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TABLEAUX IN THE WHITNEY MODULE OF A MATROID
ANDREW BERGET

ABSTRACT. The Whitney module of a matroid is a natural analogue of the tensor al-
gebra of the exterior algebra of a vector space that takes into account the dependencies
of the matroid.

In this paper we indicate the role that tableaux can play in describing the Whitney
module. We will use our results to describe a basis of the Whitney module of a certain
class of matroids known as freedom (also known as Schubert, or shifted) matroids.
The doubly multilinear submodule of the Whitney module is a representation of the
symmetric group. We will describe a formula for the multiplicity hook shapes in this
representation in terms of the no broken circuit sets.

1. INTRODUCTION AND MOTIVATION

If V' is a complex vector space of dimension k we let A V' denote the exterior algebra
of V., T™(V') the n-fold tensor product V®" and T(V) the tensor algebra @), ~, 7" (V).
For the moment we will only be concerned with the GL(V)-module structure of T(A\ V).
We begin by seeing how tableaux describe a basis for the C-vector space T(A V).

Recall that the irreducible polynomial representations of GL(V') are indexed by par-
titions A with length at most dim V. We denote the irreducible representation with
highest weight A\ by S*(V). It follows from the Weyl character formula that the di-
mension of S*(V') is the number of column strict tableaux of shape A with entries in
[dim V] :={1,2,...,dim V}. Using Young’s Rule we obtain the GL(V')-module decom-
position of the tensor product of exterior products:

/\MV ® /\MV ®-® /\WV — @ (SMV)EEN .,

LN <k

Here K ,, is the number of column strict tableaux of shape X' (the conjugate partition
of A) that contain y; i’s. From this, one easily deduces the following.

Theorem 1.1. The tensor algebra T(/\V) has a basis indexed by pairs of tableauz
(T, T.) of the same shape where T, has strictly increasing rows, weakly increasing
columns and entries in [dim V] and T, is column strict with arbitrary entries.

The Whitney module of a matroid M, W (M), will be a quotient of a certain letter-
place algebra that mimics T'(/\ V) , but takes into account the dependencies of the
matroid M. Its definition is slightly more natural than the closely related Whitney
algebra of a matroid, which was defined by Crapo, Rota and Schmitt in [6]. In the final
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section of [6] the Whitney module of a matroid is roughly described in passing. The
goal of this paper is to begin to investigate how tableaux play a role in describing the
structure of W(M). Our main result is that the obvious spanning set of W (M) is a
basis when M is a freedom matroid (also known as Schubert, or shifted matroids). We
will elaborate on and prove the following result.

Theorem 1.2. Let M be a freedom matroid on n elements. There is a basis for its
Whitney module indezed by pairs of tableaux (T,,T,.) where T, and T, have the same
shape and

(1) T, is row strict with entries in [n],
(2) every row of T, indexes an independent set of M, and
(3) T, is column strict.

We will also precisely state and prove the following result.

Theorem 1.3. In the complexified doubly multilinear submodule of the Whitney module
of M, a basis for the hook shaped isotypic components are determined by the no broken
circuit complex of M.

The paper is organized as follows. First we define the super algebra Super(L~|P™)
and recall the standard basis theorem of Grosshans-Rota-Stein [9]. We then define the
Whitney algebra and Whitney module of a matroid and see that the latter is spanned
by certain elements indexed by pairs of tableaux, as in the standard basis theorem,
with the additional condition that the rows of the row strict tableau index independent
subsets of the matroid. We will then define freedom matroids and prove that the given
spanning set for its Whitney module forms a basis. Following that, we will define the
doubly multilinear submodule of the Whitney module and describe an action of the
symmetric group on it. After complexifying this submodule, we will give a formula for
the multiplicity of irreducible symmetric group modules indexed by hook shapes. The
formula will be in terms of the certain no broken circuit subsets of M.

2. LETTER-PLACE ALGEBRAS

In this section we show how to view the tensor algebra of the exterior algebra of a
finite set as a letter-place superalgebra. All of the definitions come from [9] and we use
the main result there, the standard basis theorem, to describe a combinatorial basis
of this object in terms of pairs of tableaux. This gives a concrete explanation of our
motivating result Theorem [I.1]

2.1. Exterior Algebra. Let E be a finite set and /\ E be the exterior algebra of the
free Z-module with basis E. We will write decomposable elements as w = e;, €, . .. €;,,
to avoid notational clutter. This is a graded commutative algebra, which means that
)\ E is the direct of the i-fold exterior products

NE=DNFE
0<i
and if w € \' E and w’ € A\’ E then

ww' = (—1)7w'w.
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If w € A\ E is homogeneous then we denote the degree of the piece which w is in by |w|.
The tensor algebra of the graded algebra A E is the direct sum of the tensor products

TYN\E), T*(\E), .... Each of the summands has its own product, called the internal
product, which is induced by the rule

(w@w) x (u@u) = (=D (wuy @ wy).

