Tropical Combinatorics

Michael Joswig

TU Darmstadt

Bertinoro, Sep 28-30, 2009

Overview

1 Tropical Hypersurfaces
■ The tropical semi-ring

- Polyhedral combinatorics
- Puiseux series

2 Tropical Convexity - Tropical polytopes - Type decomposition ■ Products of simplices

3 Resolution of Monomial Ideals - The coarse type ideal - (Co)-cellular resolutions

Overview

1 Tropical Hypersurfaces
■ The tropical semi-ring

- Polyhedral combinatorics
- Puiseux series

2 Tropical Convexity

- Tropical polytopes
- Type decomposition

■ Products of simplices

3 Resolution of Monomial Ideals - The coarse type ideal - (Co)-cellular resolutions

Overview

1 Tropical Hypersurfaces

- The tropical semi-ring
- Polyhedral combinatorics
- Puiseux series

2 Tropical Convexity

- Tropical polytopes
- Type decomposition
- Products of simplices

3 Resolution of Monomial Ideals

- The coarse type ideal
- (Co)-cellular resolutions

Tropical Arithmetic

tropical semi-ring: $(\mathbb{R} \cup\{+\infty\}, \oplus, \odot)$ where

$$
x \oplus y:=\min (x, y) \quad \text { and } \quad x \odot y:=x+y
$$

Example

$(3 \oplus 5) \odot 2=3+2=5=\min (5,7)=(3 \odot 2) \oplus(5 \odot 2)$

History

- can be traced back (at least) to the 1960s

■ e.g., see monography [Cunningham-Green 1979]
■ optimization, functional analysis, signal processing, ...
■ recent development (since 2002) initiated by Kapranov, Mikhalkin, Sturmfels, ...

Tropical Polynomials

- read ordinary (Laurent) polynomial with real coefficients as function
■ replace operations " + " and "." by " \oplus " and " \odot "

Example

$F(x):=\left(7 \odot x^{\odot 3}\right) \oplus(3 \odot x) \oplus 4=\min (7+3 x, 3+x, 4)$

Definition
tropical polynomial F vanishes at $p: \Leftrightarrow$ there are at least two
terms where the minimum $F(p)$ is attained

Tropical Polynomials

- read ordinary (Laurent) polynomial with real coefficients as function

■ replace operations " + " and "." by " \oplus " and " \odot "

Example

$F(x):=\left(7 \odot x^{\odot 3}\right) \oplus(3 \odot x) \oplus 4=\min (7+3 x, 3+x, 4)$

Definition

tropical polynomial F vanishes at $p: \Leftrightarrow$ there are at least two terms where the minimum $F(p)$ is attained

Tropical Polynomials

- read ordinary (Laurent) polynomial with real coefficients as function
■ replace operations "+" and "." by " \oplus " and " \odot "

Example

$F(x):=\left(7 \odot x^{\odot 3}\right) \oplus(3 \odot x) \oplus 4=\min (7+3 x, 3+x, 4)$

Definition

tropical polynomial F vanishes at $p: \Leftrightarrow$ there are at least two terms where the minimum $F(p)$ is attained
$F(1)=\min (7+3 \cdot 1,3+1,4)=4$

Tropical Hypersurfaces

- tropical semi-module $\left(\mathbb{R}^{d}, \oplus, \odot\right)$

■ componentwise addition

- tropical scalar multiplication

Definition

tropical hypersurface $\mathcal{T}(F):=$ vanishing locus of (multi-variate) tropical polynomial F

Example

$$
\begin{aligned}
& F(x)=\left(7 \odot x^{\odot 3}\right) \oplus(3 \odot x) \oplus 4 \\
& \mathcal{T}(F)=\{-2,1\} \subset \mathbb{R}^{1}
\end{aligned}
$$

Polyhedral Combinatorics

Proposition

For a tropical polynomial $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ the set

$$
\mathcal{P}(F):=\left\{(p, s) \in \mathbb{R}^{d+1}: p \in \mathbb{R}^{d}, s \in \mathbb{R}, s \leq F(p)\right\}
$$

is an unbounded convex polyhedron of dimension $d+1$.

