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Tropical Arithmetic

tropical semi-ring: (R ∪ {+∞},⊕,⊙) where

x ⊕ y := min(x, y) and x ⊙ y := x + y

Example

(3 ⊕ 5) ⊙ 2 = 3 + 2 = 5 = min(5, 7) = (3 ⊙ 2) ⊕ (5 ⊙ 2)

History

can be traced back (at least) to the 1960s

e.g., see monography [Cunningham-Green 1979]

optimization, functional analysis, signal processing, . . .

recent development (since 2002) initiated by Kapranov,
Mikhalkin, Sturmfels, . . .



Tropical Polynomials

read ordinary (Laurent) polynomial with real coefficients as
function

replace operations “+” and “·” by “⊕” and “⊙”

Example

F (x) := (7 ⊙ x⊙3) ⊕ (3 ⊙ x) ⊕ 4 = min(7 + 3x, 3 + x, 4)

Definition
tropical polynomial F vanishes at p :⇔ there are at least two
terms where the minimum F (p) is attained

F (1) = min(7 + 3 · 1, 3+1 , 4 ) = 4
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Tropical Hypersurfaces

tropical semi-module (Rd,⊕,⊙)

componentwise addition
tropical scalar multiplication

Definition
tropical hypersurface T (F ) := vanishing locus of (multi-variate)
tropical polynomial F

Example

F (x) = (7 ⊙ x⊙3) ⊕ (3 ⊙ x) ⊕ 4

T (F ) = {−2, 1} ⊂ R1

(−2, 1)

(1, 4)

7 + 3x

3 + x

4

−2 1



Polyhedral Combinatorics

Proposition

For a tropical polynomial F : Rd → R the set

P(F ) :=
{

(p, s) ∈ Rd+1 : p ∈ Rd, s ∈ R, s ≤ F (p)
}

is an unbounded convex polyhedron of dimension d + 1.

Corollary

The tropical hypersurface T (F ) coincides with the image of the
codimension-2-skeleton of the polyhedron P(F ) in Rd under the
orthogonal projection which omits the last coordinate.



The Newton Polytope of a Tropical Polynomial

Definition
Newton polytope N (F ) = convex hull of the support supp(F )

Theorem
The tropical hypersurface T (F ) of a tropical polynomial F is dual
to the 1-coskeleton of the regular subdivision of N (F ) induced by
the coefficients of F .

(−2, 1)

(1, 4)

7 + 3x

3 + x

4

−2 1

(0, 4)

(1, 3)

(3, 7)

0 1 3



The Tropical Torus

tropical polynomial F homogeneous of degree δ if for all p ∈ Rd

and λ ∈ R:

F (λ ⊙ p) = F (λ · 1 + p) = λ⊙δ ⊙ F (p) = δ · λ + F (p)

Definition
tropical (d − 1)-torus Td−1 := Rd/R1

map

(x1, x2, . . . , xd) + R1 = (0, x2 − x1, . . . , xd − x1) + R1

7→ (x2 − x1, . . . , xd − x1)

defines homeomorphism Td−1 ≈ Rd−1



Tropical Hyperplanes

F (x) = (α1 ⊙ x1) ⊕ (α2 ⊙ x2) ⊕ (α3 ⊙ x3) linear homogeneous

T (F ) = −(α1, α2, α3) + (R≥0e1 ∪ R≥0e2 ∪ R≥0e3) + R1

= (0, α1 − α2, α1 − α3) + (R≥0(−e2 − e3) ∪ R≥0e2 ∪ R≥0e3)

−α



Tropical Conics

general tropical conic

(a200 ⊙ x⊙2
1 ) ⊕ (a110 ⊙ x1 ⊙ x2) ⊕ (a101 ⊙ x1 ⊙ x3)

⊕ (a020 ⊙ x⊙2
2 ) ⊕ (a011 ⊙ x2 ⊙ x3) ⊕ (a002 ⊙ x⊙2

3 )

Example

(a200, a110, a101, a020, a011, a002) = (6, 5, 5, 6, 5, 7)

