INVOLUTORY REFLECTION GROUPS

FABRIZIO CASELLI

September 28, 2009

ALMA MATER STUDIORUM UNIVERSITȦ DI BOLOGNA

Symmetric groups

If $\lambda \vdash n$ let $f^{\lambda}=$ dimension of the Specht module S_{λ}. Then

$$
f^{\lambda}=\# S Y T \text { of shape } \lambda
$$

Symmetric groups

If $\lambda \vdash n$ let $f^{\lambda}=$ dimension of the Specht module S_{λ}.
Then

$$
f^{\lambda}=\# S Y T \text { of shape } \lambda
$$

and by the Robinson-Schensted correspondence

$$
\sum_{\lambda \vdash n} f^{\lambda}=\# \text { of involutions in } S_{n}
$$

Signed permutations

$B_{n}=$ signed permutations.
The Stanton-White correspondence implies

$$
\sum_{\phi \in \operatorname{lrr}\left(B_{n}\right)} \operatorname{dim} \phi=\# \text { of involutions in } B_{n}
$$

Signed permutations

$B_{n}=$ signed permutations.
The Stanton-White correspondence implies

$$
\sum_{\phi \in \operatorname{Irr}\left(B_{n}\right)} \operatorname{dim} \phi=\# \text { of involutions in } B_{n}
$$

This holds also for dihedral groups...

Signed permutations

$B_{n}=$ signed permutations.
The Stanton-White correspondence implies

$$
\sum_{\phi \in \operatorname{lrr}\left(B_{n}\right)} \operatorname{dim} \phi=\# \text { of involutions in } B_{n}
$$

This holds also for dihedral groups...
...and for Weyl groups of type D, thanks to

Signed permutations

$B_{n}=$ signed permutations.
The Stanton-White correspondence implies

$$
\sum_{\phi \in \operatorname{lrr}\left(B_{n}\right)} \operatorname{dim} \phi=\# \text { of involutions in } B_{n}
$$

This holds also for dihedral groups...
...and for Weyl groups of type D, thanks to

Theorem (Frobenius-Schur)

Let G be finite. Then

$$
\sum_{\phi \in \operatorname{lrr}(G)} \operatorname{dim} \phi=\# \text { of involutions in } G
$$

if and only if all irreducible complex representations of G can be realized over \mathbb{R}.

Complex reflection groups

- The groups considered so far are real reflection groups.

Complex reflection groups

- The groups considered so far are real reflection groups.
- If the ground field is \mathbb{C} one rather considers complex reflection groups: these are subgroups of $G L(n, \mathbb{C})$ generated by reflections, i.e. elements that fix a hyperplane pointwise.

Complex reflection groups

- The groups considered so far are real reflection groups.
- If the ground field is \mathbb{C} one rather considers complex reflection groups: these are subgroups of $G L(n, \mathbb{C})$ generated by reflections, i.e. elements that fix a hyperplane pointwise.

Example

$G(r, n)$, the group of $n \times n$ monomial matrices whose non-zero entries are r-th roots of 1 .

$$
\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & i \\
-i & 0 & 0 & 0
\end{array}\right] \in G(4,4)
$$

Complex reflection groups

- The groups considered so far are real reflection groups.
- If the ground field is \mathbb{C} one rather considers complex reflection groups: these are subgroups of $G L(n, \mathbb{C})$ generated by reflections, i.e. elements that fix a hyperplane pointwise.

Example

$G(r, n)$, the group of $n \times n$ monomial matrices whose non-zero entries are r-th roots of 1 .

$$
\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & i \\
-i & 0 & 0 & 0
\end{array}\right] \in G(4,4)
$$

Example

$G(r, p, n)$, the elements in $G(r, n)$ whose permanent is a r / p-th root of unity. The matrix above is an element in $G(4,2,4)$.

Involutory groups

Definition

An absolute involution is a matrix $A \in G L(n, \mathbb{C})$ such that $A \bar{A}=1$.

Involutory groups

Definition

An absolute involution is a matrix $A \in G L(n, \mathbb{C})$ such that $A \bar{A}=1$.

