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Generalized permutation arrays

A generalized permutation array

Γ =

(
i1 i2 . . . im
j1 j2 . . . jm

)
with the properties

(1) i1 ≤ i2 ≤ . . . ≤ im;

(2) {i1, . . . , im} = {j1, . . . , jm} = {1, . . . , r};
(3) |{k : ik = 1}| ≥ |{k : ik = 2}| ≥ . . . ≥ |{k : ik = r}|.
(4) |{k : ik = p}| = |{k : jk = p}|, p = 1, . . . , r .

is called a normal array.
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The sequence

λ = (|{k : ik = 1}|, |{k : ik = 2}|, . . . , |{k : ik = r}|)

is a partition of m and it is called the multiplicity partition of Γ.

The conjugate partition of λ is called the rank partition of Γ and
it is denoted

ρ(Γ).

Example.

Γ =

(
1 1 1 2 2 3 3 4 5
1 3 5 1 2 2 4 1 3

)
is a normal array, with multiplicity partition

λ = (3, 22, 12).

Maria Manuel Torres Signed colorings of generalized permutation arrays



The sequence

λ = (|{k : ik = 1}|, |{k : ik = 2}|, . . . , |{k : ik = r}|)

is a partition of m and it is called the multiplicity partition of Γ.

The conjugate partition of λ is called the rank partition of Γ and
it is denoted

ρ(Γ).

Example.

Γ =

(
1 1 1 2 2 3 3 4 5
1 3 5 1 2 2 4 1 3

)
is a normal array, with multiplicity partition

λ = (3, 22, 12).

Maria Manuel Torres Signed colorings of generalized permutation arrays



The sequence

λ = (|{k : ik = 1}|, |{k : ik = 2}|, . . . , |{k : ik = r}|)

is a partition of m and it is called the multiplicity partition of Γ.

The conjugate partition of λ is called the rank partition of Γ and
it is denoted

ρ(Γ).

Example.

Γ =

(
1 1 1 2 2 3 3 4 5
1 3 5 1 2 2 4 1 3

)
is a normal array, with multiplicity partition

λ = (3, 22, 12).

Maria Manuel Torres Signed colorings of generalized permutation arrays



The sequence

λ = (|{k : ik = 1}|, |{k : ik = 2}|, . . . , |{k : ik = r}|)

is a partition of m and it is called the multiplicity partition of Γ.

The conjugate partition of λ is called the rank partition of Γ and
it is denoted

ρ(Γ).

Example.

Γ =

(
1 1 1 2 2 3 3 4 5
1 3 5 1 2 2 4 1 3

)
is a normal array, with multiplicity partition

λ = (3, 22, 12).

Maria Manuel Torres Signed colorings of generalized permutation arrays



Signed colorings of normal arrays

Let Γ be a normal array and let µ be a partition of m.
We say that Γ is µ-colorable if it is possible to fill the Young
diagram [µ] with all the pairs

(ik , jk), k = 1, . . . ,m

in a way that there will be a bijection on every row of [µ].
The obtained Young tableau Tµ is called a µ-coloring of Γ.
Example. Let

Γ =

(
1 1 1 2 2 3 3 4 5
1 3 5 1 2 2 4 1 3

)
and µ = (4, 3, 2). Then

T =
(1, 5) (3, 4) (4, 1) (5, 3)

(1, 3) (2, 1) (3, 2)
(1, 1) (2, 2)

is a µ-coloring of Γ.
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A ρ(Γ)-coloring of Γ will be called a full coloring of Γ.

Theorem. If Γ is µ-colorable, then µ � ρ(Γ).

In general, it is not true that every normal array admits a full
coloring.
If T ρ(Γ) is a full coloring of Γ, then on row v there is a
permutation σv of the set {1, . . . , ρv}, for every v ∈ {1, . . . , λ1}.

The sign of a full coloring T ρ(Γ) is the product of the signs of the
permutations σ1, . . . , σλ1 , lying on the rows of T ρ(Γ).

We say that a full coloring of Γ is positive (respectively negative)
if its sign is 1 (respectively −1).
We denote
P(Γ) the number of positive full colorings of Γ;
N(Γ) the number of negative full colorings of Γ.
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Example

Let

Γ =

(
1 1 1 2 2 3 3 4 5
1 3 5 1 2 2 4 1 3

)
.

Then, ρ(Γ) is the partition (5, 3, 1) and

T =
(1, 5) (2, 2) (3, 4) (4, 1) (5, 3)

(1, 3) (2, 1) (3, 2)
(1, 1)

is a full coloring of Γ.
The sign of T is −1, since

σ1 = (1 5 3 4), σ2 = (1 3 2), σ3 = id .
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A partition λ is said to be sign uniform if, for every array Γ, with
multiplicity partition λ, either N(Γ) = 0 or P(Γ) = 0.