Corollary

The tropical hypersurface $\mathcal{T}(F)$ coincides with the image of the codimension-2-skeleton of the polyhedron $\mathcal{P}(F)$ in \mathbb{R}^{d} under the orthogonal projection which omits the last coordinate.

The Newton Polytope of a Tropical Polynomial

Definition

Newton polytope $\mathcal{N}(F)=$ convex hull of the support $\operatorname{supp}(F)$

Theorem

The tropical hypersurface $\mathcal{T}(F)$ of a tropical polynomial F is dual to the 1-coskeleton of the regular subdivision of $\mathcal{N}(F)$ induced by the coefficients of F.

The Tropical Torus

tropical polynomial F homogeneous of degree δ if for all $p \in \mathbb{R}^{d}$ and $\lambda \in \mathbb{R}$:

$$
F(\lambda \odot p)=F(\lambda \cdot \mathbf{1}+p)=\lambda^{\odot \delta} \odot F(p)=\delta \cdot \lambda+F(p)
$$

Definition

tropical $(d-1)$-torus $\mathbb{T}^{d-1}:=\mathbb{R}^{d} / \mathbb{R} \mathbf{1}$
map

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{d}\right)+\mathbb{R} \mathbf{1} & =\left(0, x_{2}-x_{1}, \ldots, x_{d}-x_{1}\right)+\mathbb{R} \mathbf{1} \\
& \mapsto\left(x_{2}-x_{1}, \ldots, x_{d}-x_{1}\right)
\end{aligned}
$$

defines homeomorphism $\mathbb{T}^{d-1} \approx \mathbb{R}^{d-1}$

Tropical Hyperplanes

$$
\begin{aligned}
F(x) & =\left(\alpha_{1} \odot x_{1}\right) \oplus\left(\alpha_{2} \odot x_{2}\right) \oplus\left(\alpha_{3} \odot x_{3}\right) \text { linear homogeneous } \\
\mathcal{T}(F) & =-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)+\left(\mathbb{R}_{\geq 0} e_{1} \cup \mathbb{R}_{\geq 0} e_{2} \cup \mathbb{R}_{\geq 0} e_{3}\right)+\mathbb{R} \mathbf{1} \\
& =\left(0, \alpha_{1}-\alpha_{2}, \alpha_{1}-\alpha_{3}\right)+\left(\mathbb{R}_{\geq 0}\left(-e_{2}-e_{3}\right) \cup \mathbb{R}_{\geq 0} e_{2} \cup \mathbb{R}_{\geq 0} e_{3}\right)
\end{aligned}
$$

Tropical Conics

general tropical conic

$$
\begin{aligned}
\left(a_{200} \odot x_{1}^{\odot 2}\right) & \oplus\left(a_{110} \odot x_{1} \odot x_{2}\right) \oplus\left(a_{101} \odot x_{1} \odot x_{3}\right) \\
& \oplus\left(a_{020} \odot x_{2}^{\odot 2}\right) \oplus\left(a_{011} \odot x_{2} \odot x_{3}\right) \oplus\left(a_{002} \odot x_{3}^{\odot 2}\right)
\end{aligned}
$$

Example
$\left(a_{200}, a_{110}, a_{101}, a_{020}, a_{011}, a_{002}\right)=(6,5,5,6,5,7)$

Max-Tropical Hyperplanes

duality between min and max:

$$
\max (-x,-y)=-\min (x, y)
$$

Remark

\mathcal{T} is min-tropical hyperplane $\Longleftrightarrow-\mathcal{T}$ is max-tropical hyperplane

$\min /$ max

Fields of Puiseux Series

Puiseux series with complex coefficients:

$$
\mathbb{C}\{\{z\}\}=\left\{\sum_{k=m}^{\infty} a_{k} \cdot z^{k / N}: m \in \mathbb{Z}, N \in \mathbb{N}^{\times}, a_{k} \in \mathbb{C}\right\}
$$

■ Newton-Puiseux-Theorem: $\mathbb{C}\{\{z\}\}$ isomorphic to algebraic closure of Laurent series $\mathbb{C}((z))$

