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Sandpiles in Kn+1

• Configuration A sequence of non negative integers u = (u1, u2, . . . , un)

• Toppling Occurs if some ui is not less than n denoted by: u → u′{
u′

i = ui − n

u′
j = uj + 1 if j 6= i
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Sandpiles in Kn+1

• Stable configuration If no toppling is possible, i. e. ∀i, ui < n

• A sequence of topplings is denoted by:

u
∗→ v

• Example:

(3, 2, 4) → (4, 3, 1) → (5, 0, 2) → (2, 1, 3) → (3, 2, 0) → (0, 3, 1) → (1, 0, 2)
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Simple facts

Remarks

• The result does not depend on the order in which topplings are performed

• Proof: A toppling of site i consists in the addition of

∆i = (1, 1, . . . ,−n, 1, . . . 1)

Moreover addition is commutative, and if a toppling is also possible at site j 6= i

the addition of ∆i will not modify this fact.

• After a certain number of topplings the configuration reached is stable
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Markov chain

Operation Ai: Let u be a stable configuration, add 1 to ui, then perform
topplings until a stable configuration is reached.

Example:
A3(2, 1, 2) = (1, 0, 2)

(2, 1, 3) → (3, 2, 0) → (0, 3, 1) → (1, 0, 2)

Behaviour of the Markov chain: choose i at random, then perform Ai
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Markov Chain
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Recurrent configurations

• A configuration u is recurrent if there is a (non empty!) sequence of operations
Ai leading from u to itself.

• The recurrent configurations can all be reached one from the other

• The number of recurrent configurations is:

(n + 1)n−1
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Dhar’s algorithm

• A configuration u is recurrent if and only if the configuration v such that
∀i, vi = ui + 1 satisfies:

v
∗→ u
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Parking functions

A parking function is a sequence of non negative integers u = u1, u2, . . . , un, such
that there exists a permutation a = a1, a2, . . . , an satisfying :

∀i, ui < ai

For example, 3, 0, 1, 3, 1 is parking function , use the permutation 4, 1, 3, 5, 2; but
1, 4, 2, 0, 4 is not.
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Bijection betwen parking functions and recurrent configurations

Proposition The configuration

(u1, . . . , ui, . . . , un)

is recurrent if and only if

(n− 1− u1, . . . , n− 1− ui, . . . , n− 1− un)

is a parking function

Proof: Use Dhar’s criteria.

Consequence The number of parking functions of length n is:

(n + 1)n−1
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General graphs

• Consider a non oriented connected graph G = (X, E) with n + 1 vertices one of
them being choosed as a sink the others being denoted x1, x2, . . . , xn.

• A configuration is a sequence of non negative integers u1, u1, . . . un the number
ui is considered as a number of chips (or of grains of sand) in vertex xi.

• A toppling at vertex xi can occur if ui is not less than the degree di of this vertex,
in that case we write u → u′{

u′
i = ui − di

u′
j = uj + 1 if j is a neighbour of i
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Stable configurations
• A configuration is stable if ui < di for all i

• From any configuration a stable one is reached after a finite number of topplings.

• The stable configuration attained does not depend on the order in which topplings
are performed
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Recurrent configurations

• A Markov chain on stable configurations can be defined as well. The operation Ai

consists in adding a grain of sand in vertex xi then topple until a stable
configuration is reached

• A configuration u is recurrent if there is a (non empty!) sequence of operations
Ai leading from u to itself.

• Theorem The number of recurrent configurations is equal to the number of
spanning trees of the graph.

• Dhar’s algorithm
A configuration u is recurrent if and only if the configuration v such that if i is a
neighbour of the sink then vi = ui + 1, else vi = ui satisfies:

v
∗→ u
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Recurrent configurations
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Transient configurations
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Some linear algebra

• A configuration on G = (X, E) is a vector u :

• A toppling consists in substracting the vector ∆i such that ∆i,i = di , ∆i,jis
equal to the number of edges joining xi and xj

• Two configurations are equivalent if one can be obtained from the other by adding
a linear combination of ∆i

• This defines an equivalence relation and we have:

Theorem Any class contains exactly one recurrent configuration.

Robert Cori Bertinoro, september 2009



25

Laplacian Matrix

• The vectors ∆i are the lines of a matrix called the Laplacian matrix of the graph
(in fact a minor of maximal size)

• The number of classes is the determinant of this minor
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The graph Kn+1

∆ =



n −1 −1 ˙ ˙ −1

−1 n −1 ˙ ˙ −1

−1 −1 n ˙ ˙ −1

. . . . .

