On non-crossing and non-nesting set partitions in types A, B and C

Christian Stump

62ème Séminaire Lotharingien de Combinatoire

February 25, 2009

Overview

Non-crossing and non-nesting set partitions

Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Overview

Non-crossing and non-nesting set partitions

Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Let $\mathcal{B} \vdash [n] = \{1, \ldots, n\}$ be a set partition.

Example $\mathcal{B} = \big\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\big\} \vdash [9]:$

Let $\mathcal{B} \vdash [n] = \{1, \dots, n\}$ be a set partition.

Example $\mathcal{B} = \big\{ \{1,4\}, \{2,5,7,9\}, \{3,6\}, \{8\} \big\} \vdash [9]:$

Let $\mathcal{B} \vdash [n] = \{1, \ldots, n\}$ be a set partition.

Example $\mathcal{B} = \big\{\{1,4\}, \{2,5,7,9\}, \{3,6\}, \{8\}\big\} \vdash [9]:$

Let $\mathcal{B} \vdash [n] = \{1, \ldots, n\}$ be a set partition.

Example $\mathcal{B} = \big\{\{1,4\},\{2,5,7,9\}, \{\textbf{3,6}\},\{\textbf{8}\}\big\} \vdash [9]:$

Let $\mathcal{B} \vdash [n] = \{1, \ldots, n\}$ be a set partition.

Example $\mathcal{B} = \big\{ \{1,4\}, \{2,5,7,9\}, \{3,6\}, \{8\} \big\} \vdash [9]:$

Let $\mathcal{B} \vdash [n] = \{1, \ldots, n\}$ be a set partition.

Example $\mathcal{B} = \big\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\big\} \vdash [9]:$

Non-crossing set partitions

A set partition $\mathcal{B} \vdash [n]$ is called

▶ non-crossing, if for a < b < c < d such that a, c are contained in a block B of B, while b, d are contained in a block B' of B, then B = B':</p>

Non-crossing set partitions

A set partition $\mathcal{B} \vdash [n]$ is called

▶ non-crossing, if for a < b < c < d such that a, c are contained in a block B of B, while b, d are contained in a block B' of B, then B = B':</p>

Example

 $\mathcal{B} = \big\{\{1,7,9\},\{2,5,6\},\{3,4\},\{8\}\big\} \vdash [9] \text{ is non-crossing:}$

Non-nesting set partitions

A set partition $\mathcal{B} \vdash [n]$ is called

▶ non-nesting, if for a < b < c < d such that a, d are contained in a block B of B, while b, c are contained in a block B' of B, then B = B':</p>

Non-nesting set partitions

A set partition $\mathcal{B} \vdash [n]$ is called

▶ non-nesting, if for a < b < c < d such that a, d are contained in a block B of B, while b, c are contained in a block B' of B, then B = B':</p>

Example

 $\mathcal{B} = \big\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\big\} \vdash [9] \text{:}$

Bijections between non-crossing and non-nesting set partitions

There exist several bijections different between non-crossing and non-nesting set partitions, e.g.:

- ► A bijection preserving the **type** (C.A. Athanasiadis),
- a bijection sending the sum of the major index and the inverse major index to the area statistic (St.),
- a bijection preserving openers and closers and thereby the # of blocks (A. Kasraoui & J. Zeng, C. Krattenthaler).

Openers and **closers** of a set partition on a totally ordered set *S* are defined by

$$\operatorname{op}(\mathcal{B}) := S \setminus \{ \max(B) : B \in \mathcal{B} \},\$$

 $\operatorname{cl}(\mathcal{B}) := S \setminus \{ \min(B) : B \in \mathcal{B} \},\$

Openers and **closers** of a set partition on a totally ordered set *S* are defined by

$$\begin{array}{lll} \mathsf{op}(\mathcal{B}) & := & S \setminus \big\{ \max(B) : B \in \mathcal{B} \big\}, \\ \mathsf{cl}(\mathcal{B}) & := & S \setminus \big\{ \min(B) : B \in \mathcal{B} \big\}, \end{array}$$

Example

$$\mathcal{B} = \big\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\big\} \vdash [9]$$

