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Symmetric groups

If λ ` n let f λ = dimension of the Specht module Sλ.
Then

f λ = #SYT of shape λ

and by the Robinson-Schensted correspondence∑
λ`n

f λ = # of involutions in Sn
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Signed permutations

Bn = signed permutations.
The Stanton-White correspondence implies∑

φ∈Irr(Bn)

dimφ = # of involutions in Bn

This holds also for dihedral groups...
...and for Weyl groups of type D, thanks to

Theorem (Frobenius-Schur)

Let G be finite. Then∑
φ∈Irr(G)

dimφ = # of involutions in G

if and only if all irreducible complex representations of G can be
realized over R.
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Complex reflection groups

The groups considered so far are real reflection groups.

If the ground field is C one rather considers complex reflection
groups: these are subgroups of GL(n,C) generated by
reflections, i.e. elements that fix a hyperplane pointwise.

Example

G (r , n), the group of n × n monomial matrices whose non-zero
entries are r -th roots of 1.

0 0 −1 0
0 1 0 0
0 0 0 i
−i 0 0 0

 ∈ G (4, 4)

Example

G (r , p, n), the elements in G (r , n) whose permanent is a r/p-th
root of unity. The matrix above is an element in G (4, 2, 4).
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Involutory groups

Definition

An absolute involution is a matrix A ∈ GL(n,C) such that AĀ = 1.

Definition

Let G < GL(n,C) be finite. We say G is involutory if∑
φ∈Irr(G)

dimφ = # of absolute involutions in G .

Question: which complex reflection groups are involutory?
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Projective reflection groups

Let Cq be the cyclic group of scalar matrices generated by e
2πi
q I .

Definition

If Cq ⊂ G (r , p, n) we define the projective reflection group
G (r , p, q, n) = G (r , p, n)/Cq.

Definition

If G = G (r , p, q, n) we say that the group G ∗ = G (r , q, p, n) is the
dual of G .

We observe that if G is a complex reflection group then G ∗ is not
in general.
This duality plays a fundamental role in the study of the invariant
theory of complex reflection groups (C. 2008).
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The duality

Example

If G = G (r , 1, 1, n) then G ∗ = G . This holds in particular for
Sn = G (1, 1, 1, n) and Bn = G (2, 1, 1, n).

If G = Dn = G (2, 2, 1, n), then G ∗ = G (2, 1, 2, n) = Bn/±I
and it turns out that the combinatorics of Bn/±I describes
the invariant theory of Dn, and viceversa.

A further application of the duality is in the study of involutory
reflection groups.

Lemma

G and G ∗ have the same number of absolute involutions.

Proof by enumeration. No natural bijection.
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The characterization

By the (projective) Robinson-Schensted correspondence∑
φ∈Irr(G)

dimφ ≥ #{absolute involutions in G ∗}

Theorem (C, 2009)

The group G (r , p, q, n) is involutory if and only if either
GCD(p, n) = 1, 2 or GCD(p, n) = 4 and r ≡ p ≡ q ≡ n ≡ 4
mod 8.

Corollary

G (r , p, n) is involutory if and only if GCD(p, n) = 1, 2.
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Models

Definition

A model of a finite group G is a representation which is the
multiplicity free sum of all irreducible representations.

Some references on the literature

Inglis-Richardson-Saxl for symmetric groups;

Kodiyalam-Verma for symmetric groups;

Aguado-Araujo-Bigeon for Weyl groups;

Baddeley for wreath products;

Adin-Postnikov-Roichman for the groups G (r , n).
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The character of a model

Theorem (Bump-Ginzburg)

Let G be finite, z ∈ Z (G ), τ ∈ Aut(G ) such that τ2 = 1. Assume
that ∑

φ∈Irr(G)

dimφ = #{v ∈ G : vτ(v) = z}.

Then ∑
φ∈Irr(G)

χφ(g) = #{v ∈ G : vτ(v) = gz}.

Corollary

If G ⊂ GL(n,C) is involutory then∑
φ∈Irr(G)

χφ(g) = #{v ∈ G : v v̄ = g}.
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Symmetric vs antisymmetric

Let G = G (r , p, n) be involutory.
Two types of absolute involutions in G ∗.

