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IDENTITIES FOR THE NUMBER OF STANDARD YOUNG

TABLEAUX IN SOME (k, ℓ)-HOOKS

A. REGEV

Abstract. Closed formulas are known for S(k, 0;n), the number of standard Young
tableaux of size n and with at most k parts, where 1 ≤ k ≤ 5. Here we study
the analogous problem for S(k, ℓ;n), the number of standard Young tableaux of size
n which are contained in the (k, ℓ)-hook. We deduce some formulas for the cases
k + ℓ ≤ 4.

1. Introduction

Given a partition λ of n, which we denote as usual by λ ⊢ n, let χλ denote the corre-
sponding irreducible Sn character. Its degree is denoted by deg χλ = fλ and is equal
to the number of standard Young tableaux (SYT) of shape λ. (The reader is referred
to [8, 9, 13, 15] for introductions into character theory of the symmetric group and
symmetric functions.) The number fλ can be calculated for example by the hook for-
mula (see [8, Theorem 2.3.21], [13, Section 3.10], [15, Corollary 7.21.6]. We consider the
number of SYT in the (k, ℓ)-hook. More precisely, given integers k, ℓ, n ≥ 0, we write

H(k, ℓ; n) = {λ = (λ1, λ2, . . .) | λ ⊢ n and λk+1 ≤ ℓ} and S(k, ℓ; n) =
∑

λ∈H(k,ℓ;n)

fλ.

1.1. The cases where S(k, ℓ; n) are known. For the “strip” sums S(k, 0; n) it is
known (see [11] and [15, Ex. 7.16.b]) that

S(2, 0; n) =

(

n

⌊n
2
⌋

)

and S(3, 0; n) =
∑

j≥0

1

j + 1

(

n

2j

)(

2j

j

)

.

Let Cj = 1
j+1

(

2j
j

)

be the Catalan numbers. Gouyou-Beauchamps [7] (see also [15,

Ex. 7.16.b]) proved that

S(4, 0; n) = C⌊n+1

2
⌋ · C⌈n+1

2
⌉ and S(5, 0; n) = 6

⌊n

2
⌋

∑

j=0

(

n

2j

)

· Cj ·
(2j + 2)!

(j + 2)!(j + 3)!
.

As for the “hook” sums, until recently only S(1, 1; n) and S(2, 1; n) = S(1, 2; n) have

been calculated:

1. It easily follows that S(1, 1; n) = 2n−1.
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2. The following identity was proved in [12, Theorem 8.1]:

S(2, 1; n) =
1

4

(

n−1
∑

r=0

(

n − r

⌊n−r
2
⌋

)(

n

r

)

+

⌊n

2
⌋−1
∑

k=1

n!

k! · (k + 1)! · (n − 2k − 2)! · (n − k − 1) · (n − k)

)

+ 1. (1)

1.2. The main results. In Section 2 we prove Equation (10), which gives (sort of) a
closed formula for S(3, 1; n) in terms of the Motzkin-sums function. For the Motzkin-
sums function see [14, sequence A005043]. Equation (10) is in fact a “degree” conse-
quence of a formula for Sn characters, of interest in its own right, see Equation (9).

In Section 3 we find some intriguing relations between the sums S(4, 0; n) and the
“rectangular” sub-sums S∗(2, 2, ; n) (see Section 3 for their definition), see identities (12)
and (13) below.

Finally, in Section 4 we review some cases where the hook sums S(k, ℓ; n) are related,
in some rather mysterious ways, to hump enumerations on Dyck and on Motzkin paths,
see (14), (16), and Theorem 4.1.

As usual, in some of the above identities it is of interest to find bijective proofs, which
might explain these identities.

Acknowledgement. We thank D. Zeilberger for verifying some of the identities here
by the WZ method.

2. The sums S(3, 1; n) and the characters χ(3, 1; n)

Define the Sn character

χ(k, ℓ; n) =
∑

λ∈H(k,ℓ;n)

χλ, so that deg(χ(k, ℓ; n)) = S(k, ℓ; n). (2)

2.1. The Motzkin-sums function. Define the Sn character

Ψ(n) =

⌊n/2⌋
∑

k=0

χ(k,k,1n−2k), and denote deg Ψ(n) = a(n). (3)

We call Ψ(n) the Motzkin-sums character. Note that

deg χ(k,k,1n−2k) = f (k,k,1n−2k) =
n!

