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1. Littlewood-Richardson coefficients: cλµ ν
Schur functions form a basis for the algebra of symmetric functions

sµsν =
X
λ

cλµ νsλ.

Decomposition of the tensor product of two irreducible polynomial
representations V µ and V ν of the general linear group GLd (C) into
irreducible representations of GLd (C)

V µ ⊗ V ν =
X

l(λ)≤d

cλµ νV λ.

Schubert classes σλ form a linear basis for H∗(G (d , n)), the
cohomology ring of the Grassmannian G (d , n) of complex
d-dimensional linear subspaces of Cn,

σµσν =
X

λ⊆d×(n−d)

cλµ νσλ.

There exist d × d non singular matrices A, B and C , over a pid, with
Smith invariants µ, ν and λ respectively, such that AB = C iff
cλµ ν > 0.

3 / 96



1. Littlewood-Richardson coefficients: cλµ ν
Schur functions form a basis for the algebra of symmetric functions

sµsν =
X
λ

cλµ νsλ.

Decomposition of the tensor product of two irreducible polynomial
representations V µ and V ν of the general linear group GLd (C) into
irreducible representations of GLd (C)

V µ ⊗ V ν =
X

l(λ)≤d

cλµ νV λ.

Schubert classes σλ form a linear basis for H∗(G (d , n)), the
cohomology ring of the Grassmannian G (d , n) of complex
d-dimensional linear subspaces of Cn,

σµσν =
X

λ⊆d×(n−d)

cλµ νσλ.

There exist d × d non singular matrices A, B and C , over a pid, with
Smith invariants µ, ν and λ respectively, such that AB = C iff
cλµ ν > 0.

4 / 96



1. Littlewood-Richardson coefficients: cλµ ν
Schur functions form a basis for the algebra of symmetric functions

sµsν =
X
λ

cλµ νsλ.

Decomposition of the tensor product of two irreducible polynomial
representations V µ and V ν of the general linear group GLd (C) into
irreducible representations of GLd (C)

V µ ⊗ V ν =
X

l(λ)≤d

cλµ νV λ.

Schubert classes σλ form a linear basis for H∗(G (d , n)), the
cohomology ring of the Grassmannian G (d , n) of complex
d-dimensional linear subspaces of Cn,

σµσν =
X

λ⊆d×(n−d)

cλµ νσλ.

There exist d × d non singular matrices A, B and C , over a pid, with
Smith invariants µ, ν and λ respectively, such that AB = C iff
cλµ ν > 0.

5 / 96



1. Littlewood-Richardson coefficients: cλµ ν
Schur functions form a basis for the algebra of symmetric functions

sµsν =
X
λ

cλµ νsλ.

Decomposition of the tensor product of two irreducible polynomial
representations V µ and V ν of the general linear group GLd (C) into
irreducible representations of GLd (C)

V µ ⊗ V ν =
X

l(λ)≤d

cλµ νV λ.

Schubert classes σλ form a linear basis for H∗(G (d , n)), the
cohomology ring of the Grassmannian G (d , n) of complex
d-dimensional linear subspaces of Cn,

σµσν =
X

λ⊆d×(n−d)

cλµ νσλ.

There exist d × d non singular matrices A, B and C , over a pid, with
Smith invariants µ, ν and λ respectively, such that AB = C iff
cλµ ν > 0. 6 / 96



Partitions and 0-1 strings
Fix 0 < d < n. Partitions which fit a d × (n − d) rectangle are in bijection with 0-1-strings of

n − d 0’s and d 1’s.

n = 10

d = 4

n − d = 6

1
0

1
0

1
0 0

1
0 0

λ = (4, 2, 1, 0)↔ 0010010101

λ∨ = (6, 5, 4, 2)↔ 1010100100

λ∨

1

d = 6

n − d = 4
0

1
0

1
0

1

1
0

1

1

λt = (3, 2, 1, 1, 0, 0) 0101011011

(λ∨)t = (4, 4, 3, 3, 2, 1) 1101101010

(λ∨)t

1
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Littlewood-Richardson rules

cλ
∨

µ ν =: cµ ν λ.