■ isomorphic to \mathbb{C} by [Steinitz 1910]

The Valuation Map

valuation map

$$
\text { val : } \mathbb{C}\{\{z\}\} \rightarrow \mathbb{Q} \cup\{\infty\}
$$

maps Puiseux series $\gamma(z)=\sum_{k=m}^{\infty} a_{k} \cdot z^{k / N}$ to lowest degree $\min \left\{k / N: k \in \mathbb{Z}, a_{k} \neq 0\right\}$; setting $\operatorname{val}(0):=\infty$

$$
\begin{aligned}
\operatorname{val}(\gamma(z)+\delta(z)) & \geq \min \{\operatorname{val}(\gamma(z)), \operatorname{val}(\delta(z))\} \\
\operatorname{val}(\gamma(z) \cdot \delta(z)) & =\operatorname{val}(\gamma(z))+\operatorname{val}(\delta(z))
\end{aligned}
$$

Remark

inequality becomes equation if no cancellation occurs

A Lifting Theorem I

Theorem (Einsiedler, Kapranov \& Lind 2006)
For $f \in \mathbb{K}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]$ the tropical hypersurface $\mathcal{T}(\operatorname{trop}(f)) \cap \mathbb{Q}^{d}$ (over the rationals) equals the set $\operatorname{val}(V(\langle f\rangle))$.

Tropical geometry is a piece-wise linear shadow of classical geometry.

A Lifting Theorem I

Theorem (Einsiedler, Kapranov \& Lind 2006)
For $f \in \mathbb{K}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]$ the tropical hypersurface $\mathcal{T}(\operatorname{trop}(f)) \cap \mathbb{Q}^{d}$ (over the rationals) equals the set $\operatorname{val}(V(\langle f\rangle))$.

Tropical geometry is a piece-wise linear shadow of classical geometry.

A Lifting Theorem II

Proof of easy inclusion " $\mathcal{T}(\operatorname{trop}(f)) \supseteq \operatorname{val}(V(\langle f\rangle))$ ".

- let $f=\sum_{i \in I} \gamma_{i} x^{i}$ for $I \subset \mathbb{N}^{d}$ with tropicalization F
- consider zero $u \in\left(\mathbb{K}^{\times}\right)^{d}$ of f
- for $i \in I$ we have

$$
\operatorname{val}\left(\gamma_{i} u^{i}\right)=\operatorname{val}\left(\gamma_{i}\right)+\langle i, \operatorname{val}(u)\rangle=\operatorname{val}\left(\gamma_{i}\right) \odot \operatorname{val}(u)^{\odot i}
$$

- minimum

$$
F(\operatorname{val}(u))=\bigoplus_{i \in I} \operatorname{val}\left(\gamma_{i}\right) \odot \operatorname{val}(u)^{\odot i}
$$

attained at least twice since otherwise the terms $\gamma_{i} u^{i}$ cannot cancel to yield zero

Conclusion I

■ tropicalization of (homogeneous) polynomial F

- tropical hypersurface $\mathcal{T}(F)$

Conclusion I

■ tropicalization of (homogeneous) polynomial F

- tropical hypersurface $\mathcal{T}(F)$
codimension-2-skeleton of unbounded convex polyhedron

Conclusion I

- tropicalization of (homogeneous) polynomial F
- tropical hypersurface $\mathcal{T}(F)$
- codimension-2-skeleton of unbounded convex polyhedron - regular subdivision of Newton polytope $\mathcal{N}(F)$ - tropical hypersurface $=$ image of ordinary hypersurface under valuation map

Conclusion I

- tropicalization of (homogeneous) polynomial F
- tropical hypersurface $\mathcal{T}(F)$
- codimension-2-skeleton of unbounded convex polyhedron
- regular subdivision of Newton polytope $\mathcal{N}(F)$
- tropical hypersurface $=$ image of ordinary hypersurface under valuation map

Conclusion I

■ tropicalization of (homogeneous) polynomial F

- tropical hypersurface $\mathcal{T}(F)$
- codimension-2-skeleton of unbounded convex polyhedron
- regular subdivision of Newton polytope $\mathcal{N}(F)$

