Signed colorings of generalized permutation arrays

SLC 62, Heilsbronn

Maria Manuel Torres joint work with J. A. Dias da Silva

- Generalized permutation arrays
- Colorings of generalized permutation arrays
- Open problems
- Applications

3 N

A generalized permutation array

$$\Gamma = \left(\begin{array}{cccc} i_1 & i_2 & \dots & i_m \\ j_1 & j_2 & \dots & j_m \end{array}\right)$$

with the properties

(1) $i_1 \le i_2 \le \ldots \le i_m;$ (2) $\{i_1, \ldots, i_m\} = \{j_1, \ldots, j_m\} = \{1, \ldots, r\};$ (3) $|\{k : i_k = 1\}| \ge |\{k : i_k = 2\}| \ge \ldots \ge |\{k : i_k = r\}|.$ (4) $|\{k : i_k = p\}| = |\{k : j_k = p\}|, p = 1, \ldots, r.$

A generalized permutation array

$$\Gamma = \left(\begin{array}{cccc} i_1 & i_2 & \dots & i_m \\ j_1 & j_2 & \dots & j_m \end{array}\right)$$

with the properties

(1) $i_1 \le i_2 \le \ldots \le i_m;$ (2) $\{i_1, \ldots, i_m\} = \{j_1, \ldots, j_m\} = \{1, \ldots, r\};$ (3) $|\{k : i_k = 1\}| \ge |\{k : i_k = 2\}| \ge \ldots \ge |\{k : i_k = r\}|.$ (4) $|\{k : i_k = p\}| = |\{k : j_k = p\}|, p = 1, \ldots, r.$

$$\Gamma = \left(\begin{array}{cccc} i_1 & i_2 & \dots & i_m \\ j_1 & j_2 & \dots & j_m \end{array}\right)$$

with the properties

(1) $i_1 \le i_2 \le \ldots \le i_m;$ (2) $\{i_1, \ldots, i_m\} = \{j_1, \ldots, j_m\} = \{1, \ldots, r\};$ (3) $|\{k : i_k = 1\}| \ge |\{k : i_k = 2\}| \ge \ldots \ge |\{k : i_k = r\}|.$ (4) $|\{k : i_k = p\}| = |\{k : j_k = p\}|, p = 1, \ldots, r.$

$$\Gamma = \left(\begin{array}{cccc} i_1 & i_2 & \dots & i_m \\ j_1 & j_2 & \dots & j_m \end{array}\right)$$

with the properties

(1)
$$i_1 \le i_2 \le \ldots \le i_m;$$

(2) $\{i_1, \ldots, i_m\} = \{j_1, \ldots, j_m\} = \{1, \ldots, r\};$
(3) $|\{k : i_k = 1\}| \ge |\{k : i_k = 2\}| \ge \ldots \ge |\{k : i_k = r\}|.$
(4) $|\{k : i_k = p\}| = |\{k : j_k = p\}|, p = 1, \ldots, r.$

$$\Gamma = \left(\begin{array}{cccc} i_1 & i_2 & \dots & i_m \\ j_1 & j_2 & \dots & j_m \end{array}\right)$$

with the properties

(1)
$$i_1 \le i_2 \le \ldots \le i_m$$
;
(2) $\{i_1, \ldots, i_m\} = \{j_1, \ldots, j_m\} = \{1, \ldots, r\};$
(3) $|\{k : i_k = 1\}| \ge |\{k : i_k = 2\}| \ge \ldots \ge |\{k : i_k = r\}|.$
(4) $|\{k : i_k = p\}| = |\{k : j_k = p\}|, p = 1, \ldots, r.$

$$\Gamma = \left(\begin{array}{cccc} i_1 & i_2 & \dots & i_m \\ j_1 & j_2 & \dots & j_m \end{array}\right)$$

with the properties

(1)
$$i_1 \le i_2 \le \ldots \le i_m$$
;
(2) $\{i_1, \ldots, i_m\} = \{j_1, \ldots, j_m\} = \{1, \ldots, r\};$
(3) $|\{k : i_k = 1\}| \ge |\{k : i_k = 2\}| \ge \ldots \ge |\{k : i_k = r\}|.$
(4) $|\{k : i_k = p\}| = |\{k : j_k = p\}|, p = 1, \ldots, r.$

$$\lambda = (|\{k : i_k = 1\}|, |\{k : i_k = 2\}|, \dots, |\{k : i_k = r\}|)$$

is a partition of *m* and it is called the **multiplicity partition** of Γ . The conjugate partition of λ is called the **rank partition** of Γ and it is denoted