Each Littlewood-Richardson coefficient cµ ν λ is a non-negative
integer that may be evaluated by counting combinatorial objects with
boundary data (µ, ν, λ):

I Littlewood-Richardson tableaux
I Berenstein-Zelevinsky triangles
I Knutson-Tao hives

(Pak-Vallejo 05) Littlewood-Richardson tableaux, Berenstein-Zelevinsky triangles,

Knutson-Tao hives may be looked as being the same as there are (explicit) linear

bijection maps between them.

I Knutson-Tao-Woodward puzzles
I Purbhoo mosaics

8 / 96



Littlewood-Richardson rules

cλ
∨

µ ν =: cµ ν λ.

Each Littlewood-Richardson coefficient cµ ν λ is a non-negative
integer that may be evaluated by counting combinatorial objects with
boundary data (µ, ν, λ):

I Littlewood-Richardson tableaux
I Berenstein-Zelevinsky triangles
I Knutson-Tao hives

(Pak-Vallejo 05) Littlewood-Richardson tableaux, Berenstein-Zelevinsky triangles,

Knutson-Tao hives may be looked as being the same as there are (explicit) linear

bijection maps between them.

I Knutson-Tao-Woodward puzzles
I Purbhoo mosaics

9 / 96



Littlewood-Richardson rules

cλ
∨

µ ν =: cµ ν λ.

Each Littlewood-Richardson coefficient cµ ν λ is a non-negative
integer that may be evaluated by counting combinatorial objects with
boundary data (µ, ν, λ):

I Littlewood-Richardson tableaux
I Berenstein-Zelevinsky triangles
I Knutson-Tao hives

(Pak-Vallejo 05) Littlewood-Richardson tableaux, Berenstein-Zelevinsky triangles,

Knutson-Tao hives may be looked as being the same as there are (explicit) linear

bijection maps between them.

I Knutson-Tao-Woodward puzzles
I Purbhoo mosaics

10 / 96



Littlewood-Richardson rules

cλ
∨

µ ν =: cµ ν λ.

Each Littlewood-Richardson coefficient cµ ν λ is a non-negative
integer that may be evaluated by counting combinatorial objects with
boundary data (µ, ν, λ):

I Littlewood-Richardson tableaux
I Berenstein-Zelevinsky triangles
I Knutson-Tao hives

(Pak-Vallejo 05) Littlewood-Richardson tableaux, Berenstein-Zelevinsky triangles,

Knutson-Tao hives may be looked as being the same as there are (explicit) linear

bijection maps between them.

I Knutson-Tao-Woodward puzzles

I Purbhoo mosaics

11 / 96



Littlewood-Richardson rules

cλ
∨

µ ν =: cµ ν λ.

Each Littlewood-Richardson coefficient cµ ν λ is a non-negative
integer that may be evaluated by counting combinatorial objects with
boundary data (µ, ν, λ):

I Littlewood-Richardson tableaux
I Berenstein-Zelevinsky triangles
I Knutson-Tao hives

(Pak-Vallejo 05) Littlewood-Richardson tableaux, Berenstein-Zelevinsky triangles,

Knutson-Tao hives may be looked as being the same as there are (explicit) linear

bijection maps between them.

I Knutson-Tao-Woodward puzzles
I Purbhoo mosaics

12 / 96



Littlewood-Richardson tableaux
cµ ν λ is the number of semistandard Young tableaux with shape
λ∨/µ and content ν, with the following property:

I If one reads the labeled entries in reverse reading order, that is, from
right to left across rows taken in turn from bottom to top, at any
stage, the number of i ’s encountered is at least as large as the number
of (i + 1)’s encountered, #1′s ≥ #2′s . . . .

c210,532,320=c643
210,532=c000010101 010010100 000101001

λ

µ

ν = (5, 3, 2)

332

221

1111

1
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Knutson-Tao-Woodward puzzle rule
A puzzle of size n is a tiling of an equilateral triangle of side length n with puzzle pieces
each of unit side length such that wherever two pieces share an edge, the numbers
(colours) on the edge must agree.