The exterior algebra of E is a graded commutative Hopf algebra, with coproduct

i: \NE— NEe \E
induced by the rule d(e) = 1 ® e+ e ® 1. We will not need the definitions of the counit

or antipode here. Given an element w € A E we write its coproduct using Sweedler
notation

d(w) = way ® w).

The iterated coproduct §™ : A E — T"(A\ E) is defined by the conditions that §)
equals the identity map, 6® = § and 6™ = (§ ® 1) 0 6™, The iterated coproduct
6 is the sum of its homogeneous pieces

09 NE—(N"'E)yo (N E)o- o (\"E)

where a = (g, ag,...,q,) is a composition with n parts. The image w under 5@ is
the a-th coproduct slice of w.

2.2. Letter-Place Algebras. The goal of this section is to view T'(/\ ) as one of the
letter-place algebras of Grosshans—Rota—Stein [9]. This will be done by constructing
two algebras, one of non-commutative letters the other of commutative places, and from
these defining a new algebra of letter-place pairs.

We will not review the complete definition of the letter-place algebras, since this some
amount of work to do precisely. Instead, we will take those pieces of the definitions
suited for our needs, hinting at the form of the general definitions.

In this section we will declare the elements of E to be negatively signed and refer
to them as negative letters. To emphasize that we are viewing E in this way, we will
denote it by L~ (or sometimes Lz when we must emphasize the set F). Let PT =
{p1,p2,p3, ...} denote the infinite set of positively signed places. We associate to L~
and Pt two algebras, the exterior algebra and the divided power algebra, respectively,
and associate to these the so-called letter-place algebra. Will write the exterior algebra
of L~ as Super(L~), which is constructed exactly as in the previous section.

We recall the definition of the divided power algebra. Associate to each element
p € PT an infinite sequence of divided powers

p 0, p,p?,

We let Z(P;) denote the free algebra generated by the divided powers. Let Super(P™)
be the quotient of Z(P;) by the two-sided ideal generated by the elements of the form

. 7+ k . . )
p(J)p(k) _ ( i >p(y+k)’ p(y)q(k) _ q(k)p(y)7 p(O) -1,
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for any p,q € PT, p # q. The elements pU) are meant to behave like p/i! in a symmetric
algebra. We can endow Super(P*) with a coalgebra structure by defining the coproduct
of p¥), p € P as

5(p(j)) =1 ®p(j) _|_p(1) ® p(j—l) 4 _|_p(j—1) ® p(l) +p(j) 1.

As before we write the coproduct of an arbitrary element of ¢ € Super(P") in Sweedler
notation,

5(q) =) ® qp)-
q

It is clear that Super(P™) is graded and commutative in the usual sense of commutative
algebra.

Finally we are in a positive to define the letter-place algebra Super(L~|P*). Let
(L™|PT) denote the set of letter-place pairs:

(L7|P*)={(elp):e € L™,pe P*}.

Since L~ consists of negatively signed variables and P* consists of positively signed vari-
ables, we declare the letter-place pairs to be negatively signed. We define Super(L~|P*)
to be the exterior algebra of the set (L™|P™).

To describe a standard basis of Super(L~|P") we define a certain bilinear map

Q : Super(L™) x Super(P") — Super(L~|P"),
called the Laplace pairing, according to a sequence of rules.
R1. Q(1,1) = 1.
R2. If e € L™ and p € P* then Q(e,p™M) = (e|p).
R3. If w and p are not in the same graded piece of Super(L~) and Super(PT),

respectively, then Q(w, p) = 0.
R4. It 6(p) = >_(,) (1) ® p(2) then

Q(ww/’p) = ZQ(wap(l))Q<w,7p(2))
(p)

Qw,pp) =Y Uway, D) Uwe), ).
(w)

That the rules R4 and R4" are equivalent follows from a series of technical checks, which
was done [9]. There they give a more general definition of the Laplace pairing was given
that includes the possibility of both positively and negatively signed letters and places.
In the future we will denote the Laplace pairing of w and ¢ by (w|q), so that elements

of the form (efg|p§2)p2) make sense.

Proposition 2.1. Viewing T(\ E) as a Z-algebra with the internal product, there is a
surjection of Z-algebras

T(/\ E) — Super(L~, P*),
that maps a tensor w; @ we ® - -+ @ w,, to the product

(wr[py" ) (walph™") . . (wn ™).
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Example 2.2. Suppose that e, f € E = L™. Then

e®e® fr (elp1)(elp2) (fIps)-
We can verify that ef + fe — 0. We know that

sp?) =1ep? +p @ +p @1,

hence

ef = (e|)(fIp) + (elp) (flpr) + (E[pP)(F11) = (elp) (flpr1) = —(flp1)(elp),

since Super(L~|P1) is an exterior algebra.
The preimage of (e|ps) consists of elements of the form

1®e®l1®---®1
since, e.g.,
e (1p1”)(elp2) = (1p)") (elp2) = (elp2).
Given a composition « = (ay, ..., a,) we define
P = p{™pi™) L plen)
Proposition 2.3. Let w € A\ E be a decomposable element. The image of the coproduct
slice 6 (w) in Super(L~|P7) is the Laplace pairing (w|p®).