■ tropical hypersurface $=$ image of ordinary hypersurface under valuation map

Tropical Convexity

for $x, y \in \mathbb{R}^{d}$ let \quad [Zimmermann 1977] [Develin \& Sturmfels 2004]

$$
[x, y]_{\text {trop }}:=\{(\lambda \odot x) \oplus(\mu \odot y): \lambda, \mu \in \mathbb{R}\}
$$

Tropical Convexity

for $x, y \in \mathbb{R}^{d}$ let \quad [Zimmermann 1977] [Develin \& Sturmfels 2004]

$$
[x, y]_{\text {trop }}:=\{(\lambda \odot x) \oplus(\mu \odot y): \lambda, \mu \in \mathbb{R}\}
$$

■ $S \subseteq \mathbb{R}^{d}$ tropically convex: $[x, y]_{\text {trop }} \subseteq S$ for all $x, y \in S$

- consider tropically convex sets in $\mathbb{T}^{d-1}=\mathbb{R}^{d} / \mathbb{R} \mathbf{1}$
- recall: we identify
with $\left(x_{1}-x_{0}, \ldots, x_{d}-x_{0}\right)$

Tropical Convexity

for $x, y \in \mathbb{R}^{d}$ let \quad [Zimmermann 1977] [Develin \& Sturmfels 2004]

$$
[x, y]_{\text {trop }}:=\{(\lambda \odot x) \oplus(\mu \odot y): \lambda, \mu \in \mathbb{R}\}
$$

■ $S \subseteq \mathbb{R}^{d}$ tropically convex: $[x, y]_{\text {trop }} \subseteq S$ for all $x, y \in S$
■ S tropically convex $\Rightarrow \lambda \odot S=\lambda \mathbf{1}+S \subseteq S$ for all $\lambda \in \mathbb{R}$
■ consider tropically convex sets in $\mathbb{T}^{d-1}=\mathbb{R}^{d} / \mathbb{R} \mathbf{1}$

- recall: we identify

$$
\begin{aligned}
& \qquad\left(x_{0}, x_{1}, \ldots, x_{d}\right)+\mathbb{R} \mathbf{1}=\left(0, x_{1}-x_{0}, \ldots, x_{d}-x_{0}\right)+\mathbb{R} \mathbf{1} \\
& \text { with }\left(x_{1}-x_{0}, \ldots, x_{d}-x_{0}\right)
\end{aligned}
$$

Tropical Convexity

for $x, y \in \mathbb{R}^{d}$ let \quad [Zimmermann 1977] [Develin \& Sturmfels 2004]

$$
[x, y]_{\text {trop }}:=\{(\lambda \odot x) \oplus(\mu \odot y): \lambda, \mu \in \mathbb{R}\}
$$

■ $S \subseteq \mathbb{R}^{d}$ tropically convex: $[x, y]_{\text {trop }} \subseteq S$ for all $x, y \in S$
■ S tropically convex $\Rightarrow \lambda \odot S=\lambda \mathbf{1}+S \subseteq S$ for all $\lambda \in \mathbb{R}$

- consider tropically convex sets in $\mathbb{T}^{d-1}=\mathbb{R}^{d} / \mathbb{R} \mathbf{1}$
- recall: we identify

$$
\begin{aligned}
& \qquad\left(x_{0}, x_{1}, \ldots, x_{d}\right)+\mathbb{R} \mathbf{1}=\left(0, x_{1}-x_{0}, \ldots, x_{d}-x_{0}\right)+\mathbb{R} \mathbf{1} \\
& \text { with }\left(x_{1}-x_{0}, \ldots, x_{d}-x_{0}\right)
\end{aligned}
$$

■ tropical polytope $:=$ tropical convex hull of finitely many points in $\mathbb{T}^{d-1} \approx \mathbb{R}^{d-1}$