Puzzle pieces may be rotated in any orientation but not reflected.
(Knutson-Tao-Woodward) cµ ν λ is the number of puzzles with µ, ν
and λ appearing clockwise as 01-strings along the boundary.

1 1
1

0 0
0

1

0

0

1

00

1

0

1

1

1 0 1 0 1

0

1

1

0

1

µ ν

λ

1
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2. Littlewood-Richardson coefficient Z2 × S3-symmetries
(Benkart-Sottile-Stroomer, 96) Littlewood-Richardson coefficients cµ ν λ are invariant

under the action of the dihedral group Z2 × S3 as follows: the non–identity element of Z2

transposes simultaneously µ, ν and λ, and S3 permutes µ, ν and λ

S3-symmetries

cµ ν λ = cλ µ ν = cν λ µ cµ ν λ = cν µ λ
cµ ν λ = cµ λ ν
cµ ν λ = cλ ν µ

I. Pak, E. Vallejo, Combinatorics and geometry of Littlewood-Richardson cones, Europ. J.

Comb, 2005

Z2 × S3-symmetries

cµ ν λ = cλ µ ν = cν λ µ cµ ν λ = cνt µt λt

cµ ν λ = cλt νt µt

cµ ν λ = cµt λt νt

cµ ν λ = cν µ λ cµ ν λ = cµt νt λt

cµ ν λ = cµ λ ν cµ ν λ = cλt µt νt

cµ ν λ = cλ ν µ cµ ν λ = cνt λt µt
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Littlewood-Richardson coefficient Z2 × S3-symmetries

Six of the twelve Z2 × S3-symmetries, in particular, three of the six
S3-symmetries, can be easily exhibited in the Littlewood-Richardson
rules

cµ ν λ = cλ µ ν = cν λ µ cµ ν λ = cνt µt λt

cµ ν λ = cλt νt µt

cµ ν λ = cµt λt νt

Either for the conjugation symmetry or for the commutativity no
simple means are known to exhibit them in the Littlewood-Richardson
rules.

cµ ν λ = cν µ λ cµ ν λ = cµt νt λt

cµ ν λ = cµ λ ν cµ ν λ = cλt µt νt

cµ ν λ = cλ ν µ cµ ν λ = cνt λt µt
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Linear time reductions

Let δ : A −→ B be an explicit map. δ has linear cost if δ computes
δ (A) ∈ B in linear time O (〈A〉) for all A ∈ A, where 〈A〉 is the
bit–size of A.

I A tableau A is encoded through its recording matrix (ci,j ), where ci,j is
the number of j ’s in the ith row of A.

A function f reduces linearly to g , if it is possible to compute f in
time linear in the time it takes to compute g ; f and g are linearly
equivalent if f reduces linearly to g and vice versa. This defines an
equivalence relation on functions.

Igor Pak, Ernesto Vallejo, Reductions of Young tableau bijections, SIAM J. Discrete

Mathematics, 2009, also available at arXiv:math/0408171
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3. An index 2 subgroup of Z2 × S3-symmetries easy to
exhibit

I τ the non–identity element of Z2 transposes simultaneously µ, ν and λ
I s1 ∈ S3 switches the first and the second partition µ and ν
I s2 ∈ S3 switches the second and the third partition ν and λ.

(Pak-Vallejo 05) The subgroup of symmetries of index two
{1, s1s2, s2s1} in S3 may be exhibited by maps of linear cost.

Claim: The subgroup of symmetries
H =< τs1, τs2 >= {1, τs1, τs2s1s2, τs2, s1s2, s2s1} with index two of
Z2 × S3, may be exhibited by maps of linear cost.

