```
Parking functions and recurrent configurations in the sandpile model.
    Robert Cori
Labri, Université Bordeaux 1
```


Sandpiles in K_{n+1}

- Configuration A sequence of non negative integers $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$
- Toppling Occurs if some u_{i} is not less than n denoted by: $u \rightarrow u^{\prime}$

$$
\left\{\begin{array}{l}
u_{i}^{\prime}=u_{i}-n \\
u_{j}^{\prime}=u_{j}+1 \quad \text { if } j \neq i
\end{array}\right.
$$

Sandpiles in K_{n+1}

- Stable configuration If no toppling is possible, i. e. $\forall i, u_{i}<n$
- A sequence of topplings is denoted by:

$$
u \xrightarrow{*} v
$$

- Example:

$$
(3,2,4) \rightarrow(4,3,1) \rightarrow(5,0,2) \rightarrow(2,1,3) \rightarrow(3,2,0) \rightarrow(0,3,1) \rightarrow(1,0,2)
$$

Example

Simple facts

Remarks

- The result does not depend on the order in which topplings are performed
- Proof: A toppling of site i consists in the addition of

$$
\Delta_{i}=(1,1, \ldots,-n, 1, \ldots 1)
$$

Moreover addition is commutative, and if a toppling is also possible at site $j \neq i$ the addition of Δ_{i} will not modify this fact.

- After a certain number of topplings the configuration reached is stable

Markov chain

Operation A_{i} : Let u be a stable configuration, add 1 to u_{i}, then perform topplings until a stable configuration is reached.

Example:

$$
\begin{gathered}
A_{3}(2,1,2)=(1,0,2) \\
(2,1,3) \rightarrow(3,2,0) \rightarrow(0,3,1) \rightarrow(1,0,2)
\end{gathered}
$$

Behaviour of the Markov chain: choose i at random, then perform A_{i}

Markov Chain

Recurrent configurations

- A configuration u is recurrent if there is a (non empty!) sequence of operations A_{i} leading from u to itself.
- The recurrent configurations can all be reached one from the other
- The number of recurrent configurations is:

$$
(n+1)^{n-1}
$$

Dhar's algorithm

- A configuration u is recurrent if and only if the configuration v such that $\forall i, \quad v_{i}=u_{i}+1$ satisfies:

$$
v \xrightarrow{*} u
$$

Parking functions

A parking function is a sequence of non negative integers $u=u_{1}, u_{2}, \ldots, u_{n}$, such that there exists a permutation $a=a_{1}, a_{2}, \ldots, a_{n}$ satisfying :

$$
\forall i, \quad u_{i}<a_{i}
$$

For example, $3,0,1,3,1$ is parking function , use the permutation $4,1,3,5,2$; but $1,4,2,0,4$ is not.

Bijection betwen parking functions and recurrent configurations

Proposition The configuration

$$
\left(u_{1}, \ldots, u_{i}, \ldots, u_{n}\right)
$$

is recurrent if and only if

$$
\left(n-1-u_{1}, \ldots, n-1-u_{i}, \ldots, n-1-u_{n}\right)
$$

is a parking function
Proof: Use Dhar's criteria.
Consequence The number of parking functions of length n is:

$$
(n+1)^{n-1}
$$

General graphs

- Consider a non oriented connected graph $G=(X, E)$ with $n+1$ vertices one of them being choosed as a sink the others being denoted $x_{1}, x_{2}, \ldots, x_{n}$.
- A configuration is a sequence of non negative integers $u_{1}, u_{1}, \ldots u_{n}$ the number u_{i} is considered as a number of chips (or of grains of sand) in vertex x_{i}.
- A toppling at vertex x_{i} can occur if u_{i} is not less than the degree d_{i} of this vertex, in that case we write $u \rightarrow u^{\prime}$

$$
\left\{\begin{array}{l}
u_{i}^{\prime}=u_{i}-d_{i} \\
u_{j}^{\prime}=u_{j}+1 \quad \text { if } j \text { is a neighbour of } i
\end{array}\right.
$$