Example: Tropical Line Segment in \mathbb{T}^{2}

$$
\begin{aligned}
& {[(0,2,0),(0,-2,-2)]_{\text {trop }}} \\
& =\{\lambda \odot(0,2,0) \oplus \mu \odot(0,-2,-2): \lambda, \mu \in \mathbb{R}\} \\
& =\{(\min (\lambda, \mu), \min (\lambda+2, \mu-2), \min (\lambda, \mu-2))\}
\end{aligned}
$$

Example: Tropical Line Segment in \mathbb{T}^{2}

Case Distinction
$\lambda \in(-\infty, \mu-4] \cup[\mu-4, \mu-2] \cup[\mu-2, \mu] \cup[\mu, \infty)$

Example: Tropical Line Segment in \mathbb{T}^{2}

$$
\begin{aligned}
& {[(0,2,0),(0,-2,-2)]_{\text {trop }} } \\
&=\{\lambda \odot(0,2,0) \oplus \mu \odot(0,-2,-2): \lambda, \mu \in \mathbb{R}\} \\
&=\{(\min (\lambda, \mu), \min (\lambda+2, \mu-2), \min (\lambda, \mu-2))\} \\
&=\{(\lambda, \lambda+2, \lambda): \lambda \leq \mu-4\} \\
& \cup\{(\lambda, \mu-2, \lambda): \mu-4 \leq \lambda \leq \mu-2\} \\
& \cup\{(\lambda, \mu-2, \mu-2): \mu-2 \leq \lambda \leq \mu\} \\
& \cup\{(\mu, \mu-2, \mu-2): \mu \leq \lambda\} \\
&=\{(0, \mu-\lambda-2,0): 2 \leq \mu-\lambda \leq 4\} \\
& \cup\{(0, \mu-\lambda-2, \mu-\lambda-2): 0 \leq \mu-\lambda \leq 2\}
\end{aligned}
$$

Case Distinction
$\lambda \in(-\infty, \mu-4] \cup[\mu-4, \mu-2] \cup[\mu-2, \mu] \cup[\mu, \infty)$

Example: Tropical Line Segment in \mathbb{T}^{2}

$$
\begin{aligned}
{[} & (0,2,0),(0,-2,-2)]_{\text {trop }} \\
= & \{\lambda \odot(0,2,0) \oplus \mu \odot(0,-2,-2): \lambda, \mu \in \mathbb{R}\} \\
= & \{(\min (\lambda, \mu), \min (\lambda+2, \mu-2), \min (\lambda, \mu-2))\} \\
= & \{(\lambda, \lambda+2, \lambda): \lambda \leq \mu-4\} \\
& \cup\{(\lambda, \mu-2, \lambda): \mu-4 \leq \lambda \leq \mu-2\} \\
& \cup\{(\lambda, \mu-2, \mu-2): \mu-2 \leq \lambda \leq \mu\} \\
& \cup\{(\mu, \mu-2, \mu-2): \mu \leq \lambda\} \\
= & \{(0, \mu-\lambda-2,0): 2 \leq \mu-\lambda \leq 4\} \\
& \cup\{(0, \mu-\lambda-2, \mu-\lambda-2): 0 \leq \mu-\lambda \leq 2\}
\end{aligned}
$$

Case Distinction
$\lambda \in(-\infty, \mu-4] \cup[\mu-4, \mu-2] \cup[\mu-2, \mu] \cup[\mu, \infty)$

The Running Example

$$
\begin{aligned}
& n=4, d=3 \\
& v_{1}=(0,1,0), v_{2}=(0,4,1), v_{3}=(0,3,3), v_{4}=(0,0,2)
\end{aligned}
$$

Fine Types

consider $V=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in \mathbb{T}^{d-1}

Definition

fine type of $p \in \mathbb{T}^{d-1}$ w.r.t. V given by $T_{V}(p) \in\{0,1\}^{n \times d}$ with

$$
T_{V}(p)_{i k}=1 \quad \Leftrightarrow \quad v_{i k}-p_{k} \leq v_{i j}-p_{j} \text { for all } j \in[d]
$$

■ identify T with $\left(T_{1}, T_{2}, \ldots, T_{d}\right)$, where

Fine Types

consider $V=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in \mathbb{T}^{d-1}