Hτ = Hs1 = Hs2 = Hs1s2s1 = Hτs1s2 = Hτs2s1

Conjugation and commutative symmetry maps are linearly reducible
to each other
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�, ♠ and ♣ involutions of linear cost

LR-tableaux
I �↔ τs1s2s1 = τs2s1s2, the involution showing the symmetry

cµ ν λ = cλt νt µt

I ♠ ↔ τs1, the involution showing the symmetry cµ ν λ = cνt µt λt

I ♣ ↔ τs2, the involution showing the symmetry cµt λt νt
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� involution

LR(µ, ν, λ)
�−→LR(λt , νt , µt)

cµ ν λ = cλt νt µt

T =

1 1 3 3
2 2 2

1 1 1 �−→ T� =

5
4
2 3
1 2 3

1 2
1

1112223311
♦−→ 1231231245
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♠ Involution

LR(µ, ν, λ)
♠−→ LR(νt , µt , λt)

cµ ν λ = cνt µt λt

T =

1 3
2 2 3

1 2 2
1 1 1

→

1 3
a 2 2 3
a b 1 2 2
a b c d 1 1 1 →

a b
a 3 c 3
a 2 2 2 2
1 b 1 d 1 1 1 →

a b
3 3 a c
2 2 2 2 a
1 1 1 1 1 b d →

d
b

a
c
a

b
a

= T♠
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♠ Involution

LR(µ, ν, λ)
♠−→ LR(νt , µt , λt)

cµ ν λ = cνt µt λt
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1 2 2
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1 3
a 2 2 3
a b 1 2 2
a b c d 1 1 1 →

a b
a 3 c 3
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d
b

a
c
a

b
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♠ is a shortcut

T −→
standardization

ÒT t−→
transposition

ÒT t −→
tableau−switching

T♠

1 3
a 2 2 3
a b 1 2 2
a b c d 1 1 1 →

1 10
a 6 7 11
a b 2 8 9
a b c d 3 4 5 →

5
4
3 9
d 8 11
c 2 7
b b 6 10
a a a 1

→

5
4
3 9
d 8 11
2 c 7
b b 6 10
1 a a a →

5
4
3 9
d 8 11
2 7 c
b 6 10 b
1 a a a →

d
b
5 a
4 9 c
3 8 a
2 7 11 b
1 6 10 a →

d
b

a
c
a

b
a = T♠
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♣ involution
LR(µ, ν, λ)

♣−→ LR(µt , λt , νt)
cµ ν λ = cµt λt νt

T =

1 3
2 2 3

1 2 2
1 1 1 →

1 3 a b c d e
2 2 3 a b c

1 2 2 a b
1 1 1 →

a b 1 c d 3 e
a b 2 2 c 3

a 1 b 2 2
1 1 1 →

a b 1 2 2 3 3
a b 1 1 2 2

a c d 1 1
b c e →

e
c
b d

c
a b

a b
a = T♣

♣ is a shortcut of

T −→
standardization

ÒT t−→
transposition

ÒT t −→
tableau−switching

T♣

40 / 96



♣ involution
LR(µ, ν, λ)

♣−→ LR(µt , λt , νt)
cµ ν λ = cµt λt νt

T =

1 3
2 2 3

1 2 2
1 1 1 →

1 3 a b c d e
2 2 3 a b c

1 2 2 a b
1 1 1 →

a b 1 c d 3 e
a b 2 2 c 3

a 1 b 2 2
1 1 1 →

a b 1 2 2 3 3
a b 1 1 2 2

a c d 1 1
b c e →

e
c
b d

c
a b

a b
a = T♣

♣ is a shortcut of

T −→
standardization

ÒT t−→
transposition

ÒT t −→
tableau−switching

T♣
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♣�, �♣ bijections of linear cost

LR(µ, ν, λ)
♣�−→ LR(λ, µ, ν)

cµνλ = cλµν

♣�

T
•−→

180o rotation
T • −→

tableau−switching
T♣�
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♣(♠),� generate a linear time subgroup of index 2 of
Z2 × S3

LR-tableaux

Claim:
{1,♣,�,♣�,�♣,♣�♣ = �♣� = ♠} ' S3

form a linear time subgroup of index 2 of Z2 × S3.
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Puzzle mirror reflections with 0’s and 1’s swapped
cµ ν λ = cνt µt λt ♠
cµ ν λ = cλt νt µt �
cµ ν λ = cµt λt νt ♣ = ♠�♠ = �♠�

♠

1

1
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Puzzle 2π/3–rotations
cµ ν λ = cλ µ ν ♣�
cµ ν λ = cν λ µ �♣

cµ ν λ = cν λ µ = cλ µ ν

1
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Action of an index 2 subgroup of Z2 × S3 on
KTW-puzzles/LR-tableaux