This gives $op(B) = \{1, 2, 3, 5, 7\}.$

Openers and **closers** of a set partition on a totally ordered set *S* are defined by

$$\begin{array}{lll} \mathsf{op}(\mathcal{B}) & := & S \setminus \big\{ \max(B) : B \in \mathcal{B} \big\}, \\ \mathsf{cl}(\mathcal{B}) & := & S \setminus \big\{ \min(B) : B \in \mathcal{B} \big\}, \end{array}$$

Example

$$\mathcal{B} = \big\{\{1,4\},\{2,5,7,9\},\{3,6\},\{8\}\big\} \vdash [9]$$

This gives $cl(B) = \{4, 5, 6, 7, 9\}.$

Observation

Let $O, C \subseteq S$ for some finite, totally ordered set S. Then there exists a **unique** non-crossing set partition \mathcal{B} and a **unique** non-nesting set partition \mathcal{B}' on S with

$$\mathsf{op}(\mathcal{B}) = \mathsf{op}(\mathcal{B}') = O$$
 , $\mathsf{cl}(\mathcal{B}) = \mathsf{cl}(\mathcal{B}') = C$

if and only if $|\mathcal{O}| = |\mathcal{C}|$ and for $i \in \{1, \dots, |\mathcal{S}|\}$,

$$|O \cap \{s_1,\ldots,s_{i-1}\}| \geq |C \cap \{s_1,\ldots,s_i\}|.$$

Idea (following A. Kasraoui, J. Zeng)

- NC: connect the *i*-th closer to the **last** unused opener,
- ▶ NN: connect the *i*-th closer to the **first** unused opener.

Example (Non-crossing, *i*-th closer – last unused opener) Let $op(\mathcal{B}) := \{1, 2, 3, 5, 7\}, cl(\mathcal{B}) := \{4, 5, 6, 7, 9\} \subseteq [9]$. Then

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$ Example (Non-nesting, *i*-th closer – first unused opener) Let op(\mathcal{B}') := {1, 2, 3, 5, 7}, cl(\mathcal{B}') := {4, 5, 6, 7, 9} \subseteq [9]. Then $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$

Christian Stump - On non-crossing and non-nesting set partitions in types A, B and C

Example (Non-crossing, *i*-th closer – last unused opener) Let $op(\mathcal{B}) := \{1, 2, 3, 5, 7\}, cl(\mathcal{B}) := \{4, 5, 6, 7, 9\} \subseteq [9]$. Then

Christian Stump - On non-crossing and non-nesting set partitions in types A, B and C

Example (Non-crossing, *i*-th closer – last unused opener) Let $op(\mathcal{B}) := \{1, 2, 3, 5, 7\}, cl(\mathcal{B}) := \{4, 5, 6, 7, 9\} \subseteq [9]$. Then

Example (Non-crossing, *i*-th closer – last unused opener) Let $op(\mathcal{B}) := \{1, 2, 3, 5, 7\}, cl(\mathcal{B}) := \{4, 5, 6, 7, 9\} \subseteq [9]$. Then

Example (Non-crossing, *i*-th closer – last unused opener) Let $op(\mathcal{B}) := \{1, 2, 3, 5, 7\}, cl(\mathcal{B}) := \{4, 5, 6, 7, 9\} \subseteq [9]$. Then

Example (Non-nesting, *i*-th closer – first unused opener) Let $op(\mathcal{B}') := \{1, 2, 3, 5, 7\}, cl(\mathcal{B}') := \{4, 5, 6, 7, 9\} \subseteq [9]$. Then

Example (Non-crossing, *i*-th closer – last unused opener) Let $op(\mathcal{B}) := \{1, 2, 3, 5, 7\}, cl(\mathcal{B}) := \{4, 5, 6, 7, 9\} \subseteq [9]$. Then

Example (Non-nesting, *i*-th closer – first unused opener) Let $op(\mathcal{B}') := \{1, 2, 3, 5, 7\}, cl(\mathcal{B}') := \{4, 5, 6, 7, 9\} \subseteq [9]$. Then

Example (Non-crossing, *i*-th closer – last unused opener) Let $op(\mathcal{B}) := \{1, 2, 3, 5, 7\}, cl(\mathcal{B}) := \{4, 5, 6, 7, 9\} \subseteq [9]$. Then

Example (Non-nesting, *i*-th closer – first unused opener) Let $op(\mathcal{B}') := \{1, 2, 3, 5, 7\}, cl(\mathcal{B}') := \{4, 5, 6, 7, 9\} \subseteq [9]$. Then

Theorem

There exists a **unique** bijection between non-crossing and non-nesting set partitions preserving openers and closers.