 $\rho(\Gamma).$

Example.

is a normal array, with multiplicity partition

$$\lambda = (3, 2^2, 1^2).$$

$$\lambda = (|\{k: i_k = 1\}|, |\{k: i_k = 2\}|, \dots, |\{k: i_k = r\}|)$$

is a partition of m and it is called the **multiplicity partition** of Γ .

The conjugate partition of λ is called the ${\bf rank}\ {\bf partition}$ of Γ and it is denoted

 $\rho(\Gamma).$

Example.

is a normal array, with multiplicity partition

$$\lambda = (3, 2^2, 1^2).$$

$$\lambda = (|\{k : i_k = 1\}|, |\{k : i_k = 2\}|, \dots, |\{k : i_k = r\}|)$$

is a partition of *m* and it is called the **multiplicity partition** of Γ . The conjugate partition of λ is called the **rank partition** of Γ and it is denoted

 $\rho(\Gamma).$

Example.

is a normal array, with multiplicity partition

$$\lambda = (3, 2^2, 1^2).$$

4 3 b

$$\lambda = (|\{k : i_k = 1\}|, |\{k : i_k = 2\}|, \dots, |\{k : i_k = r\}|)$$

is a partition of *m* and it is called the **multiplicity partition** of Γ . The conjugate partition of λ is called the **rank partition** of Γ and it is denoted

 $\rho(\Gamma).$

Example.

is a normal array, with multiplicity partition

$$\lambda = (3, 2^2, 1^2).$$

Let Γ be a normal array and let μ be a partition of m.

We say that Γ is μ -colorable if it is possible to fill the Young diagram $[\mu]$ with all the pairs

 $(i_k, j_k), \ k = 1, \ldots, m$

in a way that there will be a bijection on every row of $[\mu]$. The obtained Young tableau T^{μ} is called a μ -coloring of Γ . Example. Let

and $\mu = (4, 3, 2)$. Then

is a μ -coloring of [

< 同 > < E > < E >

Let Γ be a normal array and let μ be a partition of m. We say that Γ is μ -colorable if it is possible to fill the Young diagram $[\mu]$ with all the pairs

$$(i_k, j_k), \ k = 1, \ldots, m$$

in a way that there will be a bijection on every row of $[\mu]$. The obtained Young tableau T^{μ} is called a μ -coloring of Γ . Example. Let

and $\mu = (4, 3, 2)$. Then

is a μ -coloring of Γ

伺 ト イ ヨ ト イ ヨ ト

Let Γ be a normal array and let μ be a partition of m. We say that Γ is μ -colorable if it is possible to fill the Young diagram $[\mu]$ with all the pairs

$$(i_k, j_k), \ k = 1, \ldots, m$$

in a way that there will be a bijection on every row of $[\mu]$. The obtained Young tableau T^{μ} is called a μ -coloring of Γ . Example. Let

and $\mu = (4, 3, 2)$. Then

is a μ -coloring of Γ .

向 ト イヨ ト イヨト

Let Γ be a normal array and let μ be a partition of m. We say that Γ is μ -**colorable** if it is possible to fill the Young diagram $[\mu]$ with all the pairs

$$(i_k, j_k), \ k = 1, \ldots, m$$

in a way that there will be a bijection on every row of $[\mu]$. The obtained Young tableau T^{μ} is called a μ -coloring of Γ . **Example.** Let

and $\mu = (4, 3, 2)$. Then

is a μ -coloring of Γ .

Theorem. If Γ is μ -colorable, then $\mu \leq \rho(\Gamma)$.