(k − 1)! · k! · (n − 2k)! · (n − k) · (n − k + 1)
,

hence

a(n) =

⌊n/2⌋
∑

k=1

n!

(k − 1)! · k! · (n − 2k)! · (n − k) · (n − k + 1)
. (4)

By [14, sequence A005043], it follows that a(n) is the Motzkin-sums function. The
reader is referred to [14] for various properties of a(n). For example, a(n) + a(n + 1) =



IDENTITIES FOR THE NUMBER OF STANDARD TABLEAUX 3

Mn, where Mn are the Motzkin numbers. Also a(1) = 0, a(2) = 1, and a(n) satisfies
the recurrence

a(n) =
n − 1

n + 1
· (2 · a(n − 1) + 3 · a(n − 2)), for n ≥ 3. (5)

Note also that for n ≥ 2 Equation (1) can be written as

S(2, 1; n) =
1

4

(

n−1
∑

r=0

(

n − r

⌊n−r
2
⌋

)(

n

r

)

+ a(n) − 1

)

+ 1. (6)

The asymptotic behavior of a(n) can be deduced from that of Mn. We deduce it here,
even though it is not needed in the sequel.

Remark 2.1. As n tends to infinity,

a(n) ≃
√

3

8 ·
√

2π
· 1

n
√

n
· 3n and a(n) ≃ 1

4
· Mn.

Proof. By standard techniques it can be shown that a(n) has asymptotic behavior

a(n) ≃ c ·
(

1

n

)g

· αn

for some constants c, g and α — which we now determine. By [11], we have

Mn ≃
√

3

2
√

2π
·
(

1

n

)3/2

· 3n.

Together with

Mn = a(n) + a(n + 1) ≃ c · (1 + α) ·
(

1

n

)g

· αn,

this implies that α = 3, that g = 3/2, and that c =
√

3
8·
√

2π
.

�

2.2. The outer product of Sm and Sn characters. Given an Sm character χm and
an Sn character χn, we can form their outer product χn⊗̂χn. The exact decomposition
of χm⊗̂χn is given by the Littlewood–Richardson rule, see [8, 9, 13, 15]. In the special
case that χn = χ(n), this decomposition is given, below, by Young’s rule. Furthermore,
we have

deg(χn⊗̂χ(n)) = deg(χn) ·
(

n + m

n

)

. (7)

Young’s Rule (see [9, Ch. I, Sec. 7 and (5.16)]): Let λ = (λ1, λ2, . . .) ⊢ m and denote
by λ+n the following set of partitions of m + n:

λ+n = {µ ⊢ n + m | µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · }.
Then

χλ⊗̂χ(n) =
∑

µ∈λ+n

χµ.



4 A. REGEV

Example 2.2. Given n, it follows that (see [11], [15, Ex. 7.16.b])

χ(⌊n/2⌋)⊗̂χ(⌈n/2⌉) = χ(2, 0; n), and by taking degrees, S(2, 0; n) =

(

n

⌊n/2⌋

)

. (8)

2.3. A character formula for χ(3, 1; n).

Proposition 2.3. With the notations of (2) and (3),

χ(3, 1; n) =
1

2
·
[

χ(2, 0, n) +
n
∑

j=0

Ψ(j)⊗̂χ(n−j)

]

. (9)

By taking degrees, Example 2.2 together with (3) and (7) imply that

S(3, 1; n) =
1

2
·
[

(

n

⌊n
2
⌋

)

+
n
∑

j=0

a(j) ·
(

n

j

)

]

. (10)

Proof. Denote

Ω(n) =
n
∑

j=0

Ψ(j)⊗̂χ(n−j),

and analyze this Sn character. Young’s rule implies the following:

If µ ⊢ n, then, by Young’s rule, χµ has a positive coefficient in Ω(n) if and only if
µ ∈ H(3, 1; n). Moreover, all these coefficients are either 1 or 2, and such a coefficient
equals 1 if and only if µ is a partition with at most two rows, say µ = (µ1, µ2). It follows
that

