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Abstract

The Heisenberg-Weyl algebra, underlying virtually all physical representations of Quantum Theory, is
considered from a combinatorial point of view. We construct a concrete model of the algebra in
terms of graphs endowed with intuitive concepts of composition and decomposition leading to a rich
Hopf algebra structure. The latter encompasses the Heisenberg-Weyl algebra which gains a
straightforward interpretation as a shadow of natural constructions on graphs. In this way, by drawing
attention to the algebraic structure of Quantum Theory we intend to shed light on the combinatorial
nature hidden behind its formalism.

Enveloping algebra Heisenberg-Weyl algebra
( Hopf algebra ) (AAU )
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2 Enveloping algebra
Generators: a al =

Relations: aal =alate

U(Ly) = K(a,aT,e>/

[a,aT]:e

ae—=e€ea, aTezea/T [a,e]:[aT,e]:

Basis in U(Ly): a'Pale”
U(Ly) is a Hopf algebra.

Co-product A : U(Ly) — U(Ly) QU(Ly) stongenerators A(x) =z QI+ 1Qx :

A (a,J'paq e’") = Z <]Z> (q) (]:) ) A i e e

= J

Co-unit € : U(Ly) — K ,given by: € (anaq €T) o { (1) gthé)r’vzisz: -

Antipode S : U(Ly) — U(Lyy), st for generators S (x) = —x :

S (a’rpaq 67’) s (_1)p+q+r e’ alat?
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Enveloping algebra
( Hopf algebra )

Lie algebra

Heisenberg-Wey! algebra
(AAU )
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Combinatorial Graph algebra
( Hopf algebra & AAU )

P
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Comél'naz‘ orial Cor)cg/)‘f S

A directed graph is a collection of edges E and vertices V together with two mappings

h,t: E — V prescribing how the head and tail of each edge is attached to vertices.

Example:

We shall consider classes of graphs up to isomorphism, i.e. simply pictures
Graphs embedded in a plane are called planar graphs

Following a cycle in a graph one ends at the starting point
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Deﬂ Aw.f/.o/ﬁ

Combinatorial class of Heisenberg - Weyl graphs consists of planar directed graphs I’
which do not have cycles and may be partially-defined.
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Defintion

Combinatorial class of Heisenberg - Weyl graphs consists of planar directed graphs I’
which do not have cycles and may be partially-defined.

= & outgoing edges
I inner edges
1" ingoing edges

Edges in a grabh may have one of the ends free (but not both)

It has three sorts of edges: inner, ingoing and outgoing ones

Size of a graph: d(r):2|F0|+|F+|+\F_|
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For two graphs I'» and I'y and a matching m € I'y <1 I . FQ
the composite graph, denoted as Ty <t I, is constructed by / (/ l \> \ Iy
joining the edges coupled by the matching m.

A matching A <1 B of two sets A and B is a choice of pairs
(a,b) € A x B such that no component appear twice. 4( L \>

The number of matchings consisting of ¢ pairs (of edges) is given by

i — -
41y <l = (’F? ‘) ('F.l ‘) i
// //
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For two graphs I'» and I'y and a matching m € I'y <1 I . FQ
the composite graph, denoted as I < I, is constructed by </ l Iy
joining the edges coupled by the matching m.

matching m
T f]
I
A matching A <1 B of two sets A and B is a choice of pairs
(a,b) € A x B such that no component appear twice. 4( L

The number of matchings consisting of ¢ pairs (of edges) is given by
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6/'@9/7 Composition — FProperties

Let Iy <« I denote the set of all possible compositions

of the graph I with I, i.e.

e = L—!—J Fgﬁfl
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Let Iy <« I denote the set of all possible compositions (/ i
of the graph I with I, i.e.
oA L—!—J I 2 Iy f
mel, « Iy
I

Finiteness A R e o) 4( l

Triple composition ( I; « FQ) a4 =15 < ( 1< Fl)
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No symmetry 1 Wl = Tl
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Is
Let Iy <« I denote the set of all possible compositions (/ i
of the graph I with I, i.e.
oA L—!—J I 2 Iy f
mel, « Iy
I

Finiteness A R e o) 4( l

Triple composition ( I; « FQ) a4 =15 < ( 1< Fl)

Neutral (void) graph I 4« Q=0 « ' =T

No symmetry 1 Wl = Tl

Compatible with size d (I < IN)=d{I%)+d (1)
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Decomposition of a graph I' is a splitting I" ~ (I'|; , I'|p) induced
by an ordered partition of its edges L + R = Er .