Proof. The result is easy to verify if w = e € L~. If |w| > 1 then we may write

w = w'w”. By the homogeneity of the coproduct and induction we have

5(w,w,,>: Z 5(5)(w/)5(7)(w//)r—> Z (w/|p(ﬁ))(w//|p(“/))‘

fty=a Bty=a

Since we have 6(p(®) = Y Bir—a p® @ p) we can rule R4 to write this as (w'w”[p'®).
U

2.3. The Standard Basis Theorem. From the computation of the GL(V')-module
structure of T'(/\ V') in the introduction, we expect Super(L~|P7") to have a basis in-
dexed by pairs of tableaux of the same shape where one is row strict and the other is
column strict. This is the case, and in this section we recall how to construct this basis.
Let A be a decreasing sequence of non-negative integers; a partition. The length of
A is the number of positive integers in the sequence. We will identify A with its Young
frame, which is a collection of boxes, north-east justified, the number of boxes in the
1-th row being equal to );. Denote the total number of boxes in the Young frame of A
by |A|. A tableau T is a filling of the elements of A into the boxes of a partition A. If T’
is a tableau we will call the partition A the shape of T and write sh(T'). For example

3[2]5]4]2]
3[3[3]2
12
12

is a tableau on {1,2,3,4,5} whose shape is (5,4,2,2). The content of a tableau is the
number of 1’s, the number of 2’s, ... that appear in the filling. We will write the content
of a tableau as a composition whose i-th part is the number of i’s in the filling of the
tableau. Thus the tableau above content (2,5,4,1,1,0,0,...). A column strict tableau
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is a tableau where the numbers in each row weakly increase and the numbers in each
column strictly increase. A row strict tableau is a tableau where the numbers in each
column weakly increase and the numbers in each row strictly increase. We will call
a tableaux T' a standard Young tableaux if it is both row and column strict and has
entries in {1,2,...,|sh(T)|}.

Let T and S be tableau of the same shape A and length ¢. Let the numbers in the
i-th row of T be t1,...,ty,, in order. Define w; to be the product in Super(L~) of the

elements indexed by t1,...,ty,, l.e., w; = e, ...e, . Let sq,...,s), be the elements in
the i-th row of S, in order. Define ¢; to be the product in Super(P7) of the elements
indexed by s1,...,sy,, where if s; = -+ = 51,1 is a maximal string of equal entries

then we take pg];) instead of the product py; ...ps,,, ,. For example, if

112]3]4] 313]4[3]
T'=1/2|3 S=/5/5|5
13 16
then
Wi = Wo — €160 Wy — e —_ 2 1 —_ 3 —_ D
1 2 1€2€3, 2 3, g1 =P3 Py P33, 42=DP5 5 43 =DPg -

We define tab(T'|S) by the formula
tab(T'|S) = (w1|q1)(ws|qe) - . . (we|qe) € Super(L~|PT),

which makes sense according to our definition of the Laplace pairing. We call such an
element a tableaux in Super(L~|P"). We are finally in a position to state the main
result of this section.

Theorem 2.4 (GROSSHANS—ROTA—-STEIN [9]). The elements tab(T,|T.), where

(1) T, and T, are tableaux of the same shape,
(2) T, is row strict with entries in [n],
(3) T. is column strict,

form a basis for the free module Super(L~|PT). We will call such tableaux standard.

In the expansion of tab(T'|S) as a sum of standard tableauz ), c;tab(T;]S;) we have
that the shape of each T; is larger than or equal to the shape of T, in dominance order.
Further, the content of every T; is equal to the content of T' and the content of every S;
15 equal to the content of S.

3. THE WHITNEY ALGEBRA AND MODULE OF A MATROID

We assume that the reader is familiar with the basic concepts in matroid theory (see,
e.g., [11]).

In this section we define the Whitney algebra and Whitey module of matroid. We
then show that if M is realizable over C then the standard tableau pairs of the previous
section have nonzero image in the Whitney module of M if and only if the rows of the
first tableau index independent sets of M.

3.1. Definitions. Let M be a matroid on F of rank r(M). Decomposable elements of
/\ E are given by words on E. We say that a decomposable element e; e;, ...¢e;, € A E
is a dependent word if {ij,is,...,4x} is a dependent set in M. Likewise we define
independent words.
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Definition 3.1 (Crapo-Schmitt [6]). The Whitney algebra of a matroid M, denoted
W(M), is the quotient of T'(/\ E) by the ideal generated by the elements

Oa(w)
where w is a dependent word in M and « is a composition of |w|.
The following definition was also given by Brini and Regonati (unpublished, [4]).

Definition 3.2. The Whitney module of a matroid M, denoted W (M), is defined to
be the quotient of Super(L~|PT) by the two-sided ideal generated by the elements

(w]p)
where w is a dependent word in M and « is a composition of |w].

