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A BIJECTION BETWEEN WELL-LABELLED POSITIVE PATHS

AND MATCHINGS

OLIVIER BERNARDI, BERTRAND DUPLANTIER, AND PHILIPPE NADEAU

Abstract. A well-labelled positive path of size n is a pair (p, σ) made of a word p =

p1p2 . . . pn−1 on the alphabet {−1, 0,+1} such that
∑j

i=1
pi ≥ 0 for all j = 1 . . . n−1,

together with a permutation σ = σ1σ2 . . . σn of {1, . . . , n} such that pi = −1 implies
σi < σi+1, while pi = 1 implies σi > σi+1. We establish a bijection between well-
labelled positive paths of size n and matchings (i.e., fixed-point free involutions) on
{1, . . . , 2n}. This proves that the number of well-labelled positive paths is (2n−1)!! ≡
(2n − 1) · (2n − 3) · · · 3 · 1.

Well-labelled positive paths appeared recently in the author’s article “Partition
function of a freely-jointed chain in a half-space” [in preparation] as a useful tool for
studying a polytope Πn related to the space of configurations of the freely-jointed chain
(of length n) in a half-space. The polytope Πn consists of points (x1, . . . , xn) ∈ [−1, 1]n

such that
∑j

i=1
xi ≥ 0 for all j = 1 . . . n, and it was shown that well-labelled positive

paths of size n are in bijection with a collection of subpolytopes partitioning Πn.
Given that the volume of each subpolytope is 1/n!, our results prove combinatorially
that the volume of Πn is (2n − 1)!!/n!.

Our bijection has other enumerative corollaries in terms of up-down sequences of
permutations. Indeed, by specialising our bijection, we prove that the number of
permutations of size n such that each prefix has no more ascents than descents is
[(n − 1)!!]2 if n is even and n!! (n − 2)!! if n is odd.

1. Introduction

A well-labelled path of size n is a pair (p, σ) made of a word p = p1p2 . . . pn−1 on the
alphabet {−1, 0,+1}, together with a permutation σ = σ1σ2 . . . σn of [n] ≡ {1, . . . , n}
such that pi = −1 implies σi < σi+1, while pi = 1 implies σi > σi+1. We shall
represent a path (p, σ) as a lattice path on Z

2 starting at (0,0) and made of steps (1, pi)
for i = 1 . . . n−1 together with the label σi on the ith lattice point of the path for
i = 1 . . . n. For instance, two well-labelled paths of size 10 are represented in Figure 1.
A well-labelled path (p, σ) is said Motzkin (respectively positive) if

∑j

i=1 pi ≥ 0 for all

j = 1 . . . n−2 and
∑n−1

i=1 pi = −1 (respectively
∑j

i=1 pi ≥ 0 for all j = 1 . . . n−1).

In this paper, we define a bijection between well-labelled Motzkin paths of size n+ 1
and matchings (fixed-point free involutions) on [2n]. We then define a closely related
bijection between well-labelled positive paths of size n, and matchings on [2n]. Our
bijections are defined recursively and involve a bijection by Chen [3] between labelled
binary trees and matchings.

The first enumerative consequence of our bijection is that well-labelled Motzkin paths
of size n+ 1 and well-labelled positive paths of size n are both counted by (2n− 1)!! ≡
(2n − 1) · (2n − 3) · · · 3 · 1. In fact, our bijections also have enumerative corollaries
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Figure 1. (a) A well-labelled Motzkin path. (b) A well-labelled positive path.

in terms of up-down sequences (sequences of ascents and descents) of permutations
. In order to obtain these results, we perform a refined enumeration of well-labelled
paths (p, σ) according to the number of horizontal steps (the number of letters 0 in
p). More precisely, we show that the number of well-labelled positive paths of size n
with k horizontal steps is

(

n

k

)(

n−1
k

)

k! [(n−k−1)!!]2 if n−k is even and
(

n

k

)(

n−1
k

)

k! (n−
k)!! (n − k − 2)!! otherwise. Similarly, the number of well-labelled Motzkin paths of
size n with k horizontal steps is

(

n

k

)(

n−2
k

)

k!(n − k − 1)!!(n − k − 3)!! if n − k is even
(and 0 otherwise). Observe that well-labelled paths (p, σ) without horizontal steps
are completely determined by the permutation σ. Indeed, in this case the word p

encodes the up-down sequence of the permutation σ. Hence, by specialising our results
to paths with no horizontal steps (i.e., k = 0), we enumerate permutations whose up-
down sequence belong to a certain family. For instance, we prove that the number
of permutations of size n such that each prefix has no more ascents than descents is
[(n − 1)!!]2 if n is even and n!! (n − 2)!! otherwise. We also prove that the number of
permutations of size n having one more ascent than descent but such that each prefix
has no more ascents than descents is (n − 1)!! (n − 3)!! if n is even (and 0 otherwise).
These enumerative results contrast with those in [2, 4, 5, 7] by the fact that we consider
here a family of admissible up-down sequences rather than a single sequence.