Definition

Let $G<G L(n, \mathbb{C})$ be finite. We say G is involutory if

$$
\sum_{\phi \in \operatorname{lrr}(G)} \operatorname{dim} \phi=\# \text { of absolute involutions in } G .
$$

Involutory groups

Definition

An absolute involution is a matrix $A \in G L(n, \mathbb{C})$ such that $A \bar{A}=1$.

Definition

Let $G<G L(n, \mathbb{C})$ be finite. We say G is involutory if

$$
\sum_{\phi \in \operatorname{lrr}(G)} \operatorname{dim} \phi=\# \text { of absolute involutions in } G .
$$

Question: which complex reflection groups are involutory?

Projective reflection groups

Let C_{q} be the cyclic group of scalar matrices generated by $e^{\frac{2 \pi i}{q}} l$.

Projective reflection groups

Let C_{q} be the cyclic group of scalar matrices generated by $e^{\frac{2 \pi i}{q}} I$.

Definition

If $C_{q} \subset G(r, p, n)$ we define the projective reflection group $G(r, p, q, n)=G(r, p, n) / C_{q}$.

Projective reflection groups

Let C_{q} be the cyclic group of scalar matrices generated by $e^{\frac{2 \pi i}{q}} l$.

Definition

If $C_{q} \subset G(r, p, n)$ we define the projective reflection group $G(r, p, q, n)=G(r, p, n) / C_{q}$.

Definition

If $G=G(r, p, q, n)$ we say that the group $G^{*}=G(r, q, p, n)$ is the dual of G.

Projective reflection groups

Let C_{q} be the cyclic group of scalar matrices generated by $e^{\frac{2 \pi i}{q}} l$.

Definition

If $C_{q} \subset G(r, p, n)$ we define the projective reflection group $G(r, p, q, n)=G(r, p, n) / C_{q}$.

Definition

If $G=G(r, p, q, n)$ we say that the group $G^{*}=G(r, q, p, n)$ is the dual of G.

We observe that if G is a complex reflection group then G^{*} is not in general.

Projective reflection groups

Let C_{q} be the cyclic group of scalar matrices generated by $e^{\frac{2 \pi i}{q}} l$.

Definition

If $C_{q} \subset G(r, p, n)$ we define the projective reflection group $G(r, p, q, n)=G(r, p, n) / C_{q}$.

Definition

If $G=G(r, p, q, n)$ we say that the group $G^{*}=G(r, q, p, n)$ is the dual of G.

We observe that if G is a complex reflection group then G^{*} is not in general.
This duality plays a fundamental role in the study of the invariant theory of complex reflection groups (C. 2008).

The duality

Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.

The duality

Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.
- If $G=D_{n}=G(2,2,1, n)$,

The duality

Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.
- If $G=D_{n}=G(2,2,1, n)$, then $G^{*}=G(2,1,2, n)=B_{n} / \pm I$

Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.
- If $G=D_{n}=G(2,2,1, n)$, then $G^{*}=G(2,1,2, n)=B_{n} / \pm I$ and it turns out that the combinatorics of $B_{n} / \pm /$ describes the invariant theory of D_{n}, and viceversa.

The duality

Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.
- If $G=D_{n}=G(2,2,1, n)$, then $G^{*}=G(2,1,2, n)=B_{n} / \pm I$ and it turns out that the combinatorics of $B_{n} / \pm /$ describes the invariant theory of D_{n}, and viceversa.

A further application of the duality is in the study of involutory reflection groups.

The duality

Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.
- If $G=D_{n}=G(2,2,1, n)$, then $G^{*}=G(2,1,2, n)=B_{n} / \pm I$ and it turns out that the combinatorics of $B_{n} / \pm /$ describes the invariant theory of D_{n}, and viceversa.

A further application of the duality is in the study of involutory reflection groups.

Lemma

G and G^{*} have the same number of absolute involutions.

Example

- If $G=G(r, 1,1, n)$ then $G^{*}=G$. This holds in particular for $S_{n}=G(1,1,1, n)$ and $B_{n}=G(2,1,1, n)$.
- If $G=D_{n}=G(2,2,1, n)$, then $G^{*}=G(2,1,2, n)=B_{n} / \pm I$ and it turns out that the combinatorics of $B_{n} / \pm /$ describes the invariant theory of D_{n}, and viceversa.

A further application of the duality is in the study of involutory reflection groups.