χ(2, 0; n) + Ω(n) = 2 ·
∑

λ∈H(3,1;n)

χλ. (11)

This implies (9) and completes the proof of Proposition 2.3. �

3. The sums S(4, 0; n) and S∗(2, 2; n)

Definition 3.1. (1) Let n = 2m, m ≥ 2, and let H∗(2, 2; 2m) ⊂ H(2, 2; 2m) denote
the set of partitions H∗(2, 2; 2m) = {(k+2, k+2, 2m−2−k) ⊢ 2m | k = 0, . . . m−2}
(the partitions in the (2, 2)-hook with both arm and leg being rectangular).
Furthermore, write

S∗(2, 2; 2m) =
∑

λ∈H∗(2,2;2m)

fλ.

(2) Let n = 2m + 1, m ≥ 2, and let H∗(2, 2; 2m + 1) ⊂ H(2, 2; 2m + 1) denote
the set of partitions H∗(2, 2; 2m + 1) = {(k + 3, k + 2, 2m−2−k) ⊢ 2m + 1 | k =
0, . . . m − 2} (the partitions in the (2, 2)-hook with arm nearly rectangular and
leg rectangular). Furthermore, let

S∗(2, 2; 2m + 1) =
∑

λ∈H∗(2,2;2m+1)

fλ.



IDENTITIES FOR THE NUMBER OF STANDARD TABLEAUX 5

Recall from Section 1.1 that S(4, 0; 2m − 1) = C2
m and S(4, 0; 2m) = Cm · Cm+1. We

have the following intriguing identities.

Proposition 3.2. (1) Let n = 2m. Then

S(4, 0; 2m − 2) = Cm−1 · Cm = S∗(2, 2; 2m).

Explicitly, we have the following identity:

Cm−1 · Cm =
1

m · (m + 1)
·
(

2m − 2

m − 1

)

·
(

2m

m

)

=
m−2
∑

k=0

(2m)!

k! · (k + 1)! · (m − k − 2)! · (m − k − 1)! · (m − 1) · m2 · (m + 1)
.

(12)

(2) Let n = 2m + 1. Then

2m + 1

m + 2
· S(4, 0; 2m − 1) =

2m + 1

m + 2
· C2

m = S∗(2, 2; 2m + 1).

Explicitly, we have the following identity:

2m + 1

m + 2
· C2

m =
1

(m + 1) · (m + 2)
·
(

2m

m

)(

2m + 1

m

)

=
m−2
∑

k=0

(2m + 1)! · 2
k! · (k + 2)! · (m − k − 2)! · (m − k − 1)! · (m − 1) · m · (m + 1) · (m + 2)

. (13)

Proof. Equation (12) is the specialization of Gauß’s 2F1(a, b; c; 1) with a = 2 − m, b =
1−m, c = 2 (cf. [1]), and (13) is similar. Alternatively, the identities (12) and (13) can
be verified by the WZ method (cf. [10, 16]). �

4. Hook sums and humps for paths

A Dyck path of length 2n is a lattice path, in Z×Z, from (0, 0) to (2n, 0), using up-steps
(1, 1) and down-steps (1,−1) and never going below the x-axis. A hump in a Dyck path
is an up-step followed by a down-step.1

A Motzkin path of length n is a lattice path from (0, 0) to (n, 0), using flat-steps (1, 0),
up-steps (1, 1) and down-steps (1,−1), and never going below the x-axis. A hump in a
Motzkin path is an up-step followed by zero or more flat-steps followed by a down-step.

We now count humps for Dyck and for Motzkin paths and observe the following in-
triguing phenomena: The hump enumeration in the Dyck case associates the 2 × n
rectangular shape λ = (n, n) to the (1, 1)-hook shape µ = (n, 1n). Moreover, in the
Motzkin case we show below that it associates the (3, 0) strip shape partitions H(3, 0; n)
to the (2, 1)-hook shape partitions H(2, 1; n).