Corollary

- The bijection by A. Kasraoui and J. Zeng which interchanges crossings and nestings preserves openers and closers,
- the bijection by C. Krattenthaler between k-crossing and k-nesting set partitions preserves openers and closers.
- ⇒ For non-crossing and non-nesting set partitions both bijections coincide.

Generalizations of non-crossing and non-nesting set partitions

Non-crossing and non-nesting set partitions were generalized to other (classical) reflection groups:

 non-crossing: as intersection lattices of Coxeter arrangements (V. Reiner),

non-nesting: as anti-chains in the root poset (A. Postnikov), and later reinterpreted in terms of

▶ set partitions on $[\pm n]$ or $[\pm n] \cup \{0\}$ (C.A. Athanasiadis).

Remark

- Recently, A. Fink and B.I. Giraldo generalized Athanasiadis' type-preserving bijection to all classical reflection groups.
- The bijection sending the area to the sum of the major and the inverse major index can be generalized to types B and C but fails to exist in type D.

A (B) > A (B) > A (B) >

Overview

Non-crossing and non-nesting set partitions

Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Non-crossing set partitions of types B and C

A non-crossing set partition of type *B* and of type *C* is a set partition \mathcal{B} on $[\pm n] := \{1, 2, ..., n, -1, -2, ..., -n\}$ such that

$$B \in \mathcal{B} \Leftrightarrow -B \in \mathcal{B},$$

and which is non-crossing in the crossing order

$$1 < 2 < \ldots < n < -1 < -2 < \ldots < -n.$$

Example

 $\mathcal{B} = \{\{1, 2, -5\}, \{3, 4, -3, -4\}, \{5, -1, -2\}\} \vdash [\pm 5] \text{ is non-crossing of types } B \text{ and } C:$

Observation

Let $O, C \subseteq [n]$. Then there exists a **unique** non-crossing set partition \mathcal{B} of types B and C on $[\pm n]$ with $op(\mathcal{B}) \cap [n] = O$ and $cl(\mathcal{B}) \cap [n] = C$ if and only if for all i,

$$|O \cap \{s_1,\ldots,s_i\}| \geq |C \cap \{s_1,\ldots,s_i\}|.$$

Idea

- 1. complete the "positive part"
- 2. reflect it to the "negative part" and
- 3. connect both parts.

Example

Let

$$\mathsf{op}(\mathcal{B}) \cap [n] := \{1, 2, 3, 4, 5\} \subseteq [5],$$

 $\mathsf{cl}(\mathcal{B}) \cap [n] := \{2, 4\} \subseteq [5].$

Then we get

1 2 3 4 5 -1 -2 -3 -4 -5

A ₽

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) \cap [n] := \{\mathbf{1}, 2, 3, 4, 5\} &\subseteq & [5], \\ \mathsf{cl}(\mathcal{B}) \cap [n] := \{\mathbf{2}, 4\} &\subseteq & [5]. \end{array}$$

Then we get

Example

Let

$$op(B) ∩ [n] := \{1, 2, 3, 4, 5\} ⊆ [5],
 cl(B) ∩ [n] := \{2, 4\} ⊆ [5].$$

Then we get

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, -1, -3\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -1, -2, -3, -4, -5\} &\subseteq & [\pm 5]. \end{array}$$

Then we get

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, -1, -3\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -1, -2, -3, -4, -5\} &\subseteq & [\pm 5]. \end{array}$$

Example

Let

$$\begin{array}{rll} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, \textbf{4}, 5, -1, -3\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -1, -2, \textbf{-3}, -4, -5\} &\subseteq & [\pm 5]. \end{array}$$

Example

Let

$$\begin{array}{rll} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, -1, -3\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -1, -2, -3, -4, -5\} &\subseteq & [\pm 5]. \end{array}$$