In general, it is not true that every normal array admits a full coloring.

If $T^{\rho(\Gamma)}$ is a full coloring of Γ , then on row v there is a

permutation σ_{v} of the set $\{1, \ldots, \rho_{v}\}$, for every $v \in \{1, \ldots, \lambda_{1}\}$.

The **sign** of a full coloring $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_1, \ldots, \sigma_{\lambda_1}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is **positive** (respectively **negative**) if its sign is 1 (respectively –1). We denote P(Γ) the number of positive full colorings of Γ; N(Γ) the number of negative full colorings of Γ.

Theorem. If Γ is μ -colorable, then $\mu \leq \rho(\Gamma)$.

In general, it is not true that every normal array admits a full coloring.

If $T^{\rho(\Gamma)}$ is a full coloring of Γ , then on row v there is a permutation σ_v of the set $\{1, \dots, \rho_v\}$, for every $v \in \{1, \dots, \rho_v\}$.

The **sign** of a full coloring $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_1, \ldots, \sigma_{\lambda_1}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is **positive** (respectively **negative**) if its sign is 1 (respectively –1). We denote P(Γ) the number of positive full colorings of Γ; N(Γ) the number of negative full colorings of Γ.

□ ► < □ ► </p>

Theorem. If Γ is μ -colorable, then $\mu \leq \rho(\Gamma)$.

In general, it is not true that every normal array admits a full coloring.

If $\mathcal{T}^{\rho(\Gamma)}$ is a full coloring of Γ , then on row v there is a permutation σ_v of the set $\{1, \ldots, \rho_v\}$, for every $v \in \{1, \ldots, \lambda_1\}$.

The **sign** of a full coloring $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_1, \ldots, \sigma_{\lambda_1}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is **positive** (respectively **negative**) if its sign is 1 (respectively -1).

We denote

 $P(\Gamma)$ the number of positive full colorings of Γ ; $N(\Gamma)$ the number of negative full colorings of Γ .

Theorem. If Γ is μ -colorable, then $\mu \leq \rho(\Gamma)$.

In general, it is not true that every normal array admits a full coloring.

If $T^{\rho(\Gamma)}$ is a full coloring of Γ , then on row v there is a

permutation σ_v of the set $\{1, \ldots, \rho_v\}$, for every $v \in \{1, \ldots, \lambda_1\}$.

The **sign** of a full coloring $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_1, \ldots, \sigma_{\lambda_1}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is **positive** (respectively **negative**) if its sign is 1 (respectively −1). We denote P(Γ) the number of positive full colorings of Γ; N(Γ) the number of negative full colorings of Γ.

伺 ト イ ヨ ト イ ヨ ト

Theorem. If Γ is μ -colorable, then $\mu \leq \rho(\Gamma)$.

In general, it is not true that every normal array admits a full coloring.

If $T^{\rho(\Gamma)}$ is a full coloring of Γ , then on row v there is a permutation σ_v of the set $\{1, \ldots, \rho_v\}$, for every $v \in \{1, \ldots, \lambda_1\}$.

The **sign** of a full coloring $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_1, \ldots, \sigma_{\lambda_1}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is **positive** (respectively **negative**) if its sign is 1 (respectively -1).

We denote $P(\Gamma)$ the number of positive full colorings of I $N(\Gamma)$ the number of negative full colorings of

伺 ト イ ヨ ト イ ヨ ト

Theorem. If Γ is μ -colorable, then $\mu \leq \rho(\Gamma)$.

In general, it is not true that every normal array admits a full coloring.

If $T^{\rho(\Gamma)}$ is a full coloring of Γ , then on row v there is a

permutation σ_{ν} of the set $\{1, \ldots, \rho_{\nu}\}$, for every $\nu \in \{1, \ldots, \lambda_1\}$.

The **sign** of a full coloring $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_1, \ldots, \sigma_{\lambda_1}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is **positive** (respectively **negative**) if its sign is 1 (respectively -1). We denote

 $P(\Gamma)$ the number of positive full colorings of Γ ; $N(\Gamma)$ the number of negative full colorings of Γ .