Lemma

G and G^{*} have the same number of absolute involutions.
Proof by enumeration. No natural bijection.

By the (projective) Robinson-Schensted correspondence

$$
\sum_{\phi \in \operatorname{Irr}(G)} \operatorname{dim} \phi \geq \#\left\{\text { absolute involutions in } G^{*}\right\}
$$

By the (projective) Robinson-Schensted correspondence

$$
\sum_{\phi \in \operatorname{Irr}(G)} \operatorname{dim} \phi \geq \#\left\{\text { absolute involutions in } G^{*}\right\}
$$

Theorem (C, 2009)

The group $G(r, p, q, n)$ is involutory if and only if either $G C D(p, n)=1,2$ or $G C D(p, n)=4$ and $r \equiv p \equiv q \equiv n \equiv 4$ $\bmod 8$.

By the (projective) Robinson-Schensted correspondence

$$
\sum_{\phi \in \operatorname{lrr}(G)} \operatorname{dim} \phi \geq \#\left\{\text { absolute involutions in } G^{*}\right\}
$$

Theorem (C, 2009)

The group $G(r, p, q, n)$ is involutory if and only if either $G C D(p, n)=1,2$ or $G C D(p, n)=4$ and $r \equiv p \equiv q \equiv n \equiv 4$ $\bmod 8$.

Corollary
$G(r, p, n)$ is involutory if and only if $G C D(p, n)=1,2$.

Models

Definition

A model of a finite group G is a representation which is the multiplicity free sum of all irreducible representations.

Models

Definition

A model of a finite group G is a representation which is the multiplicity free sum of all irreducible representations.

Some references on the literature

- Inglis-Richardson-Saxl for symmetric groups;

Models

Definition

A model of a finite group G is a representation which is the multiplicity free sum of all irreducible representations.

Some references on the literature

- Inglis-Richardson-Saxl for symmetric groups;
- Kodiyalam-Verma for symmetric groups;

Models

Definition

A model of a finite group G is a representation which is the multiplicity free sum of all irreducible representations.

Some references on the literature

- Inglis-Richardson-Saxl for symmetric groups;
- Kodiyalam-Verma for symmetric groups;
- Aguado-Araujo-Bigeon for Weyl groups;

Models

Definition

A model of a finite group G is a representation which is the multiplicity free sum of all irreducible representations.

Some references on the literature

- Inglis-Richardson-Saxl for symmetric groups;
- Kodiyalam-Verma for symmetric groups;
- Aguado-Araujo-Bigeon for Weyl groups;
- Baddeley for wreath products;

Models

Definition

A model of a finite group G is a representation which is the multiplicity free sum of all irreducible representations.

Some references on the literature

- Inglis-Richardson-Saxl for symmetric groups;
- Kodiyalam-Verma for symmetric groups;
- Aguado-Araujo-Bigeon for Weyl groups;
- Baddeley for wreath products;
- Adin-Postnikov-Roichman for the groups $G(r, n)$.

The character of a model

The character of a model

Theorem (Bump-Ginzburg)

Let G be finite, $z \in Z(G), \tau \in \operatorname{Aut}(G)$ such that $\tau^{2}=1$. Assume that

$$
\sum_{\phi \in \operatorname{lrr}(G)} \operatorname{dim} \phi=\#\{v \in G: v \tau(v)=z\}
$$

Then

$$
\sum_{\phi \in \operatorname{lrr}(G)} \chi^{\phi}(g)=\#\{v \in G: v \tau(v)=g z\}
$$

The character of a model

Theorem (Bump-Ginzburg)

Let G be finite, $z \in Z(G), \tau \in \operatorname{Aut}(G)$ such that $\tau^{2}=1$. Assume that

$$
\sum_{\phi \in \operatorname{lrr}(G)} \operatorname{dim} \phi=\#\{v \in G: v \tau(v)=z\}
$$

Then

$$
\sum_{\phi \in \operatorname{Irr}(G)} \chi^{\phi}(g)=\#\{v \in G: v \tau(v)=g z\} .
$$

Corollary
If $G \subset G L(n, \mathbb{C})$ is involutory then

$$
\sum_{\phi \in \operatorname{Irr}(G)} \chi^{\phi}(g)=\#\{v \in G: v \bar{v}=g\} .
$$

Symmetric vs antisymmetric

Let $G=G(r, p, n)$ be involutory.
Two types of absolute involutions in G^{*}.