Well-labelled positive paths appeared recently in [1], in the computation of the par-
tition function for the freely-jointed chain [6] in a half-space, and this was our original
motivation for studying these paths. Indeed, the space of configurations of the freely-
jointed chain of length n projects naturally on the polytope Πn consisting of all points
(x1, . . . , xn) ∈ [−1, 1]n such that

∑j

i=1 xi ≥ 0 for all j = 1 . . . n; and it is shown in [1]
that well-labelled positive paths of size n are in bijection with a set of subpolytopes
partitioning Πn. Given that the volume of each subpolytope is 1/n!, our results prove

combinatorially that the volume of Πn is (2n−1)!!
n!

.

The paper is organised as follows. In Section 2, we define a recursive decomposition
of well-labelled positive and Motzkin paths. We then translate these decompositions
in terms of generating functions. For Motzkin paths, solving the generating function
equation shows that the number of well-labelled Motzkin paths of size n+1 is (2n−1)!!.
From this, a simple induction shows that the number of well-labelled positive paths of
size n is also (2n−1)!!. In Section 3, we use the recursive decomposition of paths in order
to define bijections between well-labelled positive paths, well-labelled Motzkin paths
and matchings. One step of these bijections uses a construction of Chen [3] between
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labelled binary trees and matchings. Lastly in Section 4, we use our bijections to
count well-labelled positive and Motzkin paths according to their number of horizontal
steps. Specialising these results to the paths with no horizontal steps, we enumerate
permutations whose up-down sequence belong to certain families mentioned above.

2. Decomposition of well-labelled paths

In this section, we define a recursive decomposition of the class A of well-labelled
Motzkin paths and the class B of well-labelled positive paths. We then translate these
equations in terms of generating functions and obtain our first counting results.

We denote respectively by An and Bn the sets of paths of size n in A and B. We
denote respectively by an and bn the cardinality of An and Bn and by

A(z) =
∑

n≥0

an

n!
zn and B(z) =

∑

n≥0

bn
n!
zn

the corresponding exponential generating functions. Observe that a0 = a1 = 0 and
b0 = 0. The following notation will be useful for relabelling objects: given a set I of n
integers, we denote by λI the order preserving bijection from [n] to I (and by λ−1

I the
inverse bijection).

2.1. Decomposition of well-labelled Motzkin paths. We first define a recursive
decomposition of the class A of well-labelled Motzkin paths. For i ∈ {−1, 0, 1}, we
denote by Ai (respectively Ai

n) the set of paths (p, σ) in A (respectively An) such that
p1 = i. Observe that A−1 is made of a single element α2 of size 2. The decomposition

A = {α2} ⊎ A0 ⊎ A1

is illustrated by Figure 2 and the following proposition reveals its recursive nature.

Proposition 1. For any positive integer n,

• the set A0
n is in bijection with the set [n] ×An−1,

• the set A1
n is in bijection with the set Cn made of all unordered pairs {(I ′, P ′),

(I ′′, P ′′)} such that I ′ ⊆ [n], I ′′ = [n] \ I ′ and P ′, P ′′ are well-labelled Motzkin

paths of respective size |I ′| and |I ′′|.

=

α2 A0 A1A
⊎ ⊎

Figure 2. Recursive decomposition of well-labelled Motzkin paths.

Proof. • For any path (p, σ) in A0
n one obtains a pair (k, (p′, σ′)) in [n]×An−1 by setting

k = σ1, p′ = p2 . . . pn−1 and σ′ = σ′
1 . . . σ

′
n−1 where σ′

i = λ−1
[n]\{k}(σi+1) for i = 1 . . . n−1.