Using rule R4 it is clear that it is sufficient to take w to be the word of a circuit of
M in the definition of W (M).

Proposition implies that there is a surjective map W(M) — W (M) that takes
the internal product of W(M) to the product that W (M) inherits as a quotient of an
exterior algebra. One can think of W (M) as being obtained from W(M) by appending
a half-infinite string of the form 1® 1 ® 1 ® ... to the right of every element of W(M)
(see the comments at the end of [6]).

Since Super(L~|P7) is a graded commutative algebra and the ideal defining W (M)
is homogeneous, W (M) inherits a grading. Each of the graded pieces is a finitely
generated Z-module, and hence can be written as the direct sum of a free part and a
torsion part.

Proposition 3.3. There is a direct sum decomposition
W<M) = W(M)free S¥ W<M)tor
where W (M) free is free and W (M )i is torsion.

It is a basic example of Crapo and Schmitt [6] that if M is not realizable over a field
of characteristic zero then W (M), can be non-zero. It is unknown if W (M),,, is zero
when M is realizable over a field of characteristic zero.

3.2. Tableaux in the Whitney Module. Let T be a tableau with entries in [n], and
S an arbitrary tableau of the same shape. Since W (M) is a quotient of Super(L~|P*)
we can project the elements tab(7|S) of Section [2.3into W (M). Abusing notation, we
denote the image of tab(7T'|S) in W(M) by tab(T|S).
Note that every standard tableaux tab(7'|S) can be written as
(unlp) (wa[p7) ... (welp "),
where o' is a composition of |w;| and |w;| > |wy| > -+ > |wyl.

Proposition 3.4. The image of an arbitrary tableaux tab(T|S) in W (M) is zero if
some row of T indexes a dependent set of M.

Proof. This follows since each tableau is a product of elements of the form (w|p'®), and
we know that this element is zero in the Whitney module if w is a dependent word. [

The main theorem of this section is the following result.
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Theorem 3.5. Let S be a column strict tableau. If M is realizable over C, the image
of image of the tableaux tab(T|S) in W (M) is non-zero if and only if the rows of T
index independent sets of M.

Before we proceed with the proof we set up a nice corollary, that gives us a simple
check of whether such a tableaux exists, having prescribed the content and shape of T
The content of the T' determines a parallel extension of the labeled matroid M. Indeed
if the content of T"is p (a composition with n parts) then the parallel extension is M,
which has the p; copies of the element e;.

The rank partition of a matroid M is the sequence of numbers p(M) = (p1, p2,...)
determined by the condition that

pr+p2+-+ pr

is the size of the largest union of k independent subsets of M. This definition was first
given by Dias da Silva in [7] where he proved the following result.

Theorem 3.6 (D1AS DA SILVA [7]). The rank partition of matroid is a partition. There
1s a partition of the ground set of a loopless matroid M into independent sets of size
A1 > X > ifand only if X < p(M) in dominance order.

The following corollary is now immediate from the theorem.

Corollary 3.7. There is a non-zero tableaux tab(T|S) € W (M) of shape A, where S
is columns strict and T has content i, if and only if X < p(M,,) in dominance order.

To prove Theorem [3.5 we need a lemma.

Lemma 3.8. Suppose that S is a fized column strict tableaux of shape \ whose first row
gives rise to the element p'® € Super(P¥). Let S' denote S with its first row removed.
Define two vector spaces: X is the subspace of Super(L~|PT)®C spanned by standard
tableauz tab(T|S) where T' has first row equal containing the numbers {1,2,... A1}.
The second vector space X' is the subspace of Super(L™|PT)®C spanned by any standard
tableauzx tab(T"|S").
Then multiplication by

(6162 cee 6 ‘p(a))

induces an isomorphism of vector spaces X' — X.

Proof. This follows directly from the standard basis theorem, since this map takes bases
to bases. U

Proof of Theorem([3.5. Let f : E — V is a realization of M, where V is a complex
n-dimensional vector space. After choosing a basis for V| we can identify AV with
Super(L~) and since f is a realization of M, the mapping (e|p) — (f(e)|p) gives rise to
a map of algebras

fiW(M) — Super(L7|PT)@C,  (w[p') = (f(w)p'?),

(compare Proposition 6.3 in [6]). This map will almost always fail to be surjective since
M will typically not have rank n. Note that Super(L~|P™) comes with a left GL,,(C)
action, induced by the natural action of GL,(C) on Super(L~) ® C. Taking a limit,
there is a corresponding action of n x n complex matrices on Super(L~|P™).
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Suppose that we have the tableau
tab(TS) = (wi |[p*) (wa|p®?) ... (we[p'?) € W (M)

where S is column strict of shape A, length ¢ and |w;| = \;. Applying the map f from
above we obtain

f(tab(T[9)) = (f(w)[p?)(f(w2)[p*?) ... (f(we)[p'*?) € Super(L7|P*) @ C.