ヨッ イヨッ イヨッ

Theorem. If Γ is μ -colorable, then $\mu \leq \rho(\Gamma)$.

In general, it is not true that every normal array admits a full coloring.

If $T^{\rho(\Gamma)}$ is a full coloring of Γ , then on row v there is a permutation σ_v of the set $\{1, \ldots, \rho_v\}$, for every $v \in \{1, \ldots, \lambda_1\}$.

The **sign** of a full coloring $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_1, \ldots, \sigma_{\lambda_1}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is **positive** (respectively **negative**) if its sign is 1 (respectively -1). We denote $P(\Gamma)$ the number of positive full colorings of Γ ; $N(\Gamma)$ the number of negative full colorings of Γ .

ヨッ イヨッ イヨッ

Theorem. If Γ is μ -colorable, then $\mu \leq \rho(\Gamma)$.

In general, it is not true that every normal array admits a full coloring.

If $T^{\rho(\Gamma)}$ is a full coloring of Γ , then on row v there is a permutation σ_v of the set $\{1, \ldots, \rho_v\}$, for every $v \in \{1, \ldots, \lambda_1\}$.

The **sign** of a full coloring $T^{\rho(\Gamma)}$ is the product of the signs of the permutations $\sigma_1, \ldots, \sigma_{\lambda_1}$, lying on the rows of $T^{\rho(\Gamma)}$.

We say that a full coloring of Γ is **positive** (respectively **negative**) if its sign is 1 (respectively -1). We denote $P(\Gamma)$ the number of positive full colorings of Γ ; $N(\Gamma)$ the number of negative full colorings of Γ .

医肾管医肾管医

Let

Then, $\rho(\Gamma)$ is the partition (5,3,1) and

is a full coloring of Γ . The sign of T is -1, sin

$$\sigma_1 = (1 \ 5 \ 3 \ 4), \ \sigma_2 = (1 \ 3 \ 2), \ \sigma_3 = id.$$

Let

Then, $\rho(\Gamma)$ is the partition (5, 3, 1) and

is a full coloring of Γ . The sign of T is -1, sind

$$\sigma_1 = (1 \ 5 \ 3 \ 4), \ \sigma_2 = (1 \ 3 \ 2), \ \sigma_3 = id.$$

- ₹ 🖹 🕨

Let

Then, $\rho(\Gamma)$ is the partition (5, 3, 1) and

is a full coloring of Γ .

The sign of T is -1, since

$$\sigma_1 = (1 5 3 4), \ \sigma_2 = (1 3 2), \ \sigma_3 = id.$$

→ Ξ →

э

Let

Then, $\rho(\Gamma)$ is the partition (5, 3, 1) and

is a full coloring of Γ . The sign of T is -1, since

$$\sigma_1 = (1 \ 5 \ 3 \ 4), \ \sigma_2 = (1 \ 3 \ 2), \ \sigma_3 = \mathit{id}.$$

< ∃ →

э

A partition λ is said to be **sign uniform** if, for every array Γ , with multiplicity partition λ , either $N(\Gamma) = 0$ or $P(\Gamma) = 0$.

Theorem(Dias da Silva, MMT) : A partition λ is sign uniform if and only if its Young diagram does not contain the diagram

For instance, the partition (5,3,1) is sign uniform.

A partition λ is said to be **sign uniform** if, for every array Γ , with multiplicity partition λ , either $N(\Gamma) = 0$ or $P(\Gamma) = 0$.

Theorem(Dias da Silva, MMT) : A partition λ is sign uniform if and only if its Young diagram does not contain the diagram

For instance, the partition (5,3,1) is sign uniform.

A partition λ is said to be **sign uniform** if, for every array Γ , with multiplicity partition λ , either $N(\Gamma) = 0$ or $P(\Gamma) = 0$.

Theorem(Dias da Silva, MMT) : A partition λ is sign uniform if and only if its Young diagram does not contain the diagram

For instance, the partition (5,3,1) is sign uniform.