Definition

fine type of $p \in \mathbb{T}^{d-1}$ w.r.t. V given by $T_{V}(p) \in\{0,1\}^{n \times d}$ with

$$
T_{V}(p)_{i k}=1 \quad \Leftrightarrow \quad v_{i k}-p_{k} \leq v_{i j}-p_{j} \text { for all } j \in[d]
$$

■ identify T with $\left(T_{1}, T_{2}, \ldots, T_{d}\right)$, where

$$
T_{k}=\left\{i \in[n]: T_{i k}=1\right\}
$$

Example

Fine Types

consider $V=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in \mathbb{T}^{d-1}

Definition

fine type of $p \in \mathbb{T}^{d-1}$ w.r.t. V given by $T_{V}(p) \in\{0,1\}^{n \times d}$ with

$$
T_{V}(p)_{i k}=1 \quad \Leftrightarrow \quad v_{i k}-p_{k} \leq v_{i j}-p_{j} \text { for all } j \in[d]
$$

■ identify T with $\left(T_{1}, T_{2}, \ldots, T_{d}\right)$, where

$$
T_{k}=\left\{i \in[n]: T_{i k}=1\right\}
$$

Example

$$
V=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 4 & 1 \\
0 & 3 & 3 \\
0 & 0 & 2
\end{array}\right) \quad T_{V}(0,2,0)=(\{2,3\},\{1,4\}, \emptyset)
$$

Fine Type Decomposition of \mathbb{T}^{d-1}

... induced by max-tropical hyperplane arrangement $\mathfrak{A}(V)$

Recall: Max-Tropical Hyperplanes

duality between min and max:

$$
\max (-x,-y)=-\min (x, y)
$$

Remark

\mathcal{T} is min-tropical hypersurface $\Leftrightarrow-\mathcal{T}$ is max-tropical hypersurface

$\min /$ max

Main Theorem of Tropical Convexity

Theorem (Develin \& Sturmfels 2004)
The min-tropical polytope $\operatorname{tconv}(V)$ is the union of the bounded closed cells of the max-tropical hyperplane arrangement $\mathfrak{A}(V)$.

Products of Simplices

- tconv $\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{T}^{d-1}$ dual to regular subdivision of $\Delta_{n-1} \times \Delta_{d-1}$ defined by lifting $e_{i} \times e_{j}$ to height $v_{i j}$
- general position \longleftrightarrow triangulation
- extra feature: exchanging the factors \rightsquigarrow $\operatorname{tconv}($ rows $) \cong \operatorname{tconv(columns)~}$

$$
\Delta_{1} \times \Delta_{2}
$$

tconv $\left(2\right.$ points in $\left.\mathbb{T}^{2}\right)$

Products of Simplices

■ $\operatorname{tconv}\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{T}^{d-1}$ dual to regular subdivision of $\Delta_{n-1} \times \Delta_{d-1}$ defined by lifting $e_{i} \times e_{j}$ to height $v_{i j}$

- general position \longleftrightarrow triangulation
- extra feature: exchanging the factors \rightsquigarrow $\operatorname{tconv}($ rows $) \cong \operatorname{tconv(columns)~}$

$\Delta_{1} \times \Delta_{2}$

recall: regular subdivision

$\operatorname{tconv}\left(2\right.$ points in $\left.\mathbb{T}^{2}\right)$

Mixed Subdivisions

■ P, Q : polytopes in \mathbb{R}^{d}
■ $P+Q=\{p+q: p \in P, q \in Q\}$ Minkowski sum
■ Minkowski cell of $P+Q=$ full-dimensional subpolytope which is Minkowski sum of subpolytopes of P and Q

Definition

Polytopal subdivision of $P+Q$ into Minkowski cells is mixed if for any two of its cells $P^{\prime}+Q^{\prime}$ and $P^{\prime \prime}+Q^{\prime \prime}$ the intersections $P^{\prime} \cap P^{\prime \prime}$ and $Q^{\prime} \cap Q^{\prime \prime}$ both are faces.