We will prove by induction on the length of A that f(tab(7']S)) is not zero provided
that f(w;) # 0. Since the image of tab(T'|S) is not zero, it must be that tab(7'|.S) # 0
in W(M).
Let A be a generic matrix such that
Af(wy) = ereq...ey

Since A is generic, each of element A(f(w;)) is not zero and decomposable in
Super(L~) ® C. By Lemma [3.§8 we have that

(exen . ex [P ) (A (wa) [p™) . (A(f (we)) )

is not zero if and only if

(Af (w2) ) . (A(f (we)) [P

is not zero. This is not zero by induction. It only remains to check the basis step. This
follows since

(€i1 Ce €Z'k |p(a))7

iy < -+ <, is a basis element of Super(L~|P*) ® C, according to the standard basis
theorem. 0

Remark 3.9. One cannot remove the hypothesis that S is column strict. For example
if M is a boolean matroid (i.e., W (M) = Super(L~|P™)) and

11213

T=5=13"3

then
tab(T|S) = (ereaes|pt”pyps)? = 0
even though (ejeqes ]pgl)pgl)pgl)) #0in W(M).

It is unknown if Theorem [3.5] holds for any realizable matroid.

4. FREEDOM MATROIDS

In this section we define freedom matroids and show that the obvious spanning set
for their Whitney modules are bases.
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4.1. Definition of a Freedom Matroid.

Definition 4.1. We will denote the direct sum of a matroid M with the one element
rank one matroid on the set {e} by M @ e.

Let M be a matroid of rank larger than 0. The truncation of M to rank k < r(M) is
the matroid whose bases are those independent sets of M with size k. The truncation
of M to rank r(M) — 1 will be denoted T'(M).

The principal extension of a matroid M along the improper flat is the matroid M + e
obtained by truncating the direct sum M @ e to the the rank of M. That is M 4+ e =
T(M & e).

We think of M + e as adding a new element generically to M without increasing its
rank.

Definition 4.2. For i € {0,1} define M;) to be the rank i matroid on one element e;.
Let s be a binary sequence of length n > 1 and s’ be the sequence obtained by deleting
its last entry s,. Define a matroid M, on the set {e1, e, ..., e,} by setting

My ©e, s,= L,
My +e, s,=0.

S

A freedom matroid is a labeled matroid of the form M, for some binary sequence s.

Example 4.3. The freedom matroid associated with the sequence (1,0,1,0,1,0) is
(M +e2) ®e3) +eq) Des) + e

where M is the one element rank one matroid with ground set {e;}. It is represented
linearly by the columns of the matrix

1 1 * ok
* %
1 1

where the blank entries are zero and the x’d entries are generic elements of C.

x %k
11

Freedom matroids arise in many contexts. They are the matroids associated to a
generic element of a Schubert strata of a Grassmannian. They are known to be the
matroids whose independence complexes are shifted. They are special cases of lattice-
path matroids.

4.2. The Whitney Module of a Freedom Matroid. We can now state and prove
our first main theorem.

Theorem 4.4. Let M be a freedom matroid (in particular, the ground set of M is
ordered). The Whitney module W (M) is free and a basis consists of those standard
tableauzr tab(T,|T.) where the rows of T, index independent sets of M.

We already know that these tableaux span W (M), so it suffices to prove that W (M)
is free and the stated elements are linearly independent when M is a freedom matroid.

This result does not hold in general, as we will see in Section [f| Since uniform
matroids are a special case of freedom matroids (they are associated to sequences of
the form (1,1,...,1,0,0,...,0)) we see that the above theorem describes the Whitney
module of uniform matroids, a result obtained in 2000 by Crapo and Schmitt [5].
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Lemma 4.5. Let M and N be matroids. There is an isomorphism of graded algebras
W(M & N) ~ W(M) & W(N),
where the ® s the super tensor product of graded algebras.

Recall that the super tensor product of two graded Z-algebras H and L has module
structure given by the Z-module H ® L and algebra structure induced by the formula
for multiplying homogeneous elements

(h D)Wl = (-1 Hpp @11,
Proof. We use the following fact: If H and L are graded algebras and / and J are
homogeneous ideals of H and L, respectively, then as graded algebras
H®L
HJ+I®L
In the present situation, we suppose that M is a matroid on £ and N is a matroid

on F. Let L, denote the set of negatively signed letters £/ and Ly denote the set of
negatively signed letters F'. It is well known that

(1) HII®L)J ~

(2) Super(L,|P") ® Super(L,|P") ~ Super(L, U L,|P™T).
If I is an ideal of Super(Lz|P") then under this isomorphism we have
(3) I @ Super(L4|P") — Super(Lz U Ln|P") - I,

i.e., the ideal I ® Super(Ly|PT) maps to the ideal generated by I in Super(L;ULz|P™).
To complete the proof all we need to note is that a circuit of M @ N is either a circuit
of M or a circuit of N. Thus,

(4) ((w|p®) : wis a circuit of M & N) = ((w[p®) : w is a circuit of M)

+ ((w|p®) : w is a circuit of N)
where here ( — ) denotes taking the ideal in Super(L; U Lz|P*) generated by the
elements —.