Symmetric vs antisymmetric

Let $G=G(r, p, n)$ be involutory.
Two types of absolute involutions in G^{*}.

- Symmetric elements: $A \in G(r, n)$ then

$$
A \bar{A}=I \Longleftrightarrow A=A^{t}
$$

Symmetric vs antisymmetric

Let $G=G(r, p, n)$ be involutory.
Two types of absolute involutions in G^{*}.

- Symmetric elements: $A \in G(r, n)$ then

$$
A \bar{A}=I \Longleftrightarrow A=A^{t}
$$

- Antisymmetric elements: $A \in G(r, n)$ then

$$
A \bar{A}=-I \Longleftrightarrow A=-A^{t}
$$

Example

$$
A=\left[\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & 1 \\
i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]
$$

then $A \bar{A}=-I=I \in G^{*}$.

Colors of generalized permutations

$$
A=\left[\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & 1 \\
i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right],
$$

where $\zeta_{r}=e^{\frac{2 \pi i}{r}}$.

Colors of generalized permutations

$$
A=\left[\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & 1 \\
i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right],
$$

where $\zeta_{r}=e^{\frac{2 \pi i}{r}}$.
We let $z(A)=(3,0,1,2)$.

Colors of generalized permutations

$$
A=\left[\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & 1 \\
i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right],
$$

where $\zeta_{r}=e^{\frac{2 \pi i}{r}}$.
We let $z(A)=(3,0,1,2)$.
If $A \in G^{*}$ then

$$
z(A) \in \frac{(\mathbb{Z} / r \mathbb{Z})^{n}}{\Delta(\mathbb{Z} / p \mathbb{Z})}
$$

Coefficients of the model

Let $g \in G$ and $v \in G^{*}$, for example

$$
\begin{aligned}
& g=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{0} & 0 \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{3} & 0 & 0 \\
0 & 0 & 0 & \zeta_{4}^{2}
\end{array}\right] \text { and } v=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right] \\
& \text { and } G=G(4,2,4) \text {. }
\end{aligned}
$$

Coefficients of the model

$$
\begin{aligned}
& \text { Let } g \in G \text { and } v \in G^{*} \text {, for example } \\
& g=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{0} & 0 \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{3} & 0 & 0 \\
0 & 0 & 0 & \zeta_{4}^{2}
\end{array}\right] \text { and } v=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right] \\
& \text { and } G=G(4,2,4) \text {. } \\
& \bullet<g, v>=\sum z_{i}(g) z_{i}(v) \in \mathbb{Z} / r \mathbb{Z} \text {. }
\end{aligned}
$$

Coefficients of the model

Let $g \in G$ and $v \in G^{*}$, for example

$$
g=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{0} & 0 \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{3} & 0 & 0 \\
0 & 0 & 0 & \zeta_{4}^{2}
\end{array}\right] \text { and } v=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right]
$$

$$
\text { and } G=G(4,2,4)
$$

$$
\text { - <g,v>= } z_{i}(g) z_{i}(v) \in \mathbb{Z} / r \mathbb{Z}
$$

In the example $<g, v>=0 \cdot 3+1 \cdot 0+3 \cdot 1+2 \cdot 2=3$.

Coefficients of the model

Let $g \in G$ and $v \in G^{*}$, for example

$$
\begin{aligned}
& g=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{0} & 0 \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{3} & 0 & 0 \\
0 & 0 & 0 & \zeta_{4}^{2}
\end{array}\right] \text { and } v=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right] \\
& \text { and } G=G(4,2,4) \text {. }
\end{aligned}
$$

- $\left\langle g, v>=\sum z_{i}(g) z_{i}(v) \in \mathbb{Z} / r \mathbb{Z}\right.$.

In the example $\langle g, v>=0 \cdot 3+1 \cdot 0+3 \cdot 1+2 \cdot 2=3$.

- $s(g, v)=\#\{(i, j): i<j,|v|(i)=j$ and $|g|(i)>|g|(j)\}$.

