Combinatorial interpretations of Jacobi-Stirling numbers

Yoann Gelineau
Université Claude Bernard Lyon 1, France

September 29th, 2009-63th SLC

The Jacobi polynomials $P_{n}^{(\alpha, \beta)}(t)$ satisfy the Jacobi equation :
$\left(1-t^{2}\right) y^{\prime \prime}(t)+(\beta-\alpha-(\alpha+\beta+2) t) y^{\prime}(t)+n(n+\alpha+\beta+1) y(t)=0$.

The Jacobi polynomials $P_{n}^{(\alpha, \beta)}(t)$ satisfy the Jacobi equation :
$\left(1-t^{2}\right) y^{\prime \prime}(t)+(\beta-\alpha-(\alpha+\beta+2) t) y^{\prime}(t)+n(n+\alpha+\beta+1) y(t)=0$.
Let $\ell_{\alpha, \beta}[y](t)$ be the Jacobi differential operator :

$$
\ell_{\alpha, \beta}[y](t)=\frac{1}{(1-t)^{\alpha}(1+t)^{\beta}}\left(-(1-t)^{\alpha+1}(1+t)^{\beta+1} y^{\prime}(t)\right)^{\prime}
$$

So, $P_{n}^{(\alpha, \beta)}(t)$ is a solution of

$$
\ell_{\alpha, \beta}[y](t)=n(n+\alpha+\beta+1) y(t)
$$

Everitt and al. gave the expansion of the n-th composite power of $\ell_{\alpha, \beta}$, involving a sequence of positive integers $P^{(\alpha, \beta)} S(n, k)$:

$$
(1-t)^{\alpha}(1+t)^{\beta} \ell_{\alpha, \beta}^{n}[y](t)=\sum_{k=0}^{n}(-1)^{k}\left(P^{(\alpha, \beta)} S(n, k)(1-t)^{\alpha+k}(1+t)^{\beta+k} y^{(k)}(t)\right)^{(k)}
$$

Everitt and al. gave the expansion of the n-th composite power of $\ell_{\alpha, \beta}$, involving a sequence of positive integers $P^{(\alpha, \beta)} S(n, k)$:

$$
(1-t)^{\alpha}(1+t)^{\beta} \chi_{\alpha, \beta}^{n}[y](t)=\sum_{k=0}^{n}(-1)^{k}\left(p^{(\alpha, \beta)} S(n, k)(1-t)^{\alpha+k}(1+t)^{\beta+k} y^{(k)}(t)\right)^{(k)}
$$

Actually, $P^{(\alpha, \beta)} S(n, k)$ depends only on $z=\alpha+\beta+1$. We denote it by $J S_{n}^{k}(z)$, the Jacobi-Stirling number of the second kind.

The $J S_{n}^{k}(z)$ numbers are the relation coefficients in the following formula :

$$
X^{n}=\sum_{k=0}^{n} \mathrm{JS}_{n}^{k}(z) \prod_{i=0}^{k-1}(X-i(z+i))
$$

The $J S_{n}^{k}(z)$ numbers are the relation coefficients in the following formula :

$$
X^{n}=\sum_{k=0}^{n} \mathrm{JS}_{n}^{k}(z) \prod_{i=0}^{k-1}(X-i(z+i))
$$

Equivalently, these numbers can be defined by the recurrence relation :

$$
\begin{gathered}
\mathrm{JS}_{n}^{k}(z)=\mathrm{JS}_{n-1}^{k-1}(z)+k(k+z) \mathrm{JS}_{n-1}^{k}(z), \quad n, k \geq 1 \\
\mathrm{JS}_{0}^{0}(z)=1, \quad \mathrm{JS}_{n}^{k}(z)=0 \quad \text { if } k \notin\{1, \ldots, n\}
\end{gathered}
$$

The Stirling numbers (of the second kind) S_{n}^{k} are defined by the relation :

$$
S_{n}^{k}=S_{n-1}^{k-1}+k S_{n-1}^{k}
$$

The Stirling numbers (of the second kind) S_{n}^{k} are defined by the relation :

$$
S_{n}^{k}=S_{n-1}^{k-1}+k S_{n-1}^{k}
$$

They count the number of :

- partitions of $[n]:=\{1,2, \ldots, n\}$ in k non-empty blocks.
- supdiagonal quasi-permutations of $[n]:=\{1,2, \ldots, n\}$ with k empty lines.

For example,

$$
\pi=\{\{1,3,6\},\{2,5\},\{4\}\}
$$

is a partition of [6] in 3 blocks.

