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The , underlying virtually all physical representations of Quantum Theory, is 
considered from a . We construct a concrete model of the algebra in 
terms of  endowed with intuitive concepts of  and  leading to a rich 

structure. The latter encompasses the Heisenberg-Weyl algebra which gains a 
straightforward  as a  of natural constructions on graphs. In this way, by drawing 
attention to the algebraic structure of Quantum Theory we intend to shed light on the combinatorial 
nature hidden behind its formalism.
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Generators:

Relation:

Basis in      :

ambiguous unique

It is an (AAU)

Normal order



, given by:

, s.t. for generators                    :
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Relations:
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             is a 

a a† = a†a + e [ a, a† ] = e
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A   is a collection of       and       together with two mappings

                       prescribing how the  and  of each edge is attached to vertices.

Example:

We shall consider  up to isomorphism, i.e. simply pictures

Graphs embedded in a plane are called 

Following a  in a graph one ends at the starting point
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For two graphs      and       and a matching                         .

the  graph, denoted as               , is constructed by

joining the edges coupled by the matching     .

 A               of two sets     and     is a choice of pairs

                        such that no component appear twice.

The number of matchings consisting of     pairs (of edges) is given by
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Let         denote the multi-set of  

                           of the graph, i.e.

Composition-decomposition compatibility

Finiteness of multiple decompositions

com
p.

com
p.

decomp.

decomp.

{Γ � (Γn, ...Γ1) : Γn, ... , Γ1 �= Ø} = ∅

Compatible with size

d (Γ ) = d (Γ |L) + d (Γ |R)

n ≥ N(Γ )for
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Heisenberg - Weyl graphs form a 
It is non-commutative and co-commutative.

Even more, it has a genuine  structure 
                             , with an  given by:

and                   .

It is 
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We still need to need to provide mappings                              and                      

preserving (Hopf) algebraic structure of the Heisenberg - Weyl graphs    .  
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We define a linear mapping                             which erases of a graph,

given on the basis elements as:

By additionally neglecting                                    ,

we get an (AAU) algebra morphism                     .

Outgoing: 3

Ingoing: 4
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