Coefficients of the model

Let $g \in G$ and $v \in G^{*}$, for example

$$
\begin{aligned}
& g=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{0} & 0 \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{3} & 0 & 0 \\
0 & 0 & 0 & \zeta_{4}^{2}
\end{array}\right] \text { and } v=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right] \\
& \text { and } G=G(4,2,4) \text {. }
\end{aligned}
$$

- $<g, v>=\sum z_{i}(g) z_{i}(v) \in \mathbb{Z} / r \mathbb{Z}$.

In the example $<g, v>=0 \cdot 3+1 \cdot 0+3 \cdot 1+2 \cdot 2=3$.

- $s(g, v)=\#\{(i, j): i<j,|v|(i)=j$ and $|g|(i)>|g|(j)\}$. In the example $s(g, v)=\#\{(1,3)\}=1$

Coefficients of the model

Let $g \in G$ and $v \in G^{*}$, for example

$$
\begin{aligned}
& g=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{0} & 0 \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{3} & 0 & 0 \\
0 & 0 & 0 & \zeta_{4}^{2}
\end{array}\right] \text { and } v=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right] \\
& \text { and } G=G(4,2,4) \text {. }
\end{aligned}
$$

- $<g, v>=\sum z_{i}(g) z_{i}(v) \in \mathbb{Z} / r \mathbb{Z}$.

In the example $<g, v>=0 \cdot 3+1 \cdot 0+3 \cdot 1+2 \cdot 2=3$.

- $s(g, v)=\#\{(i, j): i<j,|v|(i)=j$ and $|g|(i)>|g|(j)\}$.

In the example $s(g, v)=\#\{(1,3)\}=1$

- $a(g, v)=z_{1}(v)-z_{|g|^{-1}(1)}(v) \in \mathbb{Z} / r \mathbb{Z}$.

Coefficients of the model

Let $g \in G$ and $v \in G^{*}$, for example

$$
\begin{aligned}
& g=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{0} & 0 \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{3} & 0 & 0 \\
0 & 0 & 0 & \zeta_{4}^{2}
\end{array}\right] \text { and } v=\left[\begin{array}{cccc}
0 & 0 & \zeta_{4}^{3} & 0 \\
0 & 0 & 0 & \zeta_{4}^{0} \\
\zeta_{4}^{1} & 0 & 0 & 0 \\
0 & \zeta_{4}^{2} & 0 & 0
\end{array}\right] \\
& \text { and } G=G(4,2,4) \text {. }
\end{aligned}
$$

- $<g, v>=\sum z_{i}(g) z_{i}(v) \in \mathbb{Z} / r \mathbb{Z}$.

In the example $<g, v>=0 \cdot 3+1 \cdot 0+3 \cdot 1+2 \cdot 2=3$.

- $s(g, v)=\#\{(i, j): i<j,|v|(i)=j$ and $|g|(i)>|g|(j)\}$.

In the example $s(g, v)=\#\{(1,3)\}=1$

- $a(g, v)=z_{1}(v)-z_{|g|^{-1}(1)}(v) \in \mathbb{Z} / r \mathbb{Z}$.

In the example $u(g, v)=z_{1}(v)-z_{2}(v)=3-0=3$.

The model

Let M^{*} be the \mathbb{C}-vector space with a basis indexed by the absolute involutions of G^{*}

$$
M^{*}=\bigoplus_{\left\{v \in G^{*}: v \bar{v}=1\right\}} \mathbb{C} T_{v}
$$

Let M^{*} be the \mathbb{C}-vector space with a basis indexed by the absolute involutions of G^{*}

$$
M^{*}=\bigoplus_{\left\{v \in G^{*}: v \bar{v}=1\right\}} \mathbb{C} T_{v}
$$

We let, for all $g \in G$,

$$
g \cdot T_{v}= \begin{cases}\zeta_{r}^{<g, v>} \cdot(-1)^{s(g, v)} T_{|g| v|g|^{-1}} \quad \text { if } v \text { is symmetric }\end{cases}
$$

Let M^{*} be the \mathbb{C}-vector space with a basis indexed by the absolute involutions of G^{*}

$$
M^{*}=\bigoplus_{\left\{v \in G^{*}: v \bar{v}=1\right\}} \mathbb{C} T_{v}
$$

We let, for all $g \in G$,

$$
g \cdot T_{v}= \begin{cases}\zeta_{r}^{<g, v>} \cdot(-1)^{s(g, v)} T_{|g| v|g|^{-1}} & \text { if } v \text { is symmetric } \\ \zeta_{r}^{<g, v>} \cdot \zeta_{r}^{a(g, v)} T_{|g| v|g|^{-1}} & \text { if } v \text { is antisymmetric }\end{cases}
$$