For example,

$$
\pi=\{\{1,3,6\},\{2,5\},\{4\}\}
$$

is a partition of [6] in 3 blocks.
It corresponds to the following quasi-permutation :

The central factorial numbers (of the second kind) U_{n}^{k} are defined by the relation :

$$
U_{n}^{k}=U_{n-1}^{k-1}+k^{2} U_{n-1}^{k}
$$

The central factorial numbers (of the second kind) U_{n}^{k} are defined by the relation :

$$
U_{n}^{k}=U_{n-1}^{k-1}+k^{2} U_{n-1}^{k}
$$

They count the number of :

- ordered pairs $\left(\pi_{1}, \pi_{2}\right)$ of partitions of $[n]$ in k blocks, with $\min \left(\pi_{1}\right)=\min \left(\pi_{2}\right)$.
- ordered pairs $\left(Q_{1}, Q_{2}\right)$ of supdiagonal quasi-permutations of [n], with Q_{1} and Q_{2} which have k same empty lines.

For example, if we note

$$
\pi_{1}=\{\{1,3,6\},\{2,5\},\{4\}\}, \quad \pi_{2}=\{\{1\},\{2,3,5\},\{4,6\}\},
$$

π_{1} and π_{2} are partitions of [6] in 3 blocks, with $\min \left(\pi_{1}\right)=\min \left(\pi_{2}\right)$

For example, if we note

$$
\pi_{1}=\{\{1,3,6\},\{2,5\},\{4\}\}, \quad \pi_{2}=\{\{1\},\{2,3,5\},\{4,6\}\},
$$

π_{1} and π_{2} are partitions of [6] in 3 blocks, with $\min \left(\pi_{1}\right)=\min \left(\pi_{2}\right)$
The ordered pair $\left(\pi_{1}, \pi_{2}\right)$ corresponds to the folloqing ordered pair of supdiagonal quasi-permutations :

\Rightarrow Let's come back to the Jacobi-Stirling numbers :

$$
\mathrm{JS}_{n}^{k}(z)=\mathrm{JS}_{n-1}^{k-1}(z)+k(k+z) \mathrm{JS}_{n-1}^{k}(z), \quad n, k \geq 1
$$

\Rightarrow Let's come back to the Jacobi-Stirling numbers :

$$
\mathrm{JS}_{n}^{k}(z)=\mathrm{JS}_{n-1}^{k-1}(z)+k(k+z) \mathrm{JS}_{n-1}^{k}(z), \quad n, k \geq 1
$$

$\mathrm{JS}_{n}^{k}(z)$ is a polynomial in z of degree $n-k$:

$$
\mathrm{JS}_{n}^{k}(z)=a_{n, k}^{(0)}+a_{n, k}^{(1)} z+\cdots+a_{n, k}^{(n-k)} z^{n-k}
$$

\Rightarrow Let's come back to the Jacobi-Stirling numbers :

$$
\mathrm{JS}_{n}^{k}(z)=\mathrm{J} \mathrm{~S}_{n-1}^{k-1}(z)+k(k+z) \mathrm{JS}_{n-1}^{k}(z), \quad n, k \geq 1
$$

$\mathrm{JS}_{n}^{k}(z)$ is a polynomial in z of degree $n-k$:

$$
\mathrm{JS}_{n}^{k}(z)=a_{n, k}^{(0)}+a_{n, k}^{(1)} z+\cdots+a_{n, k}^{(n-k)} z^{n-k}
$$

Moreover,

$$
\begin{gathered}
a_{n, k}^{(n-k)}=S_{n}^{k} \\
a_{n, k}^{(0)}=U_{n}^{k}
\end{gathered}
$$

Definition

$A k$-signed partition of $[\pm n]_{0}=\{0, \pm 1, \pm 2, \ldots, \pm n\}$ is a partition of $[\pm n]_{0}$ in $k+1$ non-empty blocks $B_{0}, B_{1}, \ldots, B_{k}$, such that

- $0 \in B_{0}$ et $\forall i \in[n],\{i,-i\} \not \subset B_{0}$
- $\forall j \in[k], \forall i \in[n],\{i,-i\} \subset B_{j} \Leftrightarrow i=\min B_{j} \cap[n]$

For example,

$$
\pi=\{\{0,2,-5\},\{ \pm 1,-2\},\{ \pm 3\},\{ \pm 4,5\}\}
$$

is a 3-signed partition of $[\pm 5]_{0}$.