Given a normal array $\Gamma,$ find necessary and sufficient conditions for the existence of a full coloring of $\Gamma.$

We have established a necessary condition for the existence of a full coloring of Γ, using a graph theoretic approach.

This problem is related to a problem about edge colorings of bipartite graphs, stated by Folkmann and Fulkerson in 1969, which is still an open problem. Given a normal array $\Gamma,$ find necessary and sufficient conditions for the existence of a full coloring of $\Gamma.$

We have established a necessary condition for the existence of a full coloring of Γ , using a graph theoretic approach.

This problem is related to a problem about edge colorings of bipartite graphs, stated by Folkmann and Fulkerson in 1969, which is still an open problem. Given a normal array $\Gamma,$ find necessary and sufficient conditions for the existence of a full coloring of $\Gamma.$

We have established a necessary condition for the existence of a full coloring of Γ , using a graph theoretic approach.

This problem is related to a problem about edge colorings of bipartite graphs, stated by Folkmann and Fulkerson in 1969, which is still an open problem.

Given a normal array Γ , whose multiplicity partition is not sign uniform, find conditions for the equality of $P(\Gamma)$ and $N(\Gamma)$.

For normal arrays

$$\Gamma = \left(\begin{array}{cccc} i_1 & i_2 & \cdots & i_{r^2} \\ j_1 & j_2 & \cdots & j_{r^2} \end{array}\right)$$

such that

$$\{(i_k, j_k): k = 1, \dots, r^2\} = \{1, \dots, r\} \times \{1, \dots, r\}$$

there is a one-to-one correspondence between Latin squares of order *r* and full colorings of **F**.

伺 ト イ ヨ ト イ ヨ

Given a normal array Γ , whose multiplicity partition is not sign uniform, find conditions for the equality of $P(\Gamma)$ and $N(\Gamma)$.

For normal arrays

$$\Gamma = \left(\begin{array}{cccc} i_1 & i_2 & \dots & i_{r^2} \\ j_1 & j_2 & \dots & j_{r^2} \end{array}\right)$$

such that

$$\{(i_k, j_k): k = 1, \dots, r^2\} = \{1, \dots, r\} \times \{1, \dots, r\}$$

there is a one-to-one correspondence between Latin squares of order *r* and full colorings of Γ.

A 3 3 4 4

Given a normal array Γ , whose multiplicity partition is not sign uniform, find conditions for the equality of $P(\Gamma)$ and $N(\Gamma)$.

For normal arrays

$$\Gamma = \left(\begin{array}{cccc} i_1 & i_2 & \dots & i_{r^2} \\ j_1 & j_2 & \dots & j_{r^2} \end{array}\right)$$

such that

$$\{(i_k, j_k): k = 1, \dots, r^2\} = \{1, \dots, r\} \times \{1, \dots, r\}$$

there is a one-to-one correspondence between Latin squares of order *r* and full colorings of Γ.

Given a normal array Γ , whose multiplicity partition is not sign uniform, find conditions for the equality of $P(\Gamma)$ and $N(\Gamma)$.

For normal arrays

$$\Gamma = \left(\begin{array}{cccc} i_1 & i_2 & \dots & i_{r^2} \\ j_1 & j_2 & \dots & j_{r^2} \end{array}\right)$$

such that

$$\{(i_k, j_k): k = 1, \dots, r^2\} = \{1, \dots, r\} \times \{1, \dots, r\}$$

there is a one-to-one correspondence between Latin squares of order r and full colorings of Γ .

In 1994, R. Huang and Gian-Carlo Rota have proved that if r is odd, then

$$P(\Gamma) = N(\Gamma).$$

The same authors have conjectured that, if r is even, then

 $P(\Gamma) \neq N(\Gamma).$

4 3 b

In 1994, R. Huang and Gian-Carlo Rota have proved that if r is odd, then

$$P(\Gamma) = N(\Gamma).$$

The same authors have conjectured that, if r is even, then

 $P(\Gamma) \neq N(\Gamma).$

Let $V = \mathbb{C}^n$ and let (e_1, \ldots, e_n) be a o.n. basis of V. Let $m \in \mathbb{N}$.