The group generated by the puzzle mirror reflections with the 0’s and
1’s swapped /LR-tableau simple involutions ♣,� form a linear time
subgroup of index 2 of Z2 × S3

< puzzle mirror reflections & 0↔ 1 >' S3

< ♠,� >= {1,♣,�,♣�♣ = �♣�,♣�,�♣} ' S3

< puzzle 2π/3 rotations >

{1,♣�,�♣}

Conjugation and commutative symmetry maps are linearly reducible
to each other
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Puzzles and LR tableaux are in bijection: Tao’s bijection

1 1 2 2 3 4 4
1 1 2 2 3 3

1 1 1 2 2 2
1 1 1

1
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Purbhoo mosaics
A mosaic is a tiling of an hexagon, with angles and side lengths as below, by the following three
shapes of unitary triangles, unitary squares, and unitary rhombi with angles 30o and 150o such
that all rhombi are packed into the three 150 nests A,B, and C.

A

B

C
d

d

n − d

d

n − d

n − d

1
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Mosaics are in bijection with puzzles
A mosaic is a tiling of an hexagon, with angles and side lengths as below, with unitary triangles,
unitary squares, and unitary rhombi with angles 30o and 150o all packed into the three 150o

nests.

A

B

C

1
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Migration/jeu de taquin
Migration is an operation that take the rhombi from one nest to a
new one The rhombi must move in the standard order.(The standard

order in a tableau is the numerical ordering of the entries with priority by the rule

left=smaller, right=larger, in case of equality.)
Choose the target nest. Rhombi move in the chosen direction of
migration, inside a smallest hexagon in which ♦ is contained:

−→ −→

The move is such that the rhombus is either in its initial orientation,
or its final orientation.

1

The move is such that the rhombus is either in its initial orientation,
or its final orientation
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Purbhoo mosaics are in bijection with puzzles and LR
tableaux

• 4 • •
• 1•3 •
• •2 •
• • •1

(µ, ν, λ)

1

1

2

3

4

11

4

3

2

1
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♣

• 4 • •
• 1•3 •
• •2 •
• • •1

(µ, ν, λ)

• • • •
• •a•b •
• • •a•a

(µt, λt, νt)b

b

a
a

a

a

a

a

1
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Migration (≡ j.t.)

4 • •
1 3 •
• 2 •
• • 1

1

1

2

3

4

1
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Migration(≡ j.t.)

5 • •
1 4 •
• 3 •
• • 2

2

1

3

4

5

21

5

4

3

1
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Migration(≡ j.t.)

2 1 1 2
• 3 4 1
• • 1 5

2

3

4

5

1
1

1

2

1

1
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Migration(≡ j.t.)

2 1 1 2
• 3 4 1
• • 1 5

2

3

4

5

1
1

1

2

1

1
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Migration(≡ j.t.)

2 3 1 2
• 1 4 1
• • 1 5

2

3

4

5

1
1

1

2

1

1
3

1
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Migration(≡ j.t.)

2 3 1 2
• 1 4 1
• • 1 5

2

4

5

1
1

2

1

3 1

1
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Migration(≡ j.t.)

2 3 1 2
• 1 4 1
• • 1 5

2

4

5

1
1

2

1

3

1

1
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Migration(≡ j.t.)
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4

5

1
1

2

1

3

1

1
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Migration(≡ j.t.)

2 3 4 2
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2

4

5

1

2

1

3

1

1

1
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Migration(≡ j.t.)

2 3 4 2
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2

4

5

1

2

1

3

1

1

1

67 / 96



Migration(≡ j.t.)
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4

5

1

2

1

3

1

1

1
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Migration(≡ j.t.)

2 3 4 2
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2

4

5

1

2

1

3

1

1

1
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Migration(≡ j.t.)

2 3 4 2
• 1 1 1
• • 1 5

2

4

5

1

2

1

3

1
1

1
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Migration(≡ j.t.)

2 3 4 2
• 1 1 1
• • 1 5

2

4

5

1

2

1

3

1
1

1
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Migration(≡ j.t.)