Let M^{*} be the \mathbb{C}-vector space with a basis indexed by the absolute involutions of G^{*}

$$
M^{*}=\bigoplus_{\left\{v \in G^{*}: v \bar{v}=1\right\}} \mathbb{C} T_{v}
$$

We let, for all $g \in G$,

$$
g \cdot T_{v}= \begin{cases}\zeta_{r}^{<g, v\rangle} \cdot(-1)^{s(g, v)} T_{|g| v|g|^{-1}} & \text { if } v \text { is symmetric } \\ \zeta_{r}^{<g, v\rangle} \cdot \zeta_{r}^{(g(g, v)} T_{|g| v|g|^{-1}} & \text { if } v \text { is antisymmetric }\end{cases}
$$

Theorem (C. 2009)

Let $G=G(r, p, n)$ be involutory. Then the vector space M^{*} endowed with the above action of G extended by linearity is a model for G.

Something more

All groups of the form $G(r, p, q, n)$ are still involutory if $G(r, p, n)$ is, by their characterization.

Something more

All groups of the form $G(r, p, q, n)$ are still involutory if $G(r, p, n)$ is, by their characterization. Can we construct a model?

Something more

All groups of the form $G(r, p, q, n)$ are still involutory if $G(r, p, n)$ is, by their characterization. Can we construct a model?
The dual of $G(r, p, q, n)$ is a subgroup of $G(r, p, n)^{*}$.

Something more

All groups of the form $G(r, p, q, n)$ are still involutory if $G(r, p, n)$ is, by their characterization. Can we construct a model?
The dual of $G(r, p, q, n)$ is a subgroup of $G(r, p, n)^{*}$.
Let

$$
M(r, q, p, n)=\operatorname{Span}\left\{T_{v}: v \in G(r, q, p, n) \text { and } v \bar{v}=1\right\} \subset M^{*}
$$

Something more

All groups of the form $G(r, p, q, n)$ are still involutory if $G(r, p, n)$ is, by their characterization. Can we construct a model?
The dual of $G(r, p, q, n)$ is a subgroup of $G(r, p, n)^{*}$.
Let

$$
M(r, q, p, n)=\operatorname{Span}\left\{T_{v}: v \in G(r, q, p, n) \text { and } v \bar{v}=1\right\} \subset M^{*}
$$

Theorem

Using the same definition as before for the action, we have that $M(r, q, p, n)$ is a model for the projective reflection group $G(r, p, q, n)$.

Something finer 1

We know that $M^{*}=\operatorname{Sym} \oplus A S y m$ as G-modules.

Something finer 1

We know that $M^{*}=\operatorname{Sym} \oplus A S y m$ as G-modules.
Which irreducibles appear in ASym?

Something finer 1

We know that $M^{*}=\operatorname{Sym} \oplus A S y m$ as G-modules.
Which irreducibles appear in ASym?
We concentrate on the case of Weyl groups of type D.

Something finer 1

We know that $M^{*}=\operatorname{Sym} \oplus A S y m$ as G-modules.
Which irreducibles appear in ASym?
We concentrate on the case of Weyl groups of type D.
Irreducibles of B_{n} are parametrized (by Clifford theory for wreath products) by pairs of partitions (λ, μ) of total size n.

Something finer 1

We know that $M^{*}=\operatorname{Sym} \oplus A S y m$ as G-modules.
Which irreducibles appear in ASym?
We concentrate on the case of Weyl groups of type D.
Irreducibles of B_{n} are parametrized (by Clifford theory for wreath products) by pairs of partitions (λ, μ) of total size n.

- $(\lambda, \mu) \downarrow_{D_{n}}=(\mu, \lambda) \downarrow_{D_{n}}$.

Something finer 1

We know that $M^{*}=\operatorname{Sym} \oplus A S y m$ as G-modules.
Which irreducibles appear in ASym?
We concentrate on the case of Weyl groups of type D.
Irreducibles of B_{n} are parametrized (by Clifford theory for wreath products) by pairs of partitions (λ, μ) of total size n.