This is clearly a bijection between A0
n and [n] ×An−1.
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• Observe that the set Cn is trivially in bijection with the set C′
n of ordered pairs

((I ′, P ′), (I ′′, P ′′)) such that λI′(σ
′
1) < λI′′(σ

′′
1). Let (p, σ) be a path in A1

n and let k be

the least integer such that
∑k

i=1 pi = 0 (observe that pk = −1). We define an element

φ(p, σ) = ((I ′, (p′, σ′)), (I ′′, (p′′, σ′′)))

of C′
n by setting

• I ′ = {σ1, . . . , σk} and I ′′ = {σk+1, . . . , σn},
• p′ = p′1 . . . p

′
k−1 and p′′ = p′′1 . . . p

′′
n−k−1, where p′i = −pk−i and p′′i = pk+i,

• σ′ = σ′
1 . . . σ

′
k and σ′′ = σ′′

1 . . . σ
′′
n−k, where σ′

i = λ−1
I′ (σk+1−i) and σ′′

i = λ−1
I′′ (σk+i).

The mapping φ is clearly a bijection between the sets A1
n and C′

n, which concludes the
proof. �

Corollary 2. The generating function A(z) of well-labelled Motzkin paths satisfies

A(z) =
z2

2
+ zA(z) +

A(z)2

2
.(1)

Proof. For i ∈ {−1, 0, 1}, we denote by ai
n the cardinality of Ai

n and by Ai(z) =
∑

n≥0
ai

n

n!
zn the corresponding generating function. The partition A = {α2} ⊎ A0 ⊎ A1

gives

A(z) =
z2

2
+ A0(z) + A1(z).

Moreover, the bijection between A0
n and [n] × An−1 gives a0

n = n an−1, hence A0(z) =

zA(z) while the correspondence between A1
n and Cn gives a1

n =
1

2

n
∑

k=0

(

n

k

)

akan−k, hence

A1(z) = A(z)2

2
. �

By solving Equation (1) (and using the fact that a0 = 0), one gets

A(z) = 1 − z −
√

1 − 2z.(2)

One can extract the coefficient an either directly from this expression of A(z) or by
applying Lagrange inversion formula to the series C(z) = A(z)/z. Indeed, Equation (1)

gives C(z) = z (1+C(z))2

2
, hence

an+1 = (n+ 1)![zn]C(z) =
(n+ 1)!

n
[xn−1]

(

(1 + x)2

2

)n

=
(2n)!

2nn!
= (2n− 1)!!.

We will now determine the number bn of well-labelled positive paths of size n. This
can be done by exploiting a bijection between Bn × [n + 1] × {0, 1} and Bn+1 ⊎ An+1

obtained by adding one step to a positive path. The bijection is as follows: given a
well-labelled positive path (p, σ) of size n, an integer k in [n + 1] and an integer b in
{0, 1}, we define the labelled path (p′, σ′) = ψ((p, σ), k, b) by setting

• σ′ = σ′
1 . . . σ

′
n+1, where σ′

i = λ[n+1]\{k}(σi) for i = 1 . . . n and σ′
n+1 = k,

• p′ = p′1 . . . p
′
n, where p′i = pi for i = 1 . . . n−1 and p′n is equal to b−1 if σ′

n+1 > σ′
n

and equal to b otherwise.
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Observe that the path (p′, σ′) is well-labelled (by the choice of the step p′n) and is either
positive or Motzkin (since (p, σ) is positive). Moreover, the mapping ψ is a bijection
between Bn × [n+ 1] × {0, 1} and Bn+1 ⊎ An+1 showing that

2(n+ 1)bn = bn+1 + an+1 for all n ≥ 0.(3)

Since an+1 = (2n − 1)!! a simple induction shows that bn = (2n − 1)!! and proves the
following.

Proposition 3. The number an+1 of well-labelled Motzkin paths of size n + 1 and the

number bn of well-labelled positive paths of size n are both equal to (2n− 1)!!.

2.2. Decomposition of well-labelled positive paths. We now define a recursive
decomposition of the class B of well-labelled positive paths. We denote by β1 the well-
labelled path of size 1 and for i ∈ {0, 1}, we denote by Bi the set of paths (p, σ) in B
of size at least 2 satisfying p1 = i. For a path (p, σ) of size n in B1, we consider the

greatest integer k ≤ n such that
∑j−1

i=1 pi ≥ 1 for all j = 2 . . . k−1 and
∑k−1

i=1 pi = 1. We
denote by B′ the subset of paths in B1 such that k = n and we denote B′′ = B1 \ B′ the
complement. We also denote by B0

n, B′
n and B′′

n respectively the paths of size n in B0,
B′ and B′′. The partition

B = {β1} ⊎ B0 ⊎ B′ ⊎ B′′

is illustrated by Figure 3 and the following proposition reveals its recursive nature.