1

3

11

2233 2

444

-4
-4

-3

-3

-2

-2

-1

-1

0

0

1

1

2

2

3

3

4

4

(2, 0, 0)

(1, 1, 0) (1, 0, 1)

(0, 2, 0) (0, 1, 1) (0, 0, 2)

1

2

3 4



Max-Tropical Hyperplanes

duality between min and max:

max(−x,−y) = −min(x, y)

Remark
T is min-tropical hyperplane ⇐⇒ −T is max-tropical hyperplane

−α α

min/max



Fields of Puiseux Series

Puiseux series with complex coefficients:

C{{z}} =

{
∞∑

k=m

ak · zk/N : m ∈ Z, N ∈ N×, ak ∈ C

}

Newton-Puiseux-Theorem: C{{z}} isomorphic to algebraic
closure of Laurent series C((z))

isomorphic to C by [Steinitz 1910]



The Valuation Map

valuation map
val : C{{z}} → Q ∪ {∞}

maps Puiseux series γ(z) =
∑∞

k=m ak · zk/N to lowest degree
min{k/N : k ∈ Z, ak 6= 0}; setting val(0) := ∞

val(γ(z) + δ(z)) ≥ min{val(γ(z)), val(δ(z))}

val(γ(z) · δ(z)) = val(γ(z)) + val(δ(z)) .

Remark
inequality becomes equation if no cancellation occurs



A Lifting Theorem I

Theorem (Einsiedler, Kapranov & Lind 2006)

For f ∈ K[x±1
1 , x±1

2 , . . . , x±1
d ] the tropical hypersurface

T (trop(f)) ∩ Qd (over the rationals) equals the set val(V (〈f〉)).

Tropical geometry is a piece-wise linear shadow of
classical geometry.
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A Lifting Theorem II

Proof of easy inclusion “T (trop(f)) ⊇ val(V (〈f〉))”.

let f =
∑

i∈I γix
i for I ⊂ Nd with tropicalization F

consider zero u ∈ (K×)d of f

for i ∈ I we have
val(γiu

i) = val(γi) + 〈i, val(u)〉 = val(γi) ⊙ val(u)⊙i

minimum

F (val(u)) =
⊕

i∈I

val(γi) ⊙ val(u)⊙i

attained at least twice since otherwise the terms γiu
i cannot

cancel to yield zero



Conclusion I

tropicalization of (homogeneous) polynomial F

tropical hypersurface T (F )

codimension-2-skeleton of unbounded convex polyhedron

regular subdivision of Newton polytope N (F )

tropical hypersurface = image of ordinary hypersurface under
valuation map
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Tropical Convexity

for x, y ∈ Rd let [Zimmermann 1977] [Develin & Sturmfels 2004]

[x, y]trop := {(λ ⊙ x) ⊕ (µ ⊙ y) : λ, µ ∈ R}

S ⊆ Rd tropically convex: [x, y]trop ⊆ S for all x, y ∈ S

S tropically convex ⇒ λ ⊙ S = λ1 + S ⊆ S for all λ ∈ R

consider tropically convex sets in Td−1 = Rd/R1

recall: we identify

(x0, x1, . . . , xd) + R1 = (0, x1 − x0, . . . , xd − x0) + R1

with (x1 − x0, . . . , xd − x0)

tropical polytope := tropical convex hull
of finitely many points in Td−1 ≈ Rd−1
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Example: Tropical Line Segment in T2

[(0, 2, 0), (0,−2,−2)]trop
= {λ ⊙ (0, 2, 0) ⊕ µ ⊙ (0,−2,−2) : λ, µ ∈ R}
= {(min(λ, µ), min(λ + 2, µ − 2), min(λ, µ − 2))}
= {(λ, λ + 2, λ) : λ ≤ µ − 4}
∪ {(λ, µ − 2, λ) : µ − 4 ≤ λ ≤ µ − 2}
∪ {(λ, µ − 2, µ − 2) : µ − 2 ≤ λ ≤ µ}
∪ {(µ, µ − 2, µ − 2) : µ ≤ λ}