Symmetric elements: A ∈ G (r , n) then

AĀ = I ⇐⇒ A = At

Antisymmetric elements: A ∈ G (r , n) then

AĀ = −I ⇐⇒ A = −At

Example

A =


0 0 −i 0
0 0 0 1
i 0 0 0
0 −1 0 0


then AĀ = −I = I ∈ G ∗.
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AĀ = I ⇐⇒ A = At

Antisymmetric elements: A ∈ G (r , n) then
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Colors of generalized permutations

A =


0 0 −i 0
0 0 0 1
i 0 0 0
0 −1 0 0

 =


0 0 ζ3

4 0
0 0 0 ζ0

4

ζ1
4 0 0 0
0 ζ2

4 0 0

 ,
where ζr = e

2πi
r .

We let z(A) = (3, 0, 1, 2).
If A ∈ G ∗ then

z(A) ∈ (Z/rZ)n

∆(Z/pZ)
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Coefficients of the model

Let g ∈ G and v ∈ G ∗, for example

g =


0 0 ζ0

4 0
ζ1

4 0 0 0
0 ζ3

4 0 0
0 0 0 ζ2

4

 and v =


0 0 ζ3

4 0
0 0 0 ζ0

4

ζ1
4 0 0 0
0 ζ2

4 0 0


and G = G (4, 2, 4).

< g , v >=
∑

zi (g)zi (v) ∈ Z/rZ.
In the example < g , v >= 0 · 3 + 1 · 0 + 3 · 1 + 2 · 2 = 3.

s(g , v) = #{(i , j) : i < j , |v |(i) = j and |g |(i) > |g |(j)}.
In the example s(g , v) = #{(1, 3)} = 1

a(g , v) = z1(v)− z|g |−1(1)(v) ∈ Z/rZ.
In the example u(g , v) = z1(v)− z2(v) = 3− 0 = 3.
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The model

Let M∗ be the C-vector space with a basis indexed by the absolute
involutions of G ∗

M∗ =
⊕

{v∈G∗:vv̄=1}

CTv

We let, for all g ∈ G ,

g · Tv =

{
ζ<g ,v>
r · (−1)s(g ,v)T|g |v |g |−1 if v is symmetric
ζ<g ,v>
r · ζa(g ,v)

r T|g |v |g |−1 if v is antisymmetric

Theorem (C. 2009)

Let G = G (r , p, n) be involutory. Then the vector space M∗

endowed with the above action of G extended by linearity is a
model for G.
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Something more

All groups of the form G (r , p, q, n) are still involutory if G (r , p, n)
is, by their characterization.

Can we construct a model?
The dual of G (r , p, q, n) is a subgroup of G (r , p, n)∗.
Let

M(r , q, p, n) = Span{Tv : v ∈ G (r , q, p, n) and v v̄ = 1} ⊂ M∗.

Theorem

Using the same definition as before for the action, we have that
M(r , q, p, n) is a model for the projective reflection group
G (r , p, q, n).
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Something finer 1

We know that M∗ = Sym ⊕ ASym as G -modules.

Which irreducibles appear in ASym?
We concentrate on the case of Weyl groups of type D.
Irreducibles of Bn are parametrized (by Clifford theory for wreath
products) by pairs of partitions (λ, µ) of total size n.

(λ, µ) ↓Dn= (µ, λ) ↓Dn .

if λ 6= µ then (λ, µ) ↓Dn is irreducible while

(λ, λ) ↓Dn= (λ, λ)+ ⊕ (λ, λ)−.

This happens only if n is even, ...and also antisymmetric
elements exist only if n is even...
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Something finer 2

Theorem

We can label the split representations of Dn with + and − in such
a way that

ASym ∼=
⊕
λ`n/2

(λ, λ)−

Sym ∼= (
⊕
λ6=µ

(λ, µ))⊕ (
⊕
λ`n/2

(λ, λ)+)
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Something more (in progress)

Consider the action of Sn on G (r , p, n) by conjugation.

Call the corresponding orbits symmetric conjugacy classes.
It is clear that the absolute involutions in a symmetric conjugacy
class span a G -submodule of M∗.
Which irreducibles appear in each of these submodules?

Feeling

The irreducible constituents of the submodule spanned by the
elements in any symmetric conjugacy class are exactly those
corresponding to the shapes of the elements in the class by the
(projective) Robinson-Schensted correspondence.
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