Overview

Non-crossing and non-nesting set partitions

Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Non-nesting set partitions of type C

A non-nesting set partition of type C is a set partition \mathcal{B} on $[\pm n] := \{1, 2, ..., n, -n, ... - 2, -1\}$ such that

 $B \in \mathcal{B} \Leftrightarrow -B \in \mathcal{B},$

and which is non-nesting in the nesting order

$$1 < 2 < \ldots < n < -n < \ldots < -2 < -1.$$

Example

 $\mathcal{B} = \big\{\{1, 2, 4, -4, -2, -1\}, \{3, -5\}, \{5, -3\}\big\} \vdash [\pm 5] \text{ is non-nesting of type } C:$

Observation

Let $O, C \subseteq [n]$. Then there exists a **unique** non-nesting set partition \mathcal{B} of type C on $[\pm n]$ with $op(\mathcal{B}) \cap [n] = O$ and $cl(\mathcal{B}) \cap [n] = C$ if and only if for all *i*,

$$|O \cap \{s_1,\ldots,s_i\}| \geq |C \cap \{s_1,\ldots,s_i\}|.$$

Idea

- 1. reflect the "positive part" to the "negative part" and
- 2. complete the set partition.

Example

Let

$$\mathsf{op}(\mathcal{B}) \cap [n] := \{1, 2, 3, 4, 5\} \subseteq [5],$$

 $\mathsf{cl}(\mathcal{B}) \cap [n] := \{2, 4\} \subseteq [5].$

Then we get

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1$

Christian Stump - On non-crossing and non-nesting set partitions in types A, B and C

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, -4, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -5, -4, -3, -3, -1\} &\subseteq & [\pm 5]. \end{array}$$

Then we get

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1$

Christian Stump - On non-crossing and non-nesting set partitions in types A, B and C

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, -4, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -5, -4, -3, -2, -1\} &\subseteq & [\pm 5]. \end{array}$$

Then we get

1 2 3 4 5 -5 -4 -3 -2 -1

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, -4, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -5, -4, -3, -2, -1\} &\subseteq & [\pm 5]. \end{array}$$

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, \mathbf{3}, 4, \mathbf{5}, -4, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -\mathbf{5}, -4, -\mathbf{3}, -2, -1\} &\subseteq & [\pm 5]. \end{array}$$

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, \textbf{4}, 5, -\textbf{4}, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -5, -\textbf{4}, -3, -2, -1\} &\subseteq & [\pm 5]. \end{array}$$

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, -4, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -5, -4, -3, -2, -1\} &\subseteq & [\pm 5]. \end{array}$$

Overview

Non-crossing and non-nesting set partitions

Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Non-nesting set partitions of type B

A non-nesting set partition of type *B* is a set partition \mathcal{B} on $[\pm n] \cup \{0\} := \{1, 2, ..., n, 0, -n, ... - 2, -1\}$ such that $B \in \mathcal{B} \Leftrightarrow -B \in \mathcal{B},$ $B = -B \Leftrightarrow 0 \in B$

and which is non-nesting in the nesting order

$$1 < 2 < \ldots < n < 0 < -n < \ldots < -2 < -1.$$

Example

 $\mathcal{B} = \big\{ \{1, 2, 4, -5\}, \{3, 0, -3\}, \{5, -4, -2, -1\} \big\} \vdash [\pm 5] \cup \{0\} \text{ is non-nesting of type } B:$

Observation

Let $O, C \subseteq [n]$. Then there exists a **unique** non-nesting set partition \mathcal{B} of type B on $[\pm n] \cup \{0\}$ with $op(\mathcal{B}) \cap [n] = O$ and $cl(\mathcal{B}) \cap [n] = C$ if and only if for all *i*,

$$|O \cap \{s_1,\ldots,s_i\}| \geq |C \cap \{s_1,\ldots,s_i\}|.$$

Idea

- 1. reflect the "positive part" to the "negative part"
- 2. if |O| |C| is odd, insert 0 to the set of openers and closers and
- 3. complete the set partition.