2 3 4 2
• 1 1 5
• • 1 1

2

4

5

1
1

2
5

3

1
1

1

1
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Migration(≡ j.t.)

2 3 4 2
• 1 1 5
• • 1 1

2

4

1

2
5

3

1
1

1

1
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Migration(≡ j.t.)

2 3 4 2
• 1 1 5
• • 1 1

2

4

1

2
5

3

1
1

1

1
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Migration(≡ j.t.)

2 3 4 2
• 1 1 5
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2

4

1

2
5

3

1
1

1

1
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Migration(≡ j.t.)

2 3 4 2
• 1 1 5
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2

4

1

2
5

3

1
1

1

1
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Migration(≡ j.t.)

2 3 4 2
• 1 1 5
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2

4

1

2
5

3

1
1

1
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Migration(≡ j.t.)

2 3 4 2
• 1 1 5
• • 1 1

2

4

1

2
5

3

1
1

1

1
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Migration(≡ j.t.)

2 3 4 5
• 1 1 2
• • 1 1

2

4

1

5

5

3

1
1

1

2

1
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Migration(≡ j.t.)

2 3 4 5
• 1 1 2
• • 1 1

2

4

1

5

5

3

1
1

1

2

1

80 / 96



Migration(≡ j.t.)

2 3 4 5
• 1 1 2
• • 1 1

2

4

1

5

5

3

1
1

1

2

1
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Migration(≡ j.t.)

2 3 4 5
• 1 1 2
• • 1 1

2

4

1

5

5

3

1
1

1
2

1
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Migration(≡ j.t.)

2 3 4 5
• 1 2 1
• • 1 1

2

4

1

5

5

3

1
1

1
1

2

1
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Migration(≡ j.t.)

2 3 4 5
• 1 2 1
• • 1 1

2
3

4
5

1

1
1

1
2

1
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Migration(≡ j.t.)

1 1 1 2
• 1 2 1
• • 1 1

1
1

1
2

1

1
1

1
2

1
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Mosaic 120o clockwise rotation
♣�

• 4 • •
• 1•3 •
• •2 •
• • •1

(µ, ν, λ)

• x • •
• y• •
• •x •
• • •

(λ, µ, ν)
x

y

x
y

x
x

1
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�

• x • •
• y• •
• •x •
• • •

(λ, µ, ν)

• 1•2 • •
• •1•1 •
• • • •1

(λt, νt, µt)

1

1

2

1

1

x
y

x
y

x
x

2

1
1

1
1

1
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Linear reductions and the Schützenberger involution
Pak-Vallejo Theorem(SIAM Dis. Math. 09) The following maps are linearly equivalent:
(1) RSK correspondence.
(2) Jeu de taquin map.
(3) Littlewood–Robinson map.
(4) Tableau–switching map.
(5) Schützenberger involution E for normal shapes.
(6) Reversal e.
(7) (Fundamental) commutative symmetry map ρ1 : LR(µ, ν, λ)→ LR(ν, µ, λ).

(A.08; Danilov-Koshevoy 05) The LR-commutative symmetry maps are identical.

Theorem(A., C., M, DMTCS Proceedings, 09)

The LR-conjugation symmetry maps are identical.

% = [Y (νt)]K ∩ [ÒT t ]dK = ♠ ρ1 = � ρ = ♣ρ2.

The LR-commutative and transposition symmetry maps are linearly equivalent to the
Schützenberger involution E ,
ρ = e •

T
e •←→ T e• �←→ T e•�

τ l τ l

P
evacuation←→

E
PE .

ρ1 = ♠� e •
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Action of Z2 × S3 on LR-tableaux/KTW-puzzles

Z2 × S3 =< ♣,�, ρ : ♣2 = �2 = (♣�)3 = (♣ρ)2 = (�ρ)2 = 1 >

ρ = e •
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Remarks/Further links

Why the involutions exhibiting a specific LR-symmetry always
coincide?

jeu de taquin:

(Purbhoo, 09) ”Jeu de taquin and a monodromy problem for Wronskians of polynomials”

Why is it difficult to exhibit the commutative symmetry in either
Littlewood-Richardson rule?
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