= {(0, µ − λ − 2, 0) : 2 ≤ µ − λ ≤ 4}
∪ {(0, µ − λ − 2, µ − λ − 2) : 0 ≤ µ − λ ≤ 2}

Case Distinction
λ ∈ (−∞, µ−4]∪[µ−4, µ−2]∪[µ−2, µ]∪[µ,∞)

(0, � 2, � 2)

(0, 0, 0) (0, 2, 0)



Example: Tropical Line Segment in T2

[(0, 2, 0), (0,−2,−2)]trop
= {λ ⊙ (0, 2, 0) ⊕ µ ⊙ (0,−2,−2) : λ, µ ∈ R}
= {(min(λ, µ), min(λ + 2, µ − 2), min(λ, µ − 2))}
= {(λ, λ + 2, λ) : λ ≤ µ − 4}
∪ {(λ, µ − 2, λ) : µ − 4 ≤ λ ≤ µ − 2}
∪ {(λ, µ − 2, µ − 2) : µ − 2 ≤ λ ≤ µ}
∪ {(µ, µ − 2, µ − 2) : µ ≤ λ}

= {(0, µ − λ − 2, 0) : 2 ≤ µ − λ ≤ 4}
∪ {(0, µ − λ − 2, µ − λ − 2) : 0 ≤ µ − λ ≤ 2}

Case Distinction
λ ∈ (−∞, µ−4]∪[µ−4, µ−2]∪[µ−2, µ]∪[µ,∞)

(0, � 2, � 2)

(0, 0, 0) (0, 2, 0)



Example: Tropical Line Segment in T2

[(0, 2, 0), (0,−2,−2)]trop
= {λ ⊙ (0, 2, 0) ⊕ µ ⊙ (0,−2,−2) : λ, µ ∈ R}
= {(min(λ, µ), min(λ + 2, µ − 2), min(λ, µ − 2))}
= {(λ, λ + 2, λ) : λ ≤ µ − 4}
∪ {(λ, µ − 2, λ) : µ − 4 ≤ λ ≤ µ − 2}
∪ {(λ, µ − 2, µ − 2) : µ − 2 ≤ λ ≤ µ}
∪ {(µ, µ − 2, µ − 2) : µ ≤ λ}

= {(0, µ − λ − 2, 0) : 2 ≤ µ − λ ≤ 4}
∪ {(0, µ − λ − 2, µ − λ − 2) : 0 ≤ µ − λ ≤ 2}

Case Distinction
λ ∈ (−∞, µ−4]∪[µ−4, µ−2]∪[µ−2, µ]∪[µ,∞)

(0, � 2, � 2)

(0, 0, 0) (0, 2, 0)



Example: Tropical Line Segment in T2

[(0, 2, 0), (0,−2,−2)]trop
= {λ ⊙ (0, 2, 0) ⊕ µ ⊙ (0,−2,−2) : λ, µ ∈ R}
= {(min(λ, µ), min(λ + 2, µ − 2), min(λ, µ − 2))}
= {(λ, λ + 2, λ) : λ ≤ µ − 4}
∪ {(λ, µ − 2, λ) : µ − 4 ≤ λ ≤ µ − 2}
∪ {(λ, µ − 2, µ − 2) : µ − 2 ≤ λ ≤ µ}
∪ {(µ, µ − 2, µ − 2) : µ ≤ λ}

= {(0, µ − λ − 2, 0) : 2 ≤ µ − λ ≤ 4}
∪ {(0, µ − λ − 2, µ − λ − 2) : 0 ≤ µ − λ ≤ 2}

Case Distinction
λ ∈ (−∞, µ−4]∪[µ−4, µ−2]∪[µ−2, µ]∪[µ,∞)

(0, � 2, � 2)

(0, 0, 0) (0, 2, 0)



The Running Example

n = 4, d = 3
v1 = (0, 1, 0), v2 = (0, 4, 1), v3 = (0, 3, 3), v4 = (0, 0, 2)