Let $\Gamma_{m,n}$ be the set of the mappings from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$. Let χ be an irreducible character of S_m .

The χ -**symmetry class of tensors** on V is the span of the set of the decomposable symmetrized tensors e^{χ}_{lpha}

$$\left\{\frac{\chi(id)}{m!}\sum_{\sigma\in S_m}\chi(\sigma)e_{\alpha\sigma^{-1}(1)}\otimes\ldots\otimes e_{\alpha\sigma^{-1}(m)}: \ \alpha\in\Gamma_{m,n}\right\}.$$

Let $V = \mathbb{C}^n$ and let (e_1, \ldots, e_n) be a o.n. basis of V. Let $m \in \mathbb{N}$.

Let $\Gamma_{m,n}$ be the set of the mappings from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$. Let χ be an irreducible character of S_m .

The χ -**symmetry class of tensors** on V is the span of the set of the decomposable symmetrized tensors e^{χ}_{α}

$$\left\{\frac{\chi(id)}{m!}\sum_{\sigma\in S_m}\chi(\sigma)e_{\alpha\sigma^{-1}(1)}\otimes\ldots\otimes e_{\alpha\sigma^{-1}(m)}: \ \alpha\in \Gamma_{m,n}\right\}.$$

The χ -**symmetry class of tensors** on V is the span of the set of the decomposable symmetrized tensors e_{α}^{χ}

$$\left\{\frac{\chi(id)}{m!}\sum_{\sigma\in S_m}\chi(\sigma)e_{\alpha\sigma^{-1}(1)}\otimes\ldots\otimes e_{\alpha\sigma^{-1}(m)}: \ \alpha\in \Gamma_{m,n}\right\}.$$

The χ -symmetry class of tensors on V is the span of the set of the decomposable symmetrized tensors e_{α}^{χ}

$$\left\{\frac{\chi(id)}{m!}\sum_{\sigma\in S_m}\chi(\sigma)e_{\alpha\sigma^{-1}(1)}\otimes\ldots\otimes e_{\alpha\sigma^{-1}(m)}: \ \alpha\in \Gamma_{m,n}\right\}.$$

The χ -symmetry class of tensors on V is the span of the set of the decomposable symmetrized tensors e_{α}^{χ}

$$\left\{\frac{\chi(id)}{m!}\sum_{\sigma\in S_m}\chi(\sigma)e_{\alpha\sigma^{-1}(1)}\otimes\ldots\otimes e_{\alpha\sigma^{-1}(m)}: \alpha\in \Gamma_{m,n}\right\}.$$

The χ -symmetry class of tensors on V is the span of the set of the decomposable symmetrized tensors e_{α}^{χ}

$$\left\{\frac{\chi(id)}{m!}\sum_{\sigma\in S_m}\chi(\sigma)e_{\alpha\sigma^{-1}(1)}\otimes\ldots\otimes e_{\alpha\sigma^{-1}(m)}: \ \alpha\in \Gamma_{m,n}\right\}.$$

The inner product of two symmetrized decomposable tensors e_{α}^{χ} and e_{β}^{χ} is zero whenever α and β are not congruent modulo S_m .

Otherwise, it is given by the formula

$$\frac{\chi(\mathit{id})}{m!}\sum_{\sigma\in S_\alpha}\chi(\tau^{-1}\sigma)$$

where $\beta = \alpha \tau$ and S_{α} is the stabilizer of α .

It is important to have conditions for the orthogonality of two symmetrized decomposable tensors.

Without loss of generality, we can suppose that α is weakly increasing and $|\alpha^{-1}(1)| \ge \ldots \ge |\alpha^{-1}(n)|$.

The inner product of two symmetrized decomposable tensors e_{α}^{χ} and e_{β}^{χ} is zero whenever α and β are not congruent modulo S_m .