Theorem

$a_{n, k}^{(i)}$ is equal to the number of k-signed partitions of $[\pm n]_{0}$ with i negative values in the block that contains 0 .

Theorem

$a_{n, k}^{(i)}$ is equal to the number of k-signed partitions of $[\pm n]_{0}$ with i negative values in the block that contains 0 .

Proof : Since $\mathrm{JS}_{n}^{k}(z)$ verify the relation :

$$
\mathrm{JS}_{n}^{k}(z)=\mathrm{JS}_{n-1}^{k-1}(z)+k(k+z) \mathrm{JS}_{n-1}^{k}(z)
$$

it suffices to check that the wanted numbers verify the recurrence :

$$
a_{n, k}^{(i)}=a_{n-1, k-1}^{(i)}+k a_{n-1, k}^{(i-1)}+k^{2} a_{n-1, k}^{(i)}
$$

Theorem

$a_{n, k}^{(i)}$ is equal to the number of k-signed partitions of $[\pm n]_{0}$ with i negative values in the block that contains 0 .

Proof : Since $\mathrm{JS}_{n}^{k}(z)$ verify the relation :

$$
\mathrm{JS}_{n}^{k}(z)=\mathrm{JS}_{n-1}^{k-1}(z)+k(k+z) \mathrm{JS}_{n-1}^{k}(z)
$$

it suffices to check that the wanted numbers verify the recurrence :

$$
a_{n, k}^{(i)}=\underbrace{a_{n-1, k-1}^{(i)}}_{B_{k}=\{ \pm n\}}+\underbrace{k a_{n-1, k}^{(i-1)}}_{-n \in B_{0}}+\underbrace{k^{2} a_{n-1, k}^{(i)}}_{\text {other cases }}
$$

$a_{n, k}^{(i)}=\sharp\left\{k\right.$ - signed partitions of $[\pm n]_{0}$ with i values <0 in $\left.B_{0}\right\}$
$a_{n, k}^{(i)}=\sharp\left\{k\right.$ - signed partitions of $[\pm n]_{0}$ with i values <0 in $\left.B_{0}\right\}$ $\Rightarrow \underline{\text { For } i=n-k}$, we recover the interpretation of S_{n}^{k}.

$$
\begin{gathered}
\pi=\{\{0,-3,-5,-6\},\{ \pm 1,3,6\},\{ \pm 2,5\},\{ \pm 4\}\} \\
\Downarrow \\
\pi^{\prime}=\{\{1,3,6\},\{2,5\},\{4\}\}
\end{gathered}
$$

$a_{n, k}^{(i)}=\sharp\left\{k\right.$ - signed partitions of $[\pm n]_{0}$ with i values <0 in $\left.B_{0}\right\}$ \Rightarrow For $i=n-k$, we recover the interpretation of S_{n}^{k}.

$$
\begin{gathered}
\pi=\{\{0,-3,-5,-6\},\{ \pm 1,3,6\},\{ \pm 2,5\},\{ \pm 4\}\} \\
\Downarrow \\
\pi^{\prime}=\{\{1,3,6\},\{2,5\},\{4\}\}
\end{gathered}
$$

\Rightarrow For $i=0$, we recover the interpretation of U_{n}^{k}.

$$
\begin{gathered}
\pi=\{\{0,3,6\},\{ \pm 1,-3,\},\{ \pm 2,-5\},\{ \pm 4,5,-6\}\} \\
\Downarrow \\
\pi_{1}=\{\{1,3\},\{2\},\{4,5,6\}\}, \quad \pi_{2}=\{\{1,3\},\{2,5\},\{4,6\}\}
\end{gathered}
$$

Definition

A simply hooked k-quasi-permutation of $[n]$ ($k-S H Q P$ of $[n]$) is a part Q of a tableau $[n] \times[n]$ such that :

- Q is contained in the graph of a permutation σ without fix points,
- each diagonal hook contains at most one elemnt,
- there are k empty diagonal hooks.

For example,

is a $2-\mathrm{SHQP}$ of [8].

Definition

A simply hooked k-quasi-permutation of $[n]$ ($k-S H Q P$ of $[n]$) is a part Q of a tableau $[n] \times[n]$ such that :

- Q is contained in the graph of a permutation σ without fix points,
- each diagonal hook contains at most one elemnt,
- there are k empty diagonal hooks.

For example,

is a 2-SHQP of [8].