Combining equations — with the definition of the Whitney module we have
W(M)®@ W(N)~W(M & N). O

Corollary 4.6. If W(M) and W(N) are free Z-modules, then so is W (M & N).

Lemma 4.7. Suppose that M is a matroid of rank larger than 0 and W (M) is free,
so that W (M) has a basis B consisting of some standard tableauz. Then W (T (M)) is
free and has a consisting of those standard tableaux in B whose first row has length less
than r(M).

Proof. 1t is easy to convince oneself that
W(T(M))=W(M)/{ab(T|S) : sh(T) = A\, \y = r(M))

where ( — ) denotes taking the two sided ideal in W (M) generated by the elements —.
Now, by the standard basis theorem we know that for non-standard tableaux tab(T|5),

tab(T[S) =) _ ¢;tab(T;|S))
=1
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where sh(7;) > sh(7") in dominance order and each (7;|S;) € B. This implies that if the
first row of 7" has length r(M) then the first row of every 7; has length at least r(M).
It follows that

W(T(M)) =W (M)/(tab(T|S) : sh(T) = X\, A\y = r(M), tab(T|S) € B)
Since W (M) is free, the claim now follows. O

Proof of Theorem[/.4. The theorem will follow by induction. We will prove that if the
result holds for a matroid M on {e; < e3 < --- < e,} then it also holds for M @ e, 4
and T'(M). Since freedom matroids are closed under these operations, it is sufficient to
prove the result for the two one element matroids, which is trivial.

For a positive integer m let W (M )<, be the subalgebra of W (M) generated by letter
place pairs (e|p) where p € {p1,p2,...,pm}- By our assumption on W (M) we see that
a basis for W (M )<, consists of those tableaux tab(7,|7.) where T, is row strict, T is
column strict, every row of T, indexes an independent set of M and every entry of T, is
at most m. This is a module of finite rank, since the shape of every tableau appearing
must fit into a m-by-r(M) box.

In light of Lemma [4.5] it is straightforward to convince oneself that

WM @ eny1)<m = W(M)<m @ W({ent1})<m,

where {e, .1} denotes the rank one element one element matroid. It follows that the
the rank of W(M)<,, @ W({€n+1})<m as a Z-module is the number of pairs

(T, Te) 5 (entalpi)(ens1lpia) - - - (entalpiy))

where T, is row strict, T, is column strict, every row of 7). indexes an independent set
of M, the entries of T, are at most m, and 1 <7 <15 < --- < 4, < m. From this pair
we produce two new tableaux 7, and 7 where

Ty = (((Te = i1) «ig) = - -+ < i)

is obtained by the usual Robinson-Schensted row insertion and 7} is obtained from 7,
by recording the new boxes of T, with n + 1’s.

It follows from the Super RSK Correspondence [2], 10] that this map is bijective and
its image consists of pairs of tableaux (7,.5) of the same shape where T is row strict
with entries in [n + 1], S is column strict with entries in [m] and the rows of 7" index
independent subsets of M & e,,.1. This is because e, is in no circuit of the direct
sum. This complete the proof of the induction for direct sums.

Suppose now that W (M) is free and a basis consists of those standard tableaux
(T, |T..) such that every row of 7T, indexes an independent set of M. Then Lemma
proves that the same statement holds for W (T'(M)). O

5. THE DoUBLY MULTILINEAR SUBMODULE OF W (M)

The doubly multilinear submodule of W (M) is the submodule generated by elements
of the form
(e1lpoy)(€2lpo(2)) - - - (enlPo(m)) € W(M)
where ¢ is any permutation in the symmetric group &,,. We denote this submodule by
U(M). There is a right action of &,, on U(M ), by permuting places. We will primarily
be interested in the complexified version C @ U(M), where M is a matroid realizable
over the complex numbers.
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The module U(M) arose independently in the thesis of the author, where it was
related to the smallest symmetric group (or general linear group) representation con-
taining a fixed decomposable tensor. Recall that &,, acts on the right of V®" via place
permutation. If u € V®" is any tensor let S(u) be the smallest &,-representation in
V@ containing u. If f : E — V is a realization of M, then it is easy to see that the
map

(exlp1)(e2lp2) - - - (enlpn) = f(e1) ® flea) @ - ® flen) € V"
extends to a unique surjective map of CS,,-modules

CoUM) — &(f(e1) ® fle2) ® - @ flen))

The latter representation is a subtle projective invariant of the vector configuration
f(E) C V. For example, there is no known example of two different realizations
f,g: E — V of the same matroid such that

S(fler) @ flex) ®--- @ flen)) % S(gler) @ glex) @ -+ @ g(en)),

where = is isomorphism of &,,-modules.