Otherwise, it is given by the formula

$$rac{\chi(\mathit{id})}{m!}\sum_{\sigma\in \mathcal{S}_{lpha}}\chi(au^{-1}\sigma)$$

where $\beta = \alpha \tau$ and S_{α} is the stabilizer of α .

It is important to have conditions for the orthogonality of two symmetrized decomposable tensors.

Without loss of generality, we can suppose that α is weakly increasing and $|\alpha^{-1}(1)| \ge \ldots \ge |\alpha^{-1}(n)|$.

The inner product of two symmetrized decomposable tensors e_{α}^{χ} and e_{β}^{χ} is zero whenever α and β are not congruent modulo S_m .

Otherwise, it is given by the formula

$$rac{\chi(\mathit{id})}{m!}\sum_{\sigma\in \mathcal{S}_{lpha}}\chi(au^{-1}\sigma)$$

where $\beta = \alpha \tau$ and S_{α} is the stabilizer of α .

It is important to have conditions for the orthogonality of two symmetrized decomposable tensors.

Without loss of generality, we can suppose that α is weakly increasing and $|\alpha^{-1}(1)| \ge \ldots \ge |\alpha^{-1}(n)|$.

It is easy to see that, under the previous conditions, α and β are congruent modulo S_m if and only if

$$\Gamma = \left(\begin{array}{ccc} \alpha(1) & \alpha(2) & \dots & \alpha(m) \\ \beta(1) & \beta(2) & \dots & \beta(m) \end{array}\right)$$

is a normal array.

Theorem. (Dias da Silva, MMT) If the multiplicity partition of Γ is equal to χ , then

 e_{α}^{χ} and e_{β}^{χ} are orthogonal if and only if $N(\Gamma) = P(\Gamma)$.

The proof is based on the Littlewood correspondence between Schur polynomials and immanants.

It is easy to see that, under the previous conditions, α and β are congruent modulo S_m if and only if

$$\Gamma = \left(\begin{array}{ccc} \alpha(1) & \alpha(2) & \dots & \alpha(m) \\ \beta(1) & \beta(2) & \dots & \beta(m) \end{array}\right)$$

is a normal array.

Theorem. (Dias da Silva, MMT) If the multiplicity partition of Γ is equal to χ , then

 e_{α}^{χ} and e_{β}^{χ} are orthogonal if and only if $N(\Gamma) = P(\Gamma)$.

The proof is based on the Littlewood correspondence between Schur polynomials and immanants.

It is easy to see that, under the previous conditions, α and β are congruent modulo S_m if and only if

$$\Gamma = \left(\begin{array}{ccc} \alpha(1) & \alpha(2) & \dots & \alpha(m) \\ \beta(1) & \beta(2) & \dots & \beta(m) \end{array}\right)$$

is a normal array.

Theorem. (Dias da Silva, MMT) If the multiplicity partition of Γ is equal to χ , then

 e_{α}^{χ} and e_{β}^{χ} are orthogonal if and only if $N(\Gamma) = P(\Gamma)$.

The proof is based on the Littlewood correspondence between Schur polynomials and immanants.

Let
$$\chi = (3, 2^2, 1^2)$$
, $u = e_{\alpha}^{\chi}$, $v = e_{\beta}^{\chi}$ and

$$\Gamma = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 \\ 1 & 3 & 5 & 1 & 2 & 2 & 4 & 1 & 3 \end{pmatrix}.$$

Since χ is sign uniform and there is a full coloring of Γ , we know that $N(\Gamma) \neq P(\Gamma)$, so u and v are not orthogonal.

伺 ト く ヨ ト く ヨ ト

3

[1] R. Huang and G.-C. Rota, On the relations of various conjectures on Latin squares and straightening coefficients, *Discrete Mathematics*, **28** (1994), 225-236.

[2] J. A. Dias da Silva e Maria M. Torres, On the orthogonal dimension of orbital sets, *Linear Algebra and its Applications* **401** (2005) 77-107.

[3] J. A. Dias da Silva e Maria M. Torres, A combinatorial approach to the orthogonality on critical orbital sets, *Linear Algebra and its Applications* **414** (2006), 474-491.