Definition

A simply hooked k-quasi-permutation of $[n]$ ($k-S H Q P$ of $[n]$) is a part Q of a tableau $[n] \times[n]$ such that :

- Q is contained in the graph of a permutation σ without fix points,
- each diagonal hook contains at most one elemnt,
- there are k empty diagonal hooks.

For example,

is a $2-\mathrm{SHQP}$ of [8].

Definition

A simply hooked k-quasi-permutation of $[n]$ ($k-S H Q P$ of $[n]$) is a part Q of a tableau $[n] \times[n]$ such that :

- Q is contained in the graph of a permutation σ without fix points,
- each diagonal hook contains at most one elemnt,
- there are k empty diagonal hooks.

For example,

is a $2-\mathrm{SHQP}$ of [8].

Definition

A simply hooked k-quasi-permutation of $[n]$ ($k-S H Q P$ of $[n]$) is a part Q of a tableau $[n] \times[n]$ such that :

- Q is contained in the graph of a permutation σ without fix points,
- each diagonal hook contains at most one elemnt,
- there are k empty diagonal hooks.

For example,

is a $2-\mathrm{SHQP}$ of [8].

Definition

A simply hooked k-quasi-permutation of $[n]$ ($k-S H Q P$ of $[n]$) is a part Q of a tableau $[n] \times[n]$ such that :

- Q is contained in the graph of a permutation σ without fix points,
- each diagonal hook contains at most one elemnt,
- there are k empty diagonal hooks.

For example,

is a $2-\mathrm{SHQP}$ of [8].

Definition

A simply hooked k-quasi-permutation of $[n]$ ($k-S H Q P$ of $[n]$) is a part Q of a tableau $[n] \times[n]$ such that :

- Q is contained in the graph of a permutation σ without fix points,
- each diagonal hook contains at most one elemnt,
- there are k empty diagonal hooks.

For example,

is a $2-\mathrm{SHQP}$ of [8].

Definition

A simply hooked k-quasi-permutation of $[n](k-S H Q P$ of $[n])$ is a part Q of a tableau $[n] \times[n]$ such that :

- Q is contained in the graph of a permutation σ without fix points,
- each diagonal hook contains at most one elemnt,
- there are k empty diagonal hooks.

For example,

is a 2-SHQP of [8].

Definition

A simply hooked k-quasi-permutation of $[n](k-S H Q P$ of $[n])$ is a part Q of a tableau $[n] \times[n]$ such that :

- Q is contained in the graph of a permutation σ without fix points,
- each diagonal hook contains at most one elemnt,
- there are k empty diagonal hooks.

For example,

is a $2-\mathrm{SHQP}$ of [8].

Theorem

$a_{n, k}^{(i)}$ counts also the number of ordered pairs $\left(Q_{1}, Q_{2}\right)$ of $k-S H Q P$ of $[n]$ such that

- Q_{1} and Q_{2} have k empty lines (the same),
- Q_{1} and Q_{2} have identical subdiagonal parts,
- Q_{1} and Q_{2} have i filled boxes in their subdiagonal parts.

\Rightarrow Pour $i=n-k$, we recover the interpretation of S_{n}^{k}.

\Rightarrow Pour $i=n-k$, we recover the interpretation of S_{n}^{k}.

\Rightarrow For $i=0$, we recover the interpretation of U_{n}^{k}.

The Jacobi-Stirling numbers (of the first kind) $\mathrm{js}_{n}^{k}(z)$ are defined by inversing the relation on the $\mathrm{JS}_{n}^{k}(z)$ numbers:

$$
\begin{gathered}
X^{n}=\sum_{k=0}^{n} \mathrm{JS}_{n}^{k}(z) \prod_{i=0}^{k-1}(X-i(z+i)) \\
\prod_{i=0}^{n-1}(X-i(z+i))=\sum_{k=0}^{n}(-1)^{n-k} \mathrm{js}_{n}^{k}(z) X^{k}
\end{gathered}
$$

The Jacobi-Stirling numbers (of the first kind) $\mathrm{js}_{n}^{k}(z)$ are defined by inversing the relation on the $\mathrm{JS}_{n}^{k}(z)$ numbers:

$$
\begin{gathered}
X^{n}=\sum_{k=0}^{n} \mathrm{JS}_{n}^{k}(z) \prod_{i=0}^{k-1}(X-i(z+i)) \\
\prod_{i=0}^{n-1}(X-i(z+i))=\sum_{k=0}^{n}(-1)^{n-k} \mathrm{js}_{n}^{k}(z) X^{k}
\end{gathered}
$$