Example

Let

$$O \cap [n] := \{1, 2, 3, 4, 5\} \subseteq [5],$$

 $cl(\mathcal{B}) \cap [n] := \{2, 4\} \subseteq [5].$

Then we get

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 0 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1$

Christian Stump - On non-crossing and non-nesting set partitions in types A, B and C

• 3 >

A ₽

臣

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, -4, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, -5, -4, -3, -3, -1\} &\subseteq & [\pm 5]. \end{array}$$

Then we get

1 2 3 4 5 0 -5 -4 -3 -2 -1

Christian Stump - On non-crossing and non-nesting set partitions in types A, B and C

• 3 >

A ₽

臣

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, \mathbf{0}, -4, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, \mathbf{0}, -5, -4, -3, -3, -1\} &\subseteq & [\pm 5]. \end{array}$$

Then we get

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 0 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1$

Christian Stump - On non-crossing and non-nesting set partitions in types A, B and C

• 3 >

A ₽

臣

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{ 1, 2, 3, 4, 5, 0, -4, -2 \} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{ 2, 4, 0, -5, -4, -3, -2, -1 \} &\subseteq & [\pm 5]. \end{array}$$

Then we get

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, 0, -4, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, 0, -5, -4, -3, -2, -1\} &\subseteq & [\pm 5]. \end{array}$$

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, \mathbf{3}, 4, 5, \mathbf{0}, -4, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, \mathbf{0}, -5, -4, -\mathbf{3}, -2, -1\} &\subseteq & [\pm 5]. \end{array}$$

Example

Let

$$\begin{array}{rcl} \mathsf{op}(\mathcal{B}) := \{1, 2, 3, \textbf{4}, \textbf{5}, 0, -\textbf{4}, -2\} &\subseteq & [\pm 5], \\ \mathsf{cl}(\mathcal{B}) := \{2, 4, 0, -\textbf{5}, -\textbf{4}, -3, -2, -1\} &\subseteq & [\pm 5]. \end{array}$$

Example

Let

$$\mathsf{op}(\mathcal{B}) := \{1, 2, 3, 4, 5, 0, -4, -2\} \subseteq [\pm 5],$$

 $\mathsf{cl}(\mathcal{B}) := \{2, 4, 0, -5, -4, -3, -2, -1\} \subseteq [\pm 5].$

Bijections preserving **openers** and **closers** in types *B*, *C*

Theorem

The presented bijection between

- non-crossing set partitions in types B and C,
- non-nesting set partitions in type B and
- non-nesting set partitions in type C

is the **unique** bijection preserving openers and closers on [n].

Corollary

- ▶ The presented bijection preserves openers and closers on [n],
- the bijection by R. Mamede, we will be introduced to in a second, preserves openers and closers on [n].
- \Rightarrow Both bijections coincide.

Overview

Non-crossing and non-nesting set partitions

Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

A counterexample for non-nesting partitions of type D

Remark

The previous observation is false in type D: the anti-chains

$$\{e_1 - e_3, e_2 + e_3\}$$
, $\{e_2 - e_3, e_1 + e_3\}$

belong to the non-nesting set partitions

which have the same sets of openers and closers,

$$op(\mathcal{B}) \cap [3] = \{1, 2, 3\}$$
, $cl(\mathcal{B}) \cap [3] = \{3\}.$

Overview

Non-crossing and non-nesting set partitions

Non-crossing set partitions of types B and C

Non-nesting set partitions of type C

Non-nesting set partitions of type B

A counterexample in type D

Generalizations

Generalizations and future work

We have seen in the classical case that the bijection preserving openers and closers have generalizations in two different directions:

- k-crossings k-nestings (C. Krattenthaler),
- ▶ # of crossings # of nestings (A. Kasraoui, J. Zeng).
- the k-crossing k-nesting generalization was done in type C by M. Rubey using growth diagrams,

Current work:

- k-crossing k-nesting generalization in type B (joint work with M. Rubey),
- # of crossing # of nestings generalization in types B and C (joint work with M. Rubey).

Remark

Here, the definitions of **crossings** and **nestings** are different!

→ < 글 → < 글 → < 글</p>

Thank you very much!

Christian Stump - On non-crossing and non-nesting set partitions in types A, B and C

A⊒ ▶ ∢ ∃