Proposition 4. For any positive integer n,

• the set B0
n is in bijection with the set [n] × Bn−1,

• the set B′
n is in bijection with the class An of well-labelled Motzkin paths,

• the set B′′
n is in bijection with the set Dn made of the ordered pairs ((I ′, P ′),

(I ′′, P ′′)) such that I ′ ⊆ [n], I ′′ = [n] \ I ′, P ′ is a well-labelled Motzkin path of

size |I ′| and P ′′ is a well-labelled positive path of size |I ′′|.

=

B′B
⊎⊎ ⊎⊎

B′′β1 B0

Figure 3. Recursive decomposition of well-labelled positive paths.

Proof. • For any path (p, σ) in B0
n one obtains a pair (k, (p′, σ′)) in [n]×Bn−1 by setting

k = σ1, p′ = p2 . . . pn−1 and σ′ = σ′
1 . . . σ

′
n−1 where σ′

i = λ−1
[n]\{k}(σi+1) for i = 1 . . . n−1.

This is clearly a bijection between B0
n and [n] × Bn−1.

• A bijection between the sets B′
n and An is obtained by reading the positive path

backward: given a path (p, σ) in B′
n one obtain a path (p′, σ′) in An by setting σ′ =

σn . . . σ1 and p′ = p′1 . . . p
′
n−1 where p′i = −pn−i for i = 1 . . . n−1. This is clearly a

bijection.

• Let (p, σ) be a path in B′′
n and let k < n be the greatest integer such that

∑j−1
i=1 pi ≥ 1

for all j = 2 . . . k−1 and
∑k−1

i=1 pi = 1. We define a pair

φ′(p, σ) = ((I ′, (p′, σ′)), (I ′′, (p′′, σ′′)))
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by setting

• I ′ = {σ1, . . . , σk} and I ′′ = {σk+1, . . . , σn},
• p′ = p′1 . . . p

′
k−1 and p′′ = p′′1 . . . p

′′
n−k−1, where p′i = −pk−i and p′′i = pk+i,

• σ′ = σ′
1 . . . σ

′
k and σ′′ = σ′′

1 . . . σ
′′
n−k, where σ′

i = λ−1
I′ (σk+1−i) and σ′′

i = λ−1
I′′ (σk+i).

We first want to prove that ((I ′, (p′, σ′)), (I ′′, (p′′, σ′′))) is in Dn. It is clear that (p′, σ′)
and (p′′, σ′′) are well-labelled paths and moreover, (p′, σ′) is a Motzkin path. It remains
to prove that (p′′, σ′′) is a positive path. Observe that the step pk is non-zero otherwise
it contradicts the maximality of k. If pk = −1, then (p′′, σ′′) is clearly positive because
(p, σ) is positive; and if pk = +1, then (p′′, σ′′) is positive otherwise it would contradict
the maximality of k. Hence, φ′ is a mapping from An to Dn. The bijectivity of φ′

is easy to check after observing that the step pk can be recovered: it is equal to 1 if
λI′(σ

′
1) < λI′′(σ

′′
1) and to −1 otherwise. �

Proposition 4 will allow to define a bijection between positive paths and matchings in
the next section. It also leads to the following relation between the generating functions
A(z) and B(z):

(4) B(z) = z + zB(z) + A(z) + A(z)B(z),

which, by (2), gives B(z) =
1√

1 − 2z
−1. This result could also have been derived from

the observation that bn = an+1 implies B(z) = A′(z).

3. Bijections with matchings

Proposition 3 suggests that the classes of paths An+1 and Bn are both in bijection
with matchings. The goal of this section is to describe such bijections. For this, we will
introduce intermediate objects called labelled binary trees.

3.1. Bijections between well-labelled paths and labelled binary trees. A la-

belled binary tree of size n is a rooted tree with n leaves having n different labels in [n]
and such that each (unlabelled) internal vertex has exactly two unordered children. We
call marked labelled binary tree a labelled binary tree in which one of the (internal or
external) vertices is marked. A binary tree and a marked binary tree are represented
in Figure 4. We denote by T the set of labelled binary trees of size at least 2 and
we denote by R the set of marked labelled binary trees. We will now show that the
recursive descriptions of the classes T and R parallel those of the classes A and B and
obtain bijections between T and A and between R and B.

We use the following notation for relabelling trees: if λ is a bijection between two sets
of integers I, J and τ is a binary tree whose leaves have labels in I, then λ(τ) denotes
the tree obtained from τ by replacing replacing the label i ∈ I of each leaf by the label
λ(i) ∈ J .