5.1. Which Irreducible Submodules Can Appear in C® U(M). The irreducible
representations of a the symmetric group &,, are parametrized by partitions of n. Given
a partition A and a tableaux T of shape A with content (1,1,...,1) we can construct
the irreducible &,,-representation indexed by A by taking the left or right ideal in CG,,
generated by the Young symmetrizer

cr = (Z sign(a)a) <Z T)
oc€RT Te€Crp

where Ry (respectively, Cr) is the subgroup of &, preserving the rows (respectively
the columns) of T'. We will say that the partition A appears in a representation of &,
if it contains a submodule isomorphic to the right ideal in C&,, generated by c¢r. We
say that a partition A has multiplicity m in U(M) if the ¢;C&,,-isotypic component of
U(M) is isomorphic to a direct sum of exactly m copies of ¢rC&,,.

Remark 5.1. Our indexing of the irreducible representations of &,, is the conjugate of
the usual indexing. For example, (n) corresponds to the sign representation and (1")
corresponds to the trivial representation.

It follows from the our discussion above that if f : E — V is realization of M in a
complex vector space V', and \ appears in

S(f(e1) @ fle2) @ -+ @ flen))

then A\ appears in C ® U(M) with positive multiplicity.
The following result is equivalent to Gamas’ Theorem on the vanishing of sym-
metrized tensors (see [1]).

Theorem 5.2 (BERGET [1]). Let f : E — V be a realization of a matroid M in a
complex vector space V. A partition A appears in

S(fler) ® flex) ®---® flen))

iof and only if there is a set partition of E into independent sets whose sizes are the part
sizes of A.
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Corollary 5.3. Let M be a matroid realizable over C. The partition A appears in U(M)
if and only if X\ < p(M) in dominance order.

Proof. One direction follows immediately from the previous theorem and Dias da Silva’s
Theorem [3.6] It remains to prove the converse. The image of an antisymmetrizer

Z signo € CG,,

o€y

where k < n, on (e1|p1)(e2|p2) ... (en|pn) is

(6162 LG ’plpz . -pk)(ekﬂ\pkﬂ) S (€n|Pn)-

It follows that if some row of T indexes a dependent set of M then ¢y applied to
(e1|p1)(ealpa) - .. (en|pn) is zero. Since the projector of an &,-module to its A-th isotypic
component is, up to a scalar,

we conclude that if every tableaux of shape A has a row indexing a dependent set of M
then A cannot appear in C ® U(M). O

5.2. Multiplicities of Hook Shapes. A hook is a partition with at most one part
not equal to one. Let \¥ denote the hook whose first part is &k, and all other parts are
equal to one. In this subsection, we show how the multiplicities of the irreducible &,
representations indexed by hook shapes are related to the no broken circuit complex of
M. The results of this subsection hold for any matroid, regardless of realizability.

To ease notation for the rest of this section, we assume that the ground set of M
is £ = {1,2,...,n}. We define a broken circuit of M as a circuit with its smallest
element deleted. A subset of the ground set of M is said to be nbc if it contains no
broken circuits of M. The collection of nbc sets of M is a simplicial complex called the
nbc complex of M.

Theorem 5.4. The multiplicity \* in U(M) is the number of nbc sets of M of size k
which contain the ground set element 1.

Example 5.5. Let M be the matroid realizable over C be the columns of the matrix

100110
01 0101
001011
Label the columns 1,2, ..., 6, left to right. The circuits of size three of M are 124,136,
235, where ijk denotes {1, j, k}, hence the broken circuits of M are 24, 36, 35. It follows
that the no broken circuit sets of size 3 are

123,125, 126, 134, 145, 146, 156

and so the multiplicity of \* in C ® U(M) is 7. For any ordering of the ground set of
M, the smallest element is in at most two dependent sets of size 3. It follows that for
any ordering of the ground set, the number of standard Young tableaux of shape \3
whose first row indexes an independent set of M is at least 8.



TABLEAUX IN THE WHITNEY MODULE OF A MATROID 15

Remark 5.6. Even for matroids realizable over C the standard basis theorem of The-
orem [£.4] does not hold. Indeed the previous example proves that the obvious spanning
set of hook shaped tableaux tab(7,|T.) € W (M) where T, has independent rows cannot
be linearly independent.

The nbc sets of M with size k£ that contain 1 are precisely the nbc bases of the
truncation of M to rank k. By the proof of Lemma 4.7 it is sufficient to prove the
result when k is equal to the rank of M.

Definition 5.7. If D is a subset of [n] we let bp € CS,, denote the antisymmetrizer of
the set D, i.e., bp =) s, sign(o)o.

For a given set B C [n] we let cp denote the Young symmetrizer of the tableaux of
shape Al that has the elements of B in its first row and the remaining elements [n] — B
in the rows rows.

It follows directly from the definition of the Young symmetrizer that bg is a left factor
of ¢ B-

Proposition 5.8. Let ( — ) denote taking the right ideal in CS,, generated by the
elements —. There is an isomorphism of CS,,-modules

UM)~ C6,/{bp : D indexes a dependent set of M)
induced by the map that sends (e1|p1)(ea|p2) - . . (en|pn) to the image of 1 in the quotient.