-1 0 1 2 3 4 5
-1

0

1
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v2

v3

v4

w1

w2

w3

w4

w5

w6



Fine Types

consider V = (v1, v2, . . . , vn) in Td−1

Definition
fine type of p ∈ Td−1 w.r.t. V given by TV (p) ∈ {0, 1}n×d with

TV (p)ik = 1 ⇔ vik − pk ≤ vij − pj for all j ∈ [d]

identify T with (T1, T2, . . . , Td), where
Tk = {i ∈ [n] : Tik = 1}

Example

V =







0 1 0
0 4 1
0 3 3
0 0 2







TV (0, 2, 0) = ({2, 3}, {1, 4}, ∅)
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Fine Type Decomposition of Td−1

-1 0 1 2 3 4 5
-1

0

1

2

3

4

v1

v2

v3

v4

(1234, ∅, ∅) (123, 4, ∅) (23, 14, ∅) (2, 134, ∅) (∅, 1234, ∅)

(234, ∅, 1)

(34, ∅, 12)

(3, ∅, 124)

(∅, ∅, 1234) (∅, 4, 123) (∅, 34, 12)

(23, 4, 1)

(3, 4, 12)

(3, 14, 2)

(∅, 134, 2)

. . . induced by max-tropical hyperplane arrangement A(V )



Recall: Max-Tropical Hyperplanes

duality between min and max:

max(−x,−y) = −min(x, y)

Remark
T is min-tropical hypersurface ⇔ −T is max-tropical hypersurface

−α α

min/max



Main Theorem of Tropical Convexity

Theorem (Develin & Sturmfels 2004)

The min-tropical polytope tconv(V ) is the union of the bounded
closed cells of the max-tropical hyperplane arrangement A(V ).
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Products of Simplices

tconv{v1, . . . , vn} ⊂ Td−1 dual to regular
subdivision of ∆n−1 × ∆d−1 defined by
lifting ei × ej to height vij

general position ←→ triangulation

extra feature: exchanging the factors Ã

tconv(rows) ∼= tconv(columns)

∆1 × ∆2

{ab, ca}

aa ba

bb

cb

tconv(2 points in T2)
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tconv{v1, . . . , vn} ⊂ Td−1 dual to regular
subdivision of ∆n−1 × ∆d−1 defined by
lifting ei × ej to height vij

general position ←→ triangulation

extra feature: exchanging the factors Ã
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Mixed Subdivisions

P, Q : polytopes in Rd

P + Q = {p + q : p ∈ P, q ∈ Q} Minkowski sum

Minkowski cell of P + Q = full-dimensional subpolytope
which is Minkowski sum of subpolytopes of P and Q

Definition
Polytopal subdivision of P + Q into Minkowski cells is mixed if for
any two of its cells P ′ + Q′ and P ′′ + Q′′ the intersections P ′ ∩ P ′′

and Q′ ∩ Q′′ both are faces.

can be generalized to finitely many summands

fine = cannot be refined (as a mixed subdivision!)
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Example With 4 Summands

fine mixed subdivision of dilated simplex
∆2 + ∆2 + ∆2 + ∆2 = 4∆2



Cayley Trick, General Form

e1, e2, . . . , en : affine basis of Rn−1

φk : Rd → Rn−1 × Rd embedding p 7→ (ek, p)

Cayley embedding of P1, P2, . . . , Pn :

C(P1, P2, . . . , Pn) = conv
n⋃

i=1

φi(Pi) .

Theorem (Sturmfels 1994; Huber, Rambau & Santos 2000)

1 For any polyhedral subdivision of C(P1, P2, . . . , Pn) the
intersection of its cells with { 1

n

∑
ei} × Rd yields a mixed

subdivision of 1
n

∑
Pi.

2 This correspondence is a poset isomorphism from the
subdivisions of C(P1, P2, . . . , Pn) to the mixed subdivisions of
∑

Pi. Further, the coherent mixed subdivisions are bijectively
mapped to the regular subdivisions.