Bijection between Motzkin paths and labelled trees. We denote by τ2 the unique
labelled binary tree of size 2 and by T 0 (respectively T 1) the set of labelled binary trees
made of the root-vertex and two subtrees, one of which (respectively none of which) is
a leaf. For all integers n ≥ 2, we denote respectively by Tn, T 0

n and T 1
n the set of trees

of size n in T , T 0 and T 1. We now explicit the recursive nature of the partition

T = {τ2} ⊎ T 0 ⊎ T 1.
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Figure 4. (a) A labelled binary tree. (b) A marked labelled binary tree

Proposition 5. For any integer n > 2,

• the set T 0
n is in bijection with the set [n] × Tn−1.

• the set T 1
n is in bijection with the set Un of unordered pairs {(I ′, τ ′), (I ′′, τ ′′)}

such that I ′ ⊆ [n], I ′′ = [n] \ I ′ and τ ′, τ ′′ are labelled binary trees in T of

respective size |I ′| and |I ′′|.

Proof. Let n > 2.

• Given an integer k ∈ [n] and a tree τ in Tn−1, one defines a tree τ ′ in T 0
n as the tree

made of a root-vertex, one subtree which is a leaf labelled k and one subtree equal to
λ[n]\{k}(τ) (which is not a leaf). This is a bijection between [n] × Tn−1 and T 0

n .

• Given a pair {(I ′, τ ′), (I ′′, τ ′′)} in Un, one defines a tree τ in T 1
n as the tree made of a

root-vertex, a subtree equal to λI′(τ
′) and a subtree equal to λI′′(τ

′′). This is a bijection
between Un and T 1

n . �

Definition of bijection Φ. Comparing Propositions 1 and 5, it is clear that one can
define a recursive bijection Φ between the class A of well-labelled Motzkin paths and
the class T of labelled binary trees. We now summarise the recursive construction of
the image of a well-labelled Motzkin path (p, σ) by the bijection Φ:

(i) If (p, σ) = α2, then Φ(p, σ) = τ2.
(ii) If (p, σ) has size n > 2 and p1 = 0, then we set p′ = p2 . . . pn−1 and σ′ =

σ′
1 . . . σ

′
n−1 where σ′

i = λ−1
[n]\{σ1}

(σi+1) for i = 1 . . . n−1. With these notations,

we define Φ(p, σ) as the tree made of a root-vertex, the subtree made of a leaf
labelled σ1 and the subtree λ[n]\{σ1}(Φ(p′, σ′)).

(iii) If (p, σ) has size n > 2 and p1 = 1, then we consider the least integer k such

that
∑k

i=1 pi = 0 and we set (as in the proof of Proposition 1):

• I ′ = {σ1, . . . , σk} and I ′′ = {σk+1, . . . , σn},
• p′ = p′1 . . . p

′
k−1 and p′′ = p′′1 . . . p

′′
n−k−1, where p′i = −pk−i and p′′i = pk+i,

• σ′ = σ′
1 . . . σ

′
k and σ′′ = σ′′

1 . . . σ
′′
n−k, where σ′

i = λ−1
I′ (σk+1−i) and σ′′

i =

λ−1
I′′ (σk+i).

With these notations, we define Φ(p, σ) as the tree made of a root-vertex, the
subtree λI′(Φ(p′, σ′)) and the subtree λI′′(Φ(p′′, σ′′)).
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For instance, the image of the Motzkin path represented in Figure 1(a) by the map-
ping Φ is represented in Figure 4(a). From the definition of Φ and Propositions 1 and
5, we have the following theorem.

Theorem 6. For any positive integer n > 1, the mapping Φ is a bijection between

well-labelled Motzkin paths of size n and labelled binary trees with n leaves.

Bijection between positive paths and marked trees. We now define a bijection Φ′

between well-labelled positive paths and marked labelled binary trees. Before defining
the bijection Φ′, let us explain briefly what led us to consider marked labelled binary
trees. As seen in Section 2, the recursive decomposition of positive paths leads to con-
sider subpaths corresponding to either positive paths or Motzkin paths. The recursive
relation is captured by Equation (4) which can be written

B(z) = Ã(z) + Ã(z)B(z),

where Ã(z) = z + A(z) is the generating function of unmarked binary trees (of size
n ≥ 1), or equivalently, binary trees marked at their root-vertex. This relation suggests
that one can interpret B(z) as the generating function of marked binary trees.

We denote by ρ1 the marked labelled tree of size 1. We denote by R′ ⊂ R the set
of marked trees of size at least 2 such that the marked vertex is the root. Clearly, this
set is in bijection with the set T of unmarked trees. We denote by R0 (respectively
R′′) the set of marked trees made of a non-marked root and two subtrees, one of which
(respectively none of which) is a non-marked leaf. For all integer n > 1, we denote
respectively by Rn, R0

n, R′
n and R′′

n the set of marked trees of size n in R, R0, R′ and
R′′. We now explicit the recursive nature of the partition

R = {ρ1} ⊎ R0 ⊎R′ ⊎R′′.