. . . . .

−1 −1 −1 ˙ ˙ n
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Smith Normal Form

Any matrix M with integer coefficients may be decomposed in a product :

M = A D B

such that

• A and B are matrices with determinant equal to 1.

• D is a diagonal matrix

• Any element on the diagonal D divides the next one
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Invariants of the toppling operation

• Use matrix U = A−1

•
D = U∆V

• Use the lines of U denoted: θ1, θ2, . . . , θn,

• Two configurations u, v are equivalent if and only if the products < θi, u > and
< θi, v > are equal mod di for any i
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Bijections between parking functions and sequences
of length n− 1 composed of integers less than n + 1
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The graph Kn+1

∆ =



n −1 −1 ˙ ˙ −1

−1 n −1 ˙ ˙ −1

−1 −1 n ˙ ˙ −1

. . . . .

. . . . .

−1 −1 −1 ˙ ˙ n


D =



n + 1 0 ˙ ˙ 0 0

0 n + 1 ˙ ˙ 0 0

. . . . . .

. . . . . .

0 0 . n + 1 0

0 0 . . 0 1
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Pollak’s bijection

U =



1 0 ˙ ˙ 0 −1

˙ ˙ ˙ ˙ 0 −1

. . . . . .

. . . . . .

0 0 . . 1 −1

0 0 . . 0 1


V =



2 1 1 ˙ ˙ 1

1 2 1 ˙ ˙ 1

. . . . . .

. . . . . .

1 1 . . 2 1

1 1 . . 1 1
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Another bijection

U =



2 1 1 ˙ ˙ 1

1 2 1 ˙ ˙ 1

. . . . . .

. . . . . .

1 1 . . 2 1

1 1 . . 1 1


V =



1 0 0 ˙ ˙ 0

0 1 0 ˙ ˙ 0

. . . . .

. . . . .

0 0 . . 1 0

−1 −1 . . −1 1
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Family of bijections

(p1, p2, . . . , pn) → (q1, q2, . . . , qn−1)

0 ≤ qi ≤ n

qi = pi +
n∑

j=1

pj

A new bijection for each matrix U such that there exists V satisfying:

D = U ∆ V det(U) = det(V ) = 1
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Enumeration of configuration by their weights

Definition The weight W (u) of a configuration u is the sum:

n∑
i=1

ui

Proposition The weight W (u) of a recurrent configuration u satisfies:

m− dn+1 ≤ W (u) ≤ 2m− n− dn+1

Proof:

W (u) ≤
n∑

i=1

(di − 1) =
n∑

i=1

di −
n−1∑
i=1

1 = (2m− dn)− n

For the lower bound label the grains by the edge they follow when a toppling is
performed.
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Relation with Tutte Polynomials (Biggs-Merino-Lopez-Le Borgne)

Definition The polynomial enumerating the recurrent configurations by their
weights:

WG(z) =
2m−dn−n∑
i=m−dn

ciz
i

where ci is the number of recurrent configurations of weight i.

Theorem The polynomial WG is a specialisation of the Tutte polynomial TG, more
precisely:

WG(z) = zm−dn TG(1, z)
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Generalized parking functions

• Given a sequence x = x1, x2, . . . , xn

• An x-parking function is a sequence of non negative integers u = u1, u2, . . . , un,
such that once sorted as u′ = u′

1, u
′
2, . . . , u

′
n such that u′

i ≤ u′
i+1 one has for all i :,

u′
i <

i∑
j=1

xj

• Note that the usual parking functions are (1, 1, 1, . . . , 1)-parkings

• Many papers consider (a, b, b, . . . , b)-parking functions which are often called
(a, b)-parking functions
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Enumeration

The number of (a, b)-parking functiuons of length n est donné par :

a(a + bn)n−1

Two proofs

1. Sandpile on a complete multi-graph with n + 1 vertices v0, v1, . . . vn where v0 is
joined to all the other ones by a edges and such that any two vertices vi, vj ,
i, j > 0, are joined together by b edges.

2. Any sequence w1, . . . wn such that 0 ≤ wi < a + nb has exactly a conjuguates
which are (a, b)-parking functions.
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Other results

1. G-parking functions

2. Which graphs have D with only D1,1 6= 1, that is the group is cyclic ?

3. The Tutte enumeration of inversion in trees and the Tutte Polynomial of the
complete graphs.
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