Proof. The map that sends 1 € CS,, to (e1|p1)(ez2|p2) - .. (én|pn) € Super(L~|PT) is an
isomorphism onto its image. One then verifies that, up to a sign, the image of the
antisymmetrizer bp is the tableaux tab(7T'|S) of hook shape where the first row of T’
and S consists of the numbers in D. O

By taking the \"™)_th isotypic component of the quotient in the above proposition
we immediately have the following result.

Corollary 5.9. Let (—) denote taking the right ideal in CS,, generated by the elements
—. There is an C&,,-isomorphism between the \"M)-th isotypic component of CRU (M)
and the quotient

(cp : B is any set of size r(M))/{(cp : D is a dependent set of M)

Lemma 5.10. Let S be any set of [n], from which we form the Young symmetrizer of
the tableauz of shape N°! that has the elements of S in its first row. In CS,, we have
the equality

cs =Y csues(ef)
fes
where e 1s any element not in S.

Proof. We have cgue—s(ef) = (ef)cs in CS,,. It follows that we can write this statement

(1 - Z(ef)) cs =0

ecS
We can write this as

bSUeCS/|S|!
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where bg. is the antisymmetrizer of the set S U e, since the antisymmetrizer is near
idempotent. It is well known that every irreducible that appears in the left or right
ideal generated by bg. is larger than A**! in dominance order. Since cg generates an
irreducible of shape A5l < \SI+1 the product of the two elements must be zero. 0]

Corollary 5.11. The quotient
(cp : B is any set of size r(M))/{cp : D is a dependent set of M)
is generated by the Young symmetrizers of the nbc bases of M.

Proof. Inducting on the number broken circuits contained in a given base, the proof
follows at once from the lemma. U

To prove the remainder of the theorem, we will show that the ideal generated by
the Young symmetrizers of nbc bases does not meet the ideal generated by the Young
symmetrizers of dependent sets. That is, we prove that

(cp : B is an nbc basis of M) N (cp : D is a dependent set of M) = 0.

This will be done by straightening the latter Young symmetrizers into sums of Young
symmetrizers of standard Young tableaux, which in turn is accomplished by a series
of somewhat tedious reductions. In the end, the proof comes down to the well known
fact that the right ideals generated by Young symmetrizers of standard Young tableaux
have intersection equal to zero.

For the rest of this section D will denote a dependent set of M.

Claim 5.12. We have
{(cp : D contains two circuits) C {cp : 1 € D).

Proof. If 1 ¢ D and D contains more than one circuit then each of the sets D —eU1 is
dependent since D — e is. We have cp = Y ., cp—eu1(le) which proves the result. [

The remainder of the proof is adapted from Las Vergnas and Forge [8]. We call a set
unicyclic if it contains a unique circuit. Using the circuit elimination axioms it can be
shown that D is is unicyclic if and only if it contains an element e such that D — e is
independent. The proof of the following claim is exactly the same as the proof of the
previous one.

Claim 5.13. Let cl(D) denote the closure of D in M. We have the inclusion,
(cp : D unicyclic, 1 € cl(D)) C {c¢p : 1 € D dependent).

For the unicyclic sets where 1 ¢ cl(D) note that we can write D = I U e, where [
is independent and e is the smallest element of the unique circuit of D. For a general
independent set I, though, it is possible to choose many elements e such that e is the
minimum element of a circuit of I Ue. The external activity of an independent set I,
denoted ex(I), is the number of elements e such that I U e contains a unique circuit
and e is the minimum element of that circuit. Let Fx(I) denote the set of elements e
such that e is the minimum element of a circuit of 1 U e.

Claim 5.14. We have the inclusion,
(ep :1¢ cl(D),D unicyclic) C (cp : 1 € D dependent)
+ <CIUECC(I) : ex(]) = 17 1 ¢ Cl(])>
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Proof. Let I Ue be a unicyclic set that has ex(I) > 1 but 1 ¢ Ex([). Then there is an
element f € Ex(I) —e. We have

Clue = Z C(I—gUf)Ue(fg)

gel

We see that for all g € I, (I — gU f) U e is unicyclic, does not contain 1 in its closure
and is lexicographically smaller than I U e. Assuming inductively that c(;_guf)ue is in
the ideal

(cp : 1 € D dependent) + (ciupe(n : ex(I) = 1,1 & cl(1))

we have that ¢y, is in this ideal too. ]

We now straighten the generators of the ideal
<CIUEx(I) cex(I) =1,1¢ cl(1)).
If I is independent of rank (M) — 1, has external activity equal to one but does not
contain 1 in its closure then I U1 is a broken circuit base. However, for all elements

gel, (I—gUl)UFEx(I)is ano broken circuit base of M. Since a Young symmetrizer
cs, |S| = r(M) is that of a standard Young tableau if and only if 1 € S, we have proved

(cp : B an nbc base) N (cp : D dependent)
= (cp : B an nbc base) N (Cruesr) s ex(l) = 1,1 ¢ cl(I)).

Finally, every Young symmetrizer on the last ideal has support on a unique broken
circuit base containing 1, so this intersection must be zero. This completes the proof
of the theorem.
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