Proposition 7. For all integer n > 1,

• the set R0
n is in bijection with the set [n] ×Rn−1,

• the set R′
n is in bijection with Tn,

• the set R′′
n is in bijection with the set Un of ordered pairs ((I ′, τ ′), (I ′′, τ ′′)) such

that I ′ ⊆ [n], I ′′ = [n] \ I ′, τ ′ is a non-marked labelled binary tree of size |I ′|
and τ ′′ is a marked labelled binary tree of size |I ′′|.

The proof of Proposition 7 is similar to the proof of Proposition 5 and is omitted.

Definition of bijection Φ′. Comparing Propositions 4 and 7, it is clear that one can
define a recursive bijection Φ′ between the class B of well-labelled paths and the class
R of marked labelled binary trees. We now summarise the recursive construction of the
image of a well-labelled positive path (p, σ) by the bijection Φ′:

(i) If (p, σ) = β1 then Φ′(p, σ) is the marked tree ρ1.
(ii) If (p, σ) has size n > 1 and p1 = 0, then we define p′ = p2 . . . pn−1 and σ′ =

σ′
1 . . . σ

′
n−1, where σ′

i = λ−1
[n]\{σ1}

(σi+1) for i = 1 . . . n−1. With these notations, we

define Φ′(p, σ) as the tree made of a non-marked root-vertex, the subtree made
of a non-marked leaf labelled σ1 and the marked subtree λ[n]\{σ1}(Φ

′(p′, σ′)).
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(iii) If (p, σ) has size n > 1 and p1 = 1, then we consider the greatest integer k ≤ n

such that
∑j−1

i=1 pi ≥ 1 for all j = 2 . . . k−1 and
∑k−1

i=1 pi = 1, and we set (as in
the proof of Proposition 4):

• I ′ = {σ1, . . . , σk} and I ′′ = {σk+1, . . . , σn},
• p′ = p′1 . . . p

′
k−1 and p′′ = p′′1 . . . p

′′
n−k−1, where p′i = −pk−i and p′′i = pk+i,

• σ′ = σ′
1 . . . σ

′
k and σ′′ = σ′′

1 . . . σ
′′
n−k, where σ′

i = λ−1
I′ (σk+1−i) and σ′′

i =

λ−1
I′′ (σk+i).

If k = n (that is, (p, σ) is in B′), we define Φ′(p, σ) as the marked tree
obtained by marking the root-vertex of the unmarked tree Φ(p′, σ′) (note that
I ′′, p′′ and σ′′ are empty in this case). Otherwise (that is, if k < n), we define
Φ′(p, σ) as the marked tree made of a non-marked root-vertex, the non-marked
subtree λI′(Φ(p′, σ′)) and the marked subtree λI′′(Φ

′(p′′, σ′′)).

For instance, the image of the positive path represented in Figure 1(b) by the mapping
Φ′ is represented in Figure 4(b). From the definition of Φ′ and Propositions 4 and 7,
we have the following theorem.

Theorem 8. The function Φ′ is a bijection between well-labelled positive paths of size

n and marked labelled binary trees with n leaves.

Remark. The final height of a positive path (p, σ) of size n is
∑n−1

i=1 pi. It is not hard
to prove inductively that a positive path (p, σ) has an even final height if and only if
the mark of the image tree, ρ = Φ′(p, σ), is on a leaf. Indeed, if (p, σ) = β1 the final
height is 0, and the mark is on a leaf of the tree ρ = ρ1; while if (p, σ) is in B′ the
final height is 1, and the mark is on an internal vertex (the root-vertex) of ρ. In the
other cases ((p, σ) ∈ B0 ⊎B′′), the mark is in a subtree ρ′′ of ρ corresponding to a path
(p′′, σ′′) having a final height of the same parity as (p, σ).

3.2. Bijections between labelled binary trees and matchings. We will now
present a bijection Ψ due to Chen [3] between labelled binary trees of size n and
matchings on [2n−2]. We follow the exposition from [8, p.16] for defining the bijection
Ψ and then define a similar bijection Ψ′ between marked binary trees of size n and
matchings on [2n]. The mappings Ψ and Ψ′ are represented in Figure 5. The first step
of this bijection is to attribute a label to each internal node of the binary tree.