Cayley Trick for Products of Simplices

consider P1 = P2 = · · · = Pn = ∆d−1 = conv{e1, e2, . . . , ed}

C(∆d−1, ∆d−1, . . . ,∆d−1
︸ ︷︷ ︸

n

) ∼= ∆n−1 × ∆d−1

Corollary

1 For any polyhedral subdivision of ∆n−1 × ∆d−1 the
intersection of its cells with { 1

n

∑
ei} × Rd yields a mixed

subdivision of 1
n · (n∆d−1).

2 This correspondence is a poset isomorphism from the
subdivisions of ∆n−1 × ∆d−1 to the mixed subdivisions of
n∆d−1. Further, the coherent mixed subdivisions are
bijectively mapped to the regular subdivisions.
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subdivision of 1
n · (n∆d−1).

2 This correspondence is a poset isomorphism from the
subdivisions of ∆n−1 × ∆d−1 to the mixed subdivisions of
n∆d−1. Further, the coherent mixed subdivisions are
bijectively mapped to the regular subdivisions.
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A Tropical Hypersurface

point vi ∈ Td−1 = apex of unique max-tropical hyperplane
Hmax(vi)

homogeneous linear form hi ∈ C{{z}}[x1, xx, . . . , xd];

h := h1 · h2 · · ·hn

Proposition

The tropical hypersurface defined by tropmax(h) is the union of
the max-tropical hyperplanes in A.

Corollary

Let p ∈ Td−1 \ A be a generic point. Then its coarse type tA(p)
equals the exponent of the monomial in h which defines the unique
facet of P(tropmax(h)) above p.
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Conclusion II

n points in Td−1 ↔ arrangement of n tropical hyperplanes
in Td−1

tropical polytope = union of bounded cells

coarse and fine types

regular subdivision of ∆n−1 × ∆d−1

mixed subdivision of n∆d−1
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The Coarse Type Ideal

Definition
Let A = A(V ) be an arrangement on n tropical hyperplanes in
Td−1. The coarse type ideal of A is the monomial ideal

It(A) = 〈xt(p) : p ∈ Td−1〉 ⊂ K[x1, . . . , xd]

where xt(p) = x
t(p)1
1 x

t(p)2
2 · · ·x

t(p)d

d .

similar construction for (oriented) matroids
[Novik, Postnikov & Sturmfels 2002]



Powers of the Maximal Ideal

Proposition

If A = A(V ) is sufficiently generic the coarse cotype ideal is

It(A) = 〈x1, x2, . . . , xn〉
d .
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Resolutions via Coarse Tropical Convexity

Theorem (Dochtermann, Sanyal & J. 2009+)

Let A be an arrangement of n tropical hyperplanes in Td−1. The
colabeled complex CA supports a minimal cocellular resolution of
the coarse type ideal It(A).

Eliahou-Kervaire resolution of 〈x1, x2, . . . , xn〉
d in the

sufficiently generic case
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Minimal Free Resolutions

S = K[x1, . . . , xd] polynomial ring with Zd-grading
deg xa = a

free Zd-graded resolution F• of monomial ideal I ⊆ S is
exact (algebraic) complex of Zd-graded S-modules:

F• : · · ·
φk+1

−→ Fk
φk−→ · · ·

φ2
−→ F1

φ1
−→ F0 → 0

Fi
∼=

⊕

a∈Zd S(−a)βi,a free Zd-graded S-modules
maps φi homogeneous
F0 = S and img φ1 = I
i-th syzygy module img φi+1 ⊂ Fi

resolution minimal if βi,a = dimK TorS
i (I, K)a

fine graded Betti numbers



(Co-)Cellular Resolutions I

P polyhedral complex

Zd-labeling of cells with tH = lcm {tG : for G ⊂ H a face}

free modules

Fi =
⊕

H∈P, dim H=i+1

S(−tH)

differentials φi : Fi → Fi−1 given on generators by

φi(H) =
∑

dim G=dim H−1

ǫ(H, G)xtH−tGG

P≤b = subcomplex of P given by cells H ∈ P with tH ≤ b
for some b ∈ Zd

b-graded component of FP
• = cellular chain complex of P≤b



(Co-)Cellular Resolutions II

Proposition

If for every b ∈ Zd the subcomplex P≤b is acyclic over K, then FP
•

is a free resolution of the ideal I generated by all monomials
corresponding to the vertex labels of P. Moreover, if tF 6= tG for
all cells F ⊃ G then the cellular resolution is minimal.