It follows that they verify the following relation :

$$
\mathrm{js}_{n}^{k}(z)=\mathrm{js} \mathrm{~s}_{n-1}^{k-1}(z)+(n-1)(n-1+z) \mathrm{js}_{n-1}^{k}(z)
$$

The Stirling numbers (of the first kind) s_{n}^{k} are defined by the relation :

$$
s_{n}^{k}=s_{n-1}^{k-1}+(n-1) s_{n-1}^{k}
$$

The central factorial numbers (of the first kind) u_{n}^{k} are defined by the relation :

$$
u_{n}^{k}=u_{n-1}^{k-1}+(n-1)^{2} u_{n-1}^{k}
$$

The Stirling numbers (of the first kind) s_{n}^{k} are defined by the relation :

$$
s_{n}^{k}=s_{n-1}^{k-1}+(n-1) s_{n-1}^{k}
$$

The central factorial numbers (of the first kind) u_{n}^{k} are defined by the relation :

$$
u_{n}^{k}=u_{n-1}^{k-1}+(n-1)^{2} u_{n-1}^{k}
$$

s_{n}^{k} is the number of permutations of $[n]$ with k cycles.
u_{n}^{k} had still no interpretation until present.
$j \mathrm{~s}_{n}^{k}(z)$ is a polynomial in z of degree $n-k$:

$$
\mathrm{js}_{n}^{k}(z)=b_{n, k}^{(0)}+b_{n, k}^{(1)} z+\cdots+b_{n, k}^{(n-k)} z^{n-k}
$$

$j \mathrm{~s}_{n}^{k}(z)$ is a polynomial in z of degree $n-k$:

$$
j \mathrm{j}_{n}^{k}(z)=b_{n, k}^{(0)}+b_{n, k}^{(1)} z+\cdots+b_{n, k}^{(n-k)} z^{n-k}
$$

Moreover,

$$
\begin{gathered}
b_{n, k}^{(n-k)}=s_{n}^{k} \\
b_{n, k}^{(0)}=u_{n}^{k}
\end{gathered}
$$

Definition

Let $w=w(1) w(2) \ldots w(\ell)$ be a word on the alphabet $[n]$. A letter $w(j)$ is a record of w if

$$
w(j)<w(k), \quad \forall k=1 \ldots j-1
$$

We denote by rec(w) the number of records of w and $\operatorname{rec}_{0}(w)=\operatorname{rec}(w)-1$.

For example, for

$$
w=574862319
$$

the records are

$$
5,4,2,1 .
$$

Thus, $\operatorname{rec}(w)=4$ and $\operatorname{rec}_{0}(w)=3$.

Theorem

$b_{n, k}^{(i)}$ is the number of ordered pairs (σ, τ) with :

- σ is a permutation of $[n] \cup\{0\}$ with k cycles,
- τ is a permutation of $[n]$ with k cycles,
- σ and τ have the same cyclic minimas,
- $1 \in \operatorname{Orb}_{\sigma}(0)$ and $r e c_{0}(w)=i$ where $w=\sigma(0) \ldots \sigma^{\ell}(0)$ with $\sigma^{\ell+1}(0)=0$.

Theorem

$b_{n, k}^{(i)}$ is the number of ordered pairs (σ, τ) with :

- σ is a permutation of $[n] \cup\{0\}$ with k cycles,
- τ is a permutation of $[n]$ with k cycles,
- σ and τ have the same cyclic minimas,
- $1 \in \operatorname{Orb}_{\sigma}(0)$ and $\operatorname{rec}_{0}(w)=i$ where $w=\sigma(0) \ldots \sigma^{\ell}(0)$ with $\sigma^{\ell+1}(0)=0$.

Idea : interpret the formula

$$
b_{n, k}^{(i)}=b_{n-1, k-1}^{(i)}+(n-1) b_{n-1, k}^{(i-1)}+(n-1)^{2} b_{n-1, k}^{(i)}
$$

\Rightarrow For $i=n-k$, we recover the interpretation of s_{n}^{k}.
\Rightarrow For $i=n-k$, we recover the interpretation of s_{n}^{k}.
\Rightarrow For $i=0$, we recover the interpretation of u_{n}^{k}.
u_{n}^{k} is the number of ordered pairs of permutations $\left(\sigma_{1}, \sigma_{2}\right)$ of $[n]$ with k cycles, with same cyclic minimas.

Thanks for your attention.