Definition of bijection Ψ [3]. Let τ be a labelled binary tree with n leaves labelled on
[n]. One defines an induced labelling of the n−2 internal non-root vertices of τ by the
following procedure. While there are unlabelled non-root vertices, we consider those
among them that have both of their children labelled. There is at least one such vertex
and we consider the vertex v which has the child with least label; we then attribute to
v the least label in [2n−2]\ [n] which has not yet been attributed. For instance, starting
from the tree in Figure 4(a) one obtains the labels indicated in the fully labelled tree
represented in Figure 5(a). One then obtains the matching π = Ψ(τ) on [2n−2] by
letting π(i) = j for all pairs i, j ∈ [2n − 2] which are the labels of siblings in the fully
labelled tree. In [8, p.16] the mapping Ψ is proved to be a bijection between labelled
binary trees of size n and matchings on [2n−2].
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Figure 5. Bijections between labelled binary trees and matchings.

Definition of bijection Ψ′. Let τ ′ be a marked labelled binary tree of size n and let
τ be the corresponding unmarked tree. We consider the matching π = Ψ(τ) on [2n−2]
and define a matching π′ = Ψ′(τ ′) on [2n] as follows. If the marked vertex v of τ ′ is the
root, then π′(i) = π(i) for all i in [2n−2] and π′(2n − 1) = 2n. If v is not the root,
then we consider its label k and the label l of its sibling. In this case π′(i) = π(i) for
all i 6= k, l in [2n−2], π′(k) = 2n and π′(l) = 2n− 1. It is clear that the mapping Ψ′ is
a bijection between marked labelled binary tree of size n and matchings on [2n].

Combining the bijections Φ, respectively Φ′, with the bijections Ψ, respectively Ψ′,
gives the following bijective proof of Proposition 3.

Theorem 9. The composition Ψ ◦ Φ is a bijection between well-labelled Motzkin paths

of size n and matchings on [2n−2]. Similarly, Ψ′ ◦Φ′ is a bijection between well-labelled

positive paths of size n and matchings on [2n].

4. Enumerative corollaries

We will now study the number of horizontal steps in well-labelled paths through the
bijections Φ, Φ′, Ψ, Ψ′ and deduce some enumerative corollaries in terms of the up-down
sequences of permutations. Recall that a horizontal step of a well-labelled path (p, σ)
is a letter 0 in p. We say that a leaf in a labelled binary tree is single if its sibling is an
internal node.

Theorem 10. For all integers n, k, the mappings Φ and Ψ induce successive bijections

between

• well-labelled Motzkin paths of size n with k horizontal steps,

• labelled binary trees with n leaves, k of which are single leaves,

• matchings on [2n − 2] having k pairs (i, j) such that i ∈ {1, . . . , n} and j ∈ {n+
1, . . . , 2n−2}.
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For example, the Motzkin path of size n = 10 in Figure 1(a) has 2 horizontal steps,
the corresponding labelled binary tree represented in Figure 4(a) has 2 single leaves,
and the corresponding matching represented in Figure 5(a) has 2 pairs (i, j) such that
i ∈ {1, . . . , n} and j ∈ {n+1, . . . , 2n−2}.

Proof. • The correspondence between the number of horizontal steps of a Motzkin
path (p, σ) and the number of single leaves in the binary tree Φ(p, σ) follows from a
simple induction on the size of (p, σ). Indeed, one creates a single leaf in the recursive
construction of Φ(p, σ) exactly when case (ii) thereof (corresponding to a horizontal
step of (p, σ)) occurs.

• The correspondence between the number of single leaves in the binary tree τ and the
number of pairs (i, j) such that i ∈ {1, . . . , n} and j ∈ {n+1, . . . , 2n−2} in the matching
Ψ(τ) is an immediate consequence of the fact that the labels of external vertices are in
{1, . . . , n} while the labels of internal vertices are in {n+1, . . . , 2n−2}. �

Corollary 11. The number of well-labelled Motzkin paths of size n having k horizontal

steps is

an,k =

(

n

k

)(

n− 2

k

)

k! (n− k − 1)!! (n− k − 3)!!

if n− k is even and 0 otherwise.