A sub-graph I'|, s a restriction of the head and tail mappings to the subset L C Ep

Enumeration of all decompositions according to the number of lines in the left component:

4 <rL,r|R>e<r>:£§£ - ("N
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Deﬂ Aw.f/.o/ﬂ

Decomposition of a graph I' is a splitting I" ~ (I'|; , I'|p) induced
by an ordered partition of its edges L + R = Er .
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Let (I") denote the multi-set of all possible decompositions

e ] S ORtheetaphiie,

(L) = H'J {(F’LﬂF’R)}

I FR—Fp

)

I'lg
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Let (I') denote the multi-set of all possible decompositions I “xb
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e ] S ORtheetaphiie,
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unique decomposition

Void graph
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6/'@9/7 decomposition - Properties

Let (I") denote the multi-set of all possible decompositions

e ] S ORtheetaphiie,

<F>: tI_J {(F’L:F’R)}

I P R=—Hp

Composition-decomposition compatibility

B

Il
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We define G as a vector space over KK spanned by the basis set

consisting of all Heisenberg - Weyl diagrams, i.e.

G = { Z_ozi I;: a; € K, I'; - Heisenberg—Weyl graph }

Addition in G has the usual form:
Zi % FmLZi Bi I :Zi (i +8:) I

What about multiplication ?

What about co-product, co-unit and antipode 7




Multiplication of graphs

Defintion
Multiplication of two graphs I3 and 11 in G

is just a sum over all possible compositions:

Ly

)

{ ]

matching m

FQ*Flz Z Fgﬁpl F1+

merlry, « Iy

propo\s iZion

Heisenberg - Weyl graphs form an associative algebra with unit (G, +,*, D).
It is non-commutative !!

I

]




Co7mchﬂfof5m¢%6

Definmtion
Co-product A : G — G ® G s defined on the basis

as a sum over all possible decompositions:

A(l') = Z F‘L®F’R

L ER=EF

Co-unit € : G — K simply extracts the expansion

coefficient standing at the void:

dm:{l il =)

e Orherwise

rpro/DOS ition

I

Heisenberg - Weyl graphs form a bi-algebra (G, +,*, D, A, ). It is co-commutative !
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7T heorenr 2/ r i G

Heisenberg - Weyl graphs form a bi-algebra.
Combinatorial algebra
of Heisenberg-Weyl graphs
( Hopf algebra & AAU )

It is non-commutative and co-commutative.

Even more, it has a genuine Hopf algebra structure
(G, +,*,D,A,&,8), with an antipode given by:

i) = Z (—1)" F\An % ... % F‘Al
Ap+..+A1=FEr
e e T
and S(0D)=0.
It is graded (G @gn : G Spand Bk T —k
neN

i+j=k




4 /\geé/‘dfc ; /az'ciare,
g Combinatorial algebra
of Heisenberg-Wey! graphs
( Hopf algebra & AAU )

P P
Enveloping algebra / \ Heisenberg-Weyl algebra

( Hopf algebra ) (AAU )

L Lie algebra

We still need to need to provide mappings ¢ : G — U(Ly) and ¢ : G — H
preserving (Hopf) algebraic structure of the Heisenberg - Weyl graphs G.
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Defimtion

We define a linear mapping ¢ : G — U(Ly) which erases inner structure of a graph,

given on the basis elements as:
) I e R T

o
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Defimtion

We define a linear mapping ¢ : G — U(Ly) which erases inner structure of a graph,

given on the basis elements as:
i e
R — a e

Outgoing: 3 ‘\ f] f]

Inner: 4
¥ sl

Ingoing: 4 / L J \
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Defimtion

We define a linear mapping ¢ : G — U(Ly) which erases inner structure of a graph,

given on the basis elements as:
o
(=0 a e

Outgoing: 3 ‘\ ﬁ f]

Inner: 4
¥ sl

Ingoing: 4 / L J \

7 heoren
Forgetful mapping ¢ : G — U(L1) is a Hopf algebra morphism.
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Defimtion

We define a linear mapping ¢ : G — U(Ly) which erases inner structure of a graph,

given on the basis elements as:
0
|

o) = at 1 g B

Outgoing: 3 ‘\ ﬁ f]

| 14
nner @Y e, CLT 2} a4 64

Ingoing: 4 / L J \

7 heoren

Forgetful mapping ¢ : G — U(Ly) is a Hopf algebra morphism.