1In the Dyck path context, humps are usually called peaks. However, we prefer the term “hump”
because, in the context of Motzkin paths, this term will indeed differ from “peak.”
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4.1. The Dyck case. The Catalan number

Cn =
(2n)!

n!(n + 1)!

is the cardinality of a variety of sets (see [15, Ex. 6.19]); here we are interested in two
such sets. First, Cn = f (n,n), the number of SYT of shape (n, n). Second, Cn is the
number of Dyck paths of length 2n. Let HDn denote the total number of humps in all
Dyck paths of length 2n. Then

HDn =

(

2n − 1

n

)

,

see [3, 4, 6]. Since
(

2n−1
n

)

= f (n,1n), we have

Cn = f (n,n) and HDn = f (n,1n).

We denote this association by

H : (n, n) −→ (n, 1n). (14)

4.2. The Motzkin case. Like the Catalan numbers, also the Motzkin numbers Mn

are the cardinality of a variety of sets (cf. [15, Ex. 6.38], [14, sequence A001006]). The
result from [11] that Mn = S(3, 0; n) gives the Motzkin numbers a SYT interpretation.
Moreover, Mn is the number of Motzkin paths of length n. Let HMn denote the total
number of humps in all Motzkin paths of length n. Then, according to [14, sequence
A097861],

HMn =
1

2

∑

j≥1

(

n

j

)(

n − j

j

)

. (15)

We show below that this implies the intriguing identity HMn = S(2, 1; n) − 1, which
gives a SYT-interpretation of the numbers HMn. Thus, the hump enumeration in the
Motzkin case associates the (3, 0) strip shape partitions H(3, 0; n) to the (2, 1)-hook
shape partitions H(2, 1; n). We denote this by

H : H(3, 0; n) −→ H(2, 1; n). (16)

Theorem 4.1. The number of humps of all Motzkin paths of length n satisfies

HMn = S(2, 1; n) − 1.

Combining Equations (1) and (15), the proof of Theorem 4.1 will follow once the fol-
lowing binomial identity — of interest in its own right — is proved.

Lemma 4.2. For n ≥ 2, we have

2

⌊n/2⌋
∑

j=1

(

n

j

)(

n − j

j

)

=
n−1
∑

r=0

(

n − r

⌊n−r
2
⌋

)(

n

r

)

+ a(n) − 1

=
n−1
∑

r=0

(

n − r

⌊n−r
2
⌋

)(

n

r

)

+

⌊n

2
⌋−1
∑

k=1

n!

k! · (k + 1)! · (n − 2k − 2)! · (n − k − 1) · (n − k)
. (17)
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Equation (17) was first verified by the WZ method. About this method, see [10, 16].
Here is an elementary proof which is due to Ira Gessel [5].

Proof. Note first that a(n) is the nth Riordan number, [14, sequence A005043], defined
(for example) by

∞
∑

n=0

a(n)xn =
2

1 + x +
√

1 − 2x − 3x2
.

Adding 2 to both sides of (17) gives the equivalent identity

2

⌊n/2⌋
∑

j=0

(

n

j

)(

n − j

j

)

=
n
∑

r=0

(

n − r

⌊n−r
2
⌋

)(

n

r

)

+ a(n). (18)

Now let us replace r by n− r in the sum on the right-hand side of (18), thereby getting
n
∑

r=0

(

r

⌊ r
2
⌋

)(

n

r

)

,

and then separate the even and odd values of r so that this sum is equal to u(n)+ v(n)
where

u(n) =
∑

j

(

2j

j

)(

n

2j

)

and

v(n) =
∑

j

(

2j + 1

j

)(

n

2j + 1

)

.

Noting that the left-hand side of (18) is 2u(n), we see that the identity to be proved is
equivalent to

u(n) = v(n) + a(n). (19)

It is straightforward to show that u(n) is the coefficient of xn in (1 + x + x2)n [14,
sequence A002426, central trinomial coefficients] and that v(n) is the coefficient of xn−1

(or of xn+1) in (1 + x + x2)n [14, sequence A005717]. With these interpretations for
u(n) and v(n), a combinatorial proof of the identity u(n) − v(n) = a(n) has been
given by David Callan [Riordan numbers are differences of trinomial coefficients, 2006,
http://www.stat.wisc.edu/~callan/notes/riordan/riordan.pdf]. Alternatively,
Equation (19) follows easily from the known generating functions for u(n), v(n), and
a(n), which can all be found in [14] (or derived directly). �

This completes the proof of Theorem 4.1.
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