Theorem(Dias da Silva, MMT) : A partition λ is sign uniform if
and only if its Young diagram does not contain the diagram

For instance, the partition (5, 3, 1) is sign uniform.
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Problem 1

Given a normal array Γ, find necessary and sufficient conditions for
the existence of a full coloring of Γ.

We have established a necessary condition for the existence of a
full coloring of Γ, using a graph theoretic approach.

This problem is related to a problem about edge colorings of
bipartite graphs, stated by Folkmann and Fulkerson in 1969, which
is still an open problem.
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Problem 2

Given a normal array Γ, whose multiplicity partition is not sign
uniform, find conditions for the equality of P(Γ) and N(Γ).

For normal arrays

Γ =

(
i1 i2 . . . ir2

j1 j2 . . . jr2

)

such that

{(ik , jk) : k = 1, . . . , r2} = {1, . . . , r} × {1, . . . , r}

there is a one-to-one correspondence between Latin squares of
order r and full colorings of Γ.
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In 1994, R. Huang and Gian-Carlo Rota have proved that
if r is odd, then

P(Γ) = N(Γ).

The same authors have conjectured that, if r is even, then

P(Γ) 6= N(Γ).

Maria Manuel Torres Signed colorings of generalized permutation arrays



In 1994, R. Huang and Gian-Carlo Rota have proved that
if r is odd, then

P(Γ) = N(Γ).

The same authors have conjectured that, if r is even, then

P(Γ) 6= N(Γ).

Maria Manuel Torres Signed colorings of generalized permutation arrays



Applications to Multilinear Algebra

Let V = Cn and let (e1, . . . , en) be a o.n. basis of V .
Let m ∈ N.
Let Γm,n be the set of the mappings from {1, . . . ,m} to {1, . . . , n}.
Let χ be an irreducible character of Sm.

The χ-symmetry class of tensors on V is the span of the set of
the decomposable symmetrized tensors eχ

αχ(id)

m!

∑
σ∈Sm

χ(σ)eασ−1(1) ⊗ . . .⊗ eασ−1(m) : α ∈ Γm,n

 .

Grassmann space is the ε-symmetry class of tensors.
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Let m ∈ N.
Let Γm,n be the set of the mappings from {1, . . . ,m} to {1, . . . , n}.
Let χ be an irreducible character of Sm.

The χ-symmetry class of tensors on V is the span of the set of
the decomposable symmetrized tensors eχ

αχ(id)

m!

∑
σ∈Sm

χ(σ)eασ−1(1) ⊗ . . .⊗ eασ−1(m) : α ∈ Γm,n

 .

Grassmann space is the ε-symmetry class of tensors.
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The inner product of two symmetrized decomposable tensors eχ
α

and eχ
β is zero whenever α and β are not congruent modulo Sm.

Otherwise, it is given by the formula

χ(id)

m!

∑
σ∈Sα

χ(τ−1σ)

where β = ατ and Sα is the stabilizer of α.

It is important to have conditions for the orthogonality of two
symmetrized decomposable tensors.

Without loss of generality, we can suppose that α is weakly
increasing and |α−1(1)| ≥ . . . ≥ |α−1(n)|.
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It is easy to see that, under the previous conditions, α and β are
congruent modulo Sm if and only if

Γ =

(
α(1) α(2) . . . α(m)
β(1) β(2) . . . β(m)

)
is a normal array.

Theorem. (Dias da Silva, MMT) If the multiplicity partition of Γ
is equal to χ, then

eχ
α and eχ

β are orthogonal if and only if N(Γ) = P(Γ).

The proof is based on the Littlewood correspondence between
Schur polynomials and immanants.
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Example

Let χ = (3, 22, 12), u = eχ
α , v = eχ

β and

Γ =

(
1 1 1 2 2 3 3 4 5
1 3 5 1 2 2 4 1 3

)
.

Since χ is sign uniform and there is a full coloring of Γ, we know
that N(Γ) 6= P(Γ), so u and v are not orthogonal.

Maria Manuel Torres Signed colorings of generalized permutation arrays



References

[1] R. Huang and G.-C. Rota, On the relations of various
conjectures on Latin squares and straightening coefficients,
Discrete Mathematics, 28 (1994), 225-236.

[2] J. A. Dias da Silva e Maria M. Torres, On the orthogonal
dimension of orbital sets, Linear Algebra and its Applications 401
(2005) 77-107.

[3] J. A. Dias da Silva e Maria M. Torres, A combinatorial
approach to the orthogonality on critical orbital sets, Linear
Algebra and its Applications 414 (2006), 474-491.

Maria Manuel Torres Signed colorings of generalized permutation arrays