- $(\lambda, \mu) \downarrow_{D_{n}}=(\mu, \lambda) \downarrow_{D_{n}}$.
- if $\lambda \neq \mu$ then $(\lambda, \mu) \downarrow_{D_{n}}$ is irreducible while

$$
(\lambda, \lambda) \downarrow_{D_{n}}=(\lambda, \lambda)^{+} \oplus(\lambda, \lambda)^{-} .
$$

Something finer 1

We know that $M^{*}=\operatorname{Sym} \oplus A S y m$ as G-modules.
Which irreducibles appear in ASym?
We concentrate on the case of Weyl groups of type D.
Irreducibles of B_{n} are parametrized (by Clifford theory for wreath products) by pairs of partitions (λ, μ) of total size n.

- $(\lambda, \mu) \downarrow_{D_{n}}=(\mu, \lambda) \downarrow_{D_{n}}$.
- if $\lambda \neq \mu$ then $(\lambda, \mu) \downarrow_{D_{n}}$ is irreducible while

$$
(\lambda, \lambda) \downarrow_{D_{n}}=(\lambda, \lambda)^{+} \oplus(\lambda, \lambda)^{-} .
$$

This happens only if n is even, ...

Something finer 1

We know that $M^{*}=\operatorname{Sym} \oplus A S y m$ as G-modules.
Which irreducibles appear in ASym?
We concentrate on the case of Weyl groups of type D.
Irreducibles of B_{n} are parametrized (by Clifford theory for wreath products) by pairs of partitions (λ, μ) of total size n.

- $(\lambda, \mu) \downarrow_{D_{n}}=(\mu, \lambda) \downarrow_{D_{n}}$.
- if $\lambda \neq \mu$ then $(\lambda, \mu) \downarrow_{D_{n}}$ is irreducible while

$$
(\lambda, \lambda) \downarrow_{D_{n}}=(\lambda, \lambda)^{+} \oplus(\lambda, \lambda)^{-} .
$$

This happens only if n is even, ... and also antisymmetric elements exist only if n is even...

Something finer 2

Theorem
We can label the split representations of D_{n} with + and - in such a way that

Something finer 2

Theorem
We can label the split representations of D_{n} with + and - in such a way that
-

$$
A S y m \cong \bigoplus_{\lambda \vdash n / 2}(\lambda, \lambda)^{-}
$$

Something finer 2

Theorem

We can label the split representations of D_{n} with + and $-i n$ such a way that
-

$$
A S y m \cong \bigoplus_{\lambda \vdash n / 2}(\lambda, \lambda)^{-}
$$

-

$$
\operatorname{Sym} \cong\left(\bigoplus_{\lambda \neq \mu}(\lambda, \mu)\right) \oplus\left(\bigoplus_{\lambda \vdash n / 2}(\lambda, \lambda)^{+}\right)
$$

Something more (in progress)

Consider the action of S_{n} on $G(r, p, n)$ by conjugation.

Something more (in progress)

Consider the action of S_{n} on $G(r, p, n)$ by conjugation. Call the corresponding orbits symmetric conjugacy classes.

Something more (in progress)

Consider the action of S_{n} on $G(r, p, n)$ by conjugation. Call the corresponding orbits symmetric conjugacy classes. It is clear that the absolute involutions in a symmetric conjugacy class span a G-submodule of M^{*}.

Something more (in progress)

Consider the action of S_{n} on $G(r, p, n)$ by conjugation. Call the corresponding orbits symmetric conjugacy classes. It is clear that the absolute involutions in a symmetric conjugacy class span a G-submodule of M^{*}.
Which irreducibles appear in each of these submodules?

Something more (in progress)

Consider the action of S_{n} on $G(r, p, n)$ by conjugation.
Call the corresponding orbits symmetric conjugacy classes.
It is clear that the absolute involutions in a symmetric conjugacy class span a G-submodule of M^{*}.
Which irreducibles appear in each of these submodules?

Feeling

The irreducible constituents of the submodule spanned by the elements in any symmetric conjugacy class are exactly those corresponding to the shapes of the elements in the class by the (projective) Robinson-Schensted correspondence.