cellular: tH = lcm {tG : for G ⊂ H a face}

cocellular: t
H = lcm {tG : for G ⊃ H a face}

reverse arrows: F•
P

[Bayer & Sturmfels 1998] [Miller 1998]



(Co-)Cellular Resolutions II

Proposition

If for every b ∈ Zd the subcomplex P≤b is acyclic over K, then FP
•

is a free resolution of the ideal I generated by all monomials
corresponding to the vertex labels of P. Moreover, if tF 6= tG for
all cells F ⊃ G then the cellular resolution is minimal.

cellular: tH = lcm {tG : for G ⊂ H a face}

cocellular: t
H = lcm {tG : for G ⊃ H a face}

reverse arrows: F•
P

[Bayer & Sturmfels 1998] [Miller 1998]



An Example
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with img φ1 = I
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Digression: Tropical Convexity

Proposition

Each tropically convex set is contractible.

Proof.

distance of two points p, q ∈ Td−1:

dist(p, q) := max
1≤i<j≤d

|pi − pj + qj − qi|

(dist(p, q) ⊙ p) ⊕ q = q and p ⊕ (dist(p, q) ⊙ q) = p

for point p in tropically convex set S define continuous map

η : (q, t) 7→ ((1 − t) · dist(p, q)) ⊙ p) ⊕ ((t · dist(p, q)) ⊙ q)

contracts the set S to the point p
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Key Observation

A = A(V ): max-tropical hyperplane arrangement in Td−1

Proposition

For p, q ∈ Td−1 let r ∈ tconvmax{p, q} be an arbitrary point on the
max-tropical line segment between p and q. Then for arbitrary
k ∈ [d]:

tA(r)k ≤ max{tA(p)k, tA(q)k}

Corollary

For arbitrary b ∈ Nd:

(CA)≤b :=
{

p ∈ Td−1 : tA(p) ≤ b
}

=
⋃

{C ∈ CA : tA(C) ≤ b}

max-tropically convex and hence contractible.
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Example

n = d = 3 , V =





0 1 0
0 1 1
0 0 1



 , b = (2, 2, 2)
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Main Result, Revisited

A : arrangement of n tropical hyperplanes in Td−1

ΣA : associated mixed subdivision of n∆d−1

Theorem (Dochtermann, Sanyal & J. 2009+)

The colabeled complex CA supports a minimal cocellular resolution
of the coarse type ideal It(A).

Corollary

The labeled polyhedral complex ΣA supports a minimal cellular
resolution of the coarse type ideal It(A).



A Sufficiently Generic Example
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It(A) = 〈x1, x2, x3, x4〉
3

0 → S10 → S24 → S15 → S → 0



Ideal Generated by Non-generic Points
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Conclusion and Remarks III

tropical hypersurfaces

general tropical varieties defined as subfan of Gröbner fan
[Sturmfels]
tropical curves, coordinate-free approach [Mikhalkin]

tropical convexity

max-plus linear algebra Ã optimization
exterior descriptions
tropical Grassmannians

(co-)cellular resolutions of coarse cotype ideals

goal: characterize these ideals
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[Sturmfels]
tropical curves, coordinate-free approach [Mikhalkin]

tropical convexity

max-plus linear algebra Ã optimization
exterior descriptions
tropical Grassmannians

(co-)cellular resolutions of coarse cotype ideals

goal: characterize these ideals


	Tropical Hypersurfaces
	The tropical semi-ring
	Polyhedral combinatorics
	Puiseux series

	Tropical Convexity
	Tropical polytopes
	Type decomposition
	Products of simplices

	Resolution of Monomial Ideals
	The coarse type ideal
	(Co)-cellular resolutions