Proof. By Theorem 10, the number an,k counts matchings on [2n − 2] with exactly
k pairs (i, j) such that i ∈ {1, . . . , n} and j ∈ {n+1, . . . , 2n−2}. To enumerate such
matchings, first choose these k pairs: there are

(

n

k

)

possibilities of choosing the integers i

in {1, . . . , n}, there are
(

n−2
k

)

possibilities for choosing the integers j in {n+1, . . . , 2n−2}
and then k! possibilities to define the pairing between the chosen integers in {1, . . . , n}
and the chosen integers in {n+1, . . . , 2n−2}. After that, it remains to choose a pairing
of the n− k unmatched integers in {1, . . . , n} and a pairing of the n− k− 2 unmatched
integers in {n+1, . . . , 2n−2}. Such matchings exist only if n− k is even and there are
(n− k − 1)!!(n− k − 3)!! of them in this case. �

We now examine horizontal steps in positive paths. We say that a leaf in a marked
labelled binary tree is quasi-single if it is not marked and its sibling is either marked or
internal.

Theorem 12. For all integers n, k, the mappings Φ′ and Ψ′ induce successive bijections

between

• well-labelled positive paths of size n with k horizontal steps,

• marked labelled binary trees of with n leaves, k of which are quasi-single leaves,

• matchings on [2n] having k pairs (i, j) with i ∈ {1, . . . , n} and j ∈ {n+1, . . . , 2n−1}.

Proof. • The correspondence between the number of horizontal steps of a positive path
(p, σ) and the number of quasi-single leaves in the marked tree Φ′(p, σ) follows from
a simple induction on the size of (p, σ). Indeed, one creates a quasi-single leaf in the
recursive construction of Φ′(p, σ) exactly when case (ii) of the definition of either Φ or
Φ′ occurs.
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• We now consider a marked labelled binary tree τ ′ of size n > 1. Let v be the marked
vertex and let τ be the non-marked tree obtained by forgetting the mark. The number
k of single leaves in τ and the number k′ of quasi-single leaves in τ ′ are related by

• k′ = k if v is internal,
• k′ = k − 1 if v is a leaf and its sibling is internal
• k′ = k + 1 if v and its sibling are both leaves.

Similarly, the definition of Ψ′ gives a relation between the number l′ of pairs (i, j) of the
matching Ψ′(τ ′) such that i ∈ {1, . . . , n} and j ∈ {n+ 1, . . . , 2n− 1} and the number l
of pairs (i, j) of the matching Ψ(τ) such that i ∈ {1, . . . , n} and j ∈ {n+1, . . . , 2n−2}:

• l′ = l if the label of v is larger than n,
• l′ = l−1 if the label of v is not larger than n and the label of its sibling is larger

than n,
• l′ = l + 1 if the label of v and its sibling are not larger than n.

Theorem 10 gives k = l, hence the previous discussion gives k′ = l′ and concludes the
proof. �

Corollary 13. The number of well-labelled positive paths of size n having k horizontal

steps is

(5) bn,k =















(

n

k

)(

n− 1

k

)

k! [(n− k − 1)!!]2 if n−k is even,

(

n

k

)(

n− 1

k

)

k! (n− k)!! (n− k − 2)!! otherwise.

The proof of Corollary 13 is very similar to the Corollary 11 and is omitted. We now
study the consequence of these results in terms of the up-down sequences of permuta-
tions.

Counting permutations having a positive up-down sequence. An ascent of a
permutation σ = σ1σ2 . . . σn is an index i < n such that σi < σi+1; a descent is an index
i < n such that σi > σi+1. The enumeration of permutations with a given sequence of
ascents and descents, called up-down sequences (or shape) was investigated for instance
in [2, 4, 5, 7]. Here we will count permutations of size n such that their up-down
sequences belong to a certain family, while previous works focused on the enumeration
according to a single up-down sequence.

We say that a permutation σ has a positive up-down sequence if for all j ≤ n the
number of ascents less than j is no more than the number of descents less than j. We
say that σ has a Dyck up-down sequence if it has one more ascent than descents but for
all j < n the number of ascents less than j is no more than the number of descents less
than j. Observe that a well-labelled path (p, σ) with no horizontal steps is completely
determined by the permutation σ (indeed, the word p is determined by the up-down
sequence of σ). Moreover, the well-labelled path (p, σ) is positive (respectively Motzkin)
if and only if the permutation σ has a positive (respectively Dyck) up-down sequence.
Thus, the following theorem immediately follows by looking at the specialisation k = 0
in Corollaries 11 and 13.
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Theorem 14. For any integer n, the number of permutations of size n having a positive

up-down sequence is [(n− 1)!!]2 if n is even and n!! (n− 2)!! otherwise. The number of

permutations of size n having a Dyck up-down sequence is (n−1)!! (n−3)!! if n is even

and 0 otherwise.

We would be happy to see a more direct bijective proof of these specialisations.

Acknowledgement: We are very thankful to Sylvie Corteel for fruitful discussions
and for providing us with the conjectural formula for the numbers bn,k.
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