Note

By additionally neglecting number of the inner edges @ (I") = af I g il

we get an (AAU) algebra morphism ¢ : G — 'H. .
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Combinatorial algebra
of Heisenberg-Weyl graphs

¥ >?/ Si :
%
/ X
Heisenberg-Wey! algebra

e — [

Enveloping algebra

U(Ly) H

Morphism ¢ : G — U (L) erases inner structure of a graph,

and ¢:G — 'H erases inner structure of a graph & forgets number of its inner edges .
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of Heisenberg-Weyl graphs

/ \ I—Ie;senberg—\/\/eyi algebra

[ 13 4
T?a4€4q "'.‘7Xwa a

Enveloping algebra

L) H

Morphism ¢ : G — U (L) erases inner structure of a graph,

and ¢:G — 'H erases inner structure of a graph & forgets number of its inner edges .
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Combinatorial algebra
of Heisenberg-Weyl graphs

Enveloping algebra Heisenberg-Weyl algebra

Morphism ¢ : G — U (L) erases inner structure of a graph,

and ¢:G — 'H erases inner structure of a graph & forgets number of its inner edges .
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Combinatorial algebra
of Heisenberg-Weyl graphs

Enveloping algebra

Morphism ¢ : G — U (L) erases inner structure of a graph,

and ¢:G — 'H erases inner structure of a graph & forgets number of its inner edges .
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We need to prove that ¢ : G — U(Ly) preserves product, ie. p(Is*171) = o(l%) p(l1)

\T?‘f ‘\f?f
¥ By = !
\ ) ] ‘|
/ FQ\ * Fl — Z i :Z Z =
1\ ITH mel, €1 Iy Y ' mery @Iy 7
n |
T3 FT\




S,éefch o Proot’ Produwct

We need to prove that ¢ : G — U(Ly) preserves product, ie. p(Is*171) = o(l%) p(l1)

. \‘F?f
85 y 11 2 {
\F2 * & = Z ‘1 mo = l
/Ji X\ jl\ mEFQ_«FfL 7 : mely <:IF+
I
i

g e

& H - — . :
-y Z (af) T2 I =1 g IT 1T =i o 15 |11y |+

¢ mel, €« Iy

+
L e (lfz!) (‘F_ﬂ) il (@)= g IT5 11T =i o TS IHIIT 4
7 (;

)

e <( (ST I oI |) <(aT)r1+| e eIFf) e
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Enveloping algebra
( Hopf algebra )

e

a. xa,T

(U(,CH),—I—,*,I,A,&‘,S)

multiplication, co-product

Structures preserved by morphisms

and

(g7+7*7®7A787S)

composition, decomposition

w:G — U(Ly)

Combinatorial algebra
of Heisenberg-Weyl graphs
( Hopf algebra & AAU )

Heisenberg-Weyl algebra
(AAU )

i

a gl

(H7+7*7[)

multiplication

( Hopf algebra )
(AAU )




Concl/lusSions

More structured algebra of graphs can be seen as a combinatorial model of the Heisenberg-Wey! algebra.
In this way, abstract algebraic structures H and U(Ly) gain intuitive interpretation

as a shadow of natural constructions on graphs in G .

Combinatorial algebra G
( Hopf Algebra & AAU )
P ¥
I
e ) e— 1 S X 7
a, af -
Enveloping algebra U (L) Heisenberg-Weyl algebra 'H

( Hopf algebra ) (AAU )
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More structured algebra of graphs can be seen as a combinatorial model of the Heisenberg-Wey! algebra.
In this way, abstract algebraic structures H and U(Ly) gain intuitive interpretation

as a shadow of natural constructions on graphs in G .

Combinatorial algebra G
CONCKETE ( Hopf Algebra & AAU )
P ¥
ABSTKACT
K XI e — 1 % 7
¢ . . a ) axxxaT
Enveloping algebra U(Ly) Heisenberg-Weyl algebra H

( Hopf algebra ) (AAU )




