
$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 0 & -5 & -4 & -3 & -2 & -1\end{array}$

Openers and closers for non-nesting partitions of type B

Example

Let

$$
\begin{aligned}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,0,-4,-2\} & \subseteq[\pm 5], \\
\mathrm{cl}(\mathcal{B}):=\{2,4,0,-5,-4,-3,-2,-1\} & \subseteq[\pm 5] .
\end{aligned}
$$

Then we get

Openers and closers for non-nesting partitions of type B

Example

Let

$$
\begin{aligned}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,0,-4,-2\} & \subseteq[\pm 5] \\
\mathrm{cl}(\mathcal{B}):=\{2,4,0,-5,-4,-3,-2,-1\} & \subseteq[\pm 5] .
\end{aligned}
$$

Then we get

5
$\begin{array}{llllll}0 & -5 & -4 & -3 & -2 & -1\end{array}$

Openers and closers for non-nesting partitions of type B

Example

Let

$$
\begin{aligned}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,0,-4,-2\} & \subseteq[\pm 5] \\
\mathrm{cl}(\mathcal{B}):=\{2,4,0,-5,-4,-3,-2,-1\} & \subseteq[\pm 5] .
\end{aligned}
$$

Then we get

Openers and closers for non-nesting partitions of type B

Example

Let

$$
\begin{aligned}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,0,-4,-2\} & \subseteq[\pm 5] \\
\mathrm{cl}(\mathcal{B}):=\{2,4,0,-5,-4,-3,-2,-1\} & \subseteq[\pm 5] .
\end{aligned}
$$

Then we get

Openers and closers for non-nesting partitions of type B

Example

Let

$$
\begin{aligned}
\operatorname{op}(\mathcal{B}):=\{1,2,3,4,5,0,-4,-2\} & \subseteq[\pm 5] \\
\mathrm{cl}(\mathcal{B}):=\{2,4,0,-5,-4,-3,-2,-1\} & \subseteq[\pm 5] .
\end{aligned}
$$

Then we get

Bijections preserving openers and closers in types B, C

Theorem
The presented bijection between

- non-crossing set partitions in types B and C,
- non-nesting set partitions in type B and
- non-nesting set partitions in type C
is the unique bijection preserving openers and closers on $[n]$.

Corollary

- The presented bijection preserves openers and closers on [n],
- the bijection by R. Mamede, we will be introduced to in a second, preserves openers and closers on $[n]$.
\Rightarrow Both bijections coincide.

Overview

> Non-crossing and non-nesting set partitions

> Non-crossing set partitions of types B and C

> Non-nesting set partitions of type C

> Non-nesting set partitions of type B

A counterexample in type D

Generalizations

A counterexample for non-nesting partitions of type D

Remark

The previous observation is false in type D : the anti-chains

$$
\left\{e_{1}-e_{3}, e_{2}+e_{3}\right\} \quad, \quad\left\{e_{2}-e_{3}, e_{1}+e_{3}\right\}
$$

belong to the non-nesting set partitions

which have the same sets of openers and closers,

$$
\operatorname{op}(\mathcal{B}) \cap[3]=\{1,2,3\} \quad, \quad \operatorname{cl}(\mathcal{B}) \cap[3]=\{3\} .
$$

Overview

> Non-crossing and non-nesting set partitions

> Non-crossing set partitions of types B and C

> Non-nesting set partitions of type C

> Non-nesting set partitions of type B

> A counterexample in type D

Generalizations

Generalizations and future work

We have seen in the classical case that the bijection preserving openers and closers have generalizations in two different directions:

- k-crossings - k-nestings (C. Krattenthaler),
- \# of crossings - \# of nestings (A. Kasraoui, J. Zeng).
- the k-crossing - k-nesting generalization was done in type C by M. Rubey using growth diagrams,

Current work:

- k-crossing - k-nesting generalization in type B (joint work with M. Rubey),
- \# of crossing - \# of nestings generalization in types B and C (joint work with M. Rubey).

Remark

Here, the definitions of crossings and nestings are different!

Thank you very much!