Stable configurations

- A configuration is stable if $u_{i}<d_{i}$ for all i
- From any configuration a stable one is reached after a finite number of topplings.
- The stable configuration attained does not depend on the order in which topplings are performed

Recurrent configurations

- A Markov chain on stable configurations can be defined as well. The operation A_{i} consists in adding a grain of sand in vertex x_{i} then topple until a stable configuration is reached
- A configuration u is recurrent if there is a (non empty!) sequence of operations A_{i} leading from u to itself.
- Theorem The number of recurrent configurations is equal to the number of spanning trees of the graph.
- Dhar's algorithm

A configuration u is recurrent if and only if the configuration v such that if i is a neighbour of the sink then $v_{i}=u_{i}+1$, else $v_{i}=u_{i}$ satisfies:

$$
v \xrightarrow{*} u
$$

Recurrent configurations

Transient configurations

Some linear algebra

- A configuration on $G=(X, E)$ is a vector u :
- A toppling consists in substracting the vector Δ_{i} such that $\Delta_{i, i}=d_{i}, \Delta_{i, j}$ is equal to the number of edges joining x_{i} and x_{j}
- Two configurations are equivalent if one can be obtained from the other by adding a linear combination of Δ_{i}
- This defines an equivalence relation and we have:

Theorem Any class contains exactly one recurrent configuration.

Laplacian Matrix

- The vectors Δ_{i} are the lines of a matrix called the Laplacian matrix of the graph (in fact a minor of maximal size)
- The number of classes is the determinant of this minor

The graph K_{n+1}

$$
\Delta=\left(\begin{array}{cccccc}
n & -1 & -1 & \cdot & \cdot & -1 \\
-1 & n & -1 & \cdot & \cdot & -1 \\
-1 & -1 & n & \cdot & \cdot & -1 \\
\cdot & \cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
-1 & -1 & -1 & \cdot & \cdot & n
\end{array}\right)
$$

Smith Normal Form

Any matrix M with integer coefficients may be decomposed in a product :

$$
M=A D B
$$

such that

- A and B are matrices with determinant equal to 1 .
- D is a diagonal matrix
- Any element on the diagonal D divides the next one

Invariants of the toppling operation

- Use matrix $U=A^{-1}$

$$
D=U \Delta V
$$

- Use the lines of U denoted: $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$,
- Two configurations u, v are equivalent if and only if the products $\left\langle\theta_{i}, u\right\rangle$ and $\left.<\theta_{i}, v\right\rangle$ are equal $\bmod d_{i}$ for any i

Bijections between parking functions and sequences of length $n-1$ composed of integers less than $n+1$

The graph K_{n+1}

$$
\Delta=\left(\begin{array}{cccccc}
n & -1 & -1 & \cdot & \cdot & -1 \\
-1 & n & -1 & \cdot & \cdot & -1 \\
-1 & -1 & n & \cdot & \cdot & -1 \\
\cdot & \cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
-1 & -1 & -1 & \cdot & \cdot & n
\end{array}\right) \quad D=\left(\begin{array}{cccccc}
n+1 & 0 & \cdot & \cdot & 0 & 0 \\
0 & n+1 & \cdot & \cdot & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & & \cdot & n+1 & 0 \\
0 & 0 & \cdot & . & 0 & 1
\end{array}\right)
$$

Pollak's bijection

$$
U=\left(\begin{array}{cccccc}
1 & 0 & \cdot & \cdot & 0 & -1 \\
\cdot & \cdot & \cdot & \cdot & 0 & -1 \\
& . & . & . & . \\
\cdot & \cdot & \cdot & . & . \\
\cdot & \cdot & . & . & . & . \\
0 & 0 & . & . & 1 & -1 \\
0 & 0 & . & . & 0 & 1
\end{array}\right) \quad V=\left(\begin{array}{cccccc}
2 & 1 & 1 & \cdot & . & 1 \\
1 & 2 & 1 & \cdot & . & 1 \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
1 & 1 & . & . & 2 & 1 \\
1 & 1 & . & . & 1 & 1
\end{array}\right)
$$

Another bijection

$$
U=\left(\begin{array}{cccccc}
2 & 1 & 1 & \cdot & \cdot & 1 \\
1 & 2 & 1 & \cdot & . & 1 \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
1 & 1 & . & . & 2 & 1 \\
1 & 1 & . & . & 1 & 1
\end{array}\right) \quad V=\left(\begin{array}{cccccc}
1 & 0 & 0 & . & . & 0 \\
0 & 1 & 0 & . & . & 0 \\
. & . & . & . & & . \\
. & . & . & & . & . \\
0 & 0 & . & . & 1 & 0 \\
-1 & -1 & . & . & -1 & 1
\end{array}\right)
$$

Family of bijections

$$
\begin{gathered}
\left(p_{1}, p_{2}, \ldots, p_{n}\right) \rightarrow\left(q_{1}, q_{2}, \ldots, q_{n-1}\right) \\
0 \leq q_{i} \leq n \\
q_{i}=p_{i}+\sum_{j=1}^{n} p_{j}
\end{gathered}
$$

A new bijection for each matrix U such that there exists V satisfying:

$$
D=U \Delta V \quad \operatorname{det}(U)=\operatorname{det}(V)=1
$$

Enumeration of configuration by their weights

Definition The weight $W(u)$ of a configuration u is the sum:

$$
\sum_{i=1}^{n} u_{i}
$$

Proposition The weight $W(u)$ of a recurrent configuration u satisfies:

$$
m-d_{n+1} \leq W(u) \leq 2 m-n-d_{n+1}
$$

Proof:

$$
W(u) \leq \sum_{i=1}^{n}\left(d_{i}-1\right)=\sum_{i=1}^{n} d_{i}-\sum_{i=1}^{n-1} 1=\left(2 m-d_{n}\right)-n
$$

For the lower bound label the grains by the edge they follow when a toppling is performed

Relation with Tutte Polynomials (Biggs-Merino-Lopez-Le Borgne)

Definition The polynomial enumerating the recurrent configurations by their weights:

$$
W_{G}(z)=\sum_{i=m-d_{n}}^{2 m-d_{n}-n} c_{i} z^{i}
$$

where c_{i} is the number of recurrent configurations of weight i.
Theorem The polynomial W_{G} is a specialisation of the Tutte polynomial T_{G}, more precisely:

$$
W_{G}(z)=z^{m-d_{n}} T_{G}(1, z)
$$

Generalized parking functions

- Given a sequence $x=x_{1}, x_{2}, \ldots, x_{n}$
- An x-parking function is a sequence of non negative integers $u=u_{1}, u_{2}, \ldots, u_{n}$, such that once sorted as $u^{\prime}=u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$ such that $u_{i}^{\prime} \leq u_{i+1}^{\prime}$ one has for all i :,

$$
u_{i}^{\prime}<\sum_{j=1}^{i} x_{j}
$$

- Note that the usual parking functions are $(1,1,1, \ldots, 1)$-parkings
- Many papers consider (a, b, b, \ldots, b)-parking functions which are often called (a, b)-parking functions

Enumeration

The number of (a, b)-parking functiuons of length n est donné par :

$$
a(a+b n)^{n-1}
$$

Two proofs

1. Sandpile on a complete multi-graph with $n+1$ vertices $v_{0}, v_{1}, \ldots v_{n}$ where v_{0} is joined to all the other ones by a edges and such that any two vertices v_{i}, v_{j}, $i, j>0$, are joined together by b edges.
2. Any sequence $w_{1}, \ldots w_{n}$ such that $0 \leq w_{i}<a+n b$ has exactly a conjuguates which are (a, b)-parking functions.

Other results

1. G-parking functions
2. Which graphs have D with only $D_{1,1} \neq 1$, that is the group is cyclic?
3. The Tutte enumeration of inversion in trees and the Tutte Polynomial of the complete graphs.