- can be generalized to finitely many summands
\qquad

Mixed Subdivisions

■ P, Q : polytopes in \mathbb{R}^{d}
■ $P+Q=\{p+q: p \in P, q \in Q\}$ Minkowski sum
■ Minkowski cell of $P+Q=$ full-dimensional subpolytope which is Minkowski sum of subpolytopes of P and Q

Definition

Polytopal subdivision of $P+Q$ into Minkowski cells is mixed if for any two of its cells $P^{\prime}+Q^{\prime}$ and $P^{\prime \prime}+Q^{\prime \prime}$ the intersections $P^{\prime} \cap P^{\prime \prime}$ and $Q^{\prime} \cap Q^{\prime \prime}$ both are faces.

- can be generalized to finitely many summands
- fine $=$ cannot be refined (as a mixed subdivision!)

Mixed Subdivisions

■ P, Q : polytopes in \mathbb{R}^{d}
■ $P+Q=\{p+q: p \in P, q \in Q\}$ Minkowski sum
■ Minkowski cell of $P+Q=$ full-dimensional subpolytope which is Minkowski sum of subpolytopes of P and Q

Definition

Polytopal subdivision of $P+Q$ into Minkowski cells is mixed if for any two of its cells $P^{\prime}+Q^{\prime}$ and $P^{\prime \prime}+Q^{\prime \prime}$ the intersections $P^{\prime} \cap P^{\prime \prime}$ and $Q^{\prime} \cap Q^{\prime \prime}$ both are faces.

■ can be generalized to finitely many summands

- fine $=$ cannot be refined (as a mixed subdivision!)

Example With 4 Summands

fine mixed subdivision of dilated simplex
$\Delta_{2}+\Delta_{2}+\Delta_{2}+\Delta_{2}=4 \Delta_{2}$

Cayley Trick, General Form

■ $e_{1}, e_{2}, \ldots, e_{n}$: affine basis of \mathbb{R}^{n-1}
■ $\phi_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n-1} \times \mathbb{R}^{d}$ embedding $p \mapsto\left(e_{k}, p\right)$
■ Cayley embedding of $P_{1}, P_{2}, \ldots, P_{n}$:

$$
\mathcal{C}\left(P_{1}, P_{2}, \ldots, P_{n}\right)=\operatorname{conv} \bigcup_{i=1}^{n} \phi_{i}\left(P_{i}\right)
$$

Theorem (Sturmfels 1994; Huber, Rambau \& Santos 2000)
1 For any polyhedral subdivision of $\mathcal{C}\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ the intersection of its cells with $\left\{\frac{1}{n} \sum e_{i}\right\} \times \mathbb{R}^{d}$ yields a mixed subdivision of $\frac{1}{n} \sum P_{i}$.
2 This correspondence is a poset isomorphism from the subdivisions of $\mathcal{C}\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ to the mixed subdivisions of $\sum P_{i}$. Further, the coherent mixed subdivisions are bijectively mapped to the regular subdivisions.

Cayley Trick for Products of Simplices

■ consider $P_{1}=P_{2}=\cdots=P_{n}=\Delta_{d-1}=\operatorname{conv}\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$

Cayley Trick for Products of Simplices

■ consider $P_{1}=P_{2}=\cdots=P_{n}=\Delta_{d-1}=\operatorname{conv}\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$

- $\mathcal{C}(\underbrace{\Delta_{d-1}, \Delta_{d-1}, \ldots, \Delta_{d-1}}_{n}) \cong \Delta_{n-1} \times \Delta_{d-1}$

Corollary

- For any polyhedral subdivision of $\Delta_{n-1} \times \Delta_{d-1}$ the intersection of its cells with $\left\{\frac{1}{n} \sum e_{i}\right\} \times \mathbb{R}^{d}$ yields a mixed subdivision of $\frac{1}{n} \cdot\left(n \Delta_{d-1}\right)$.
2 This correspondence is a poset isomorphism from the subdivisions of $\Delta_{n-1} \times \Delta_{d-1}$ to the mixed subdivisions of $n \Delta_{d-1}$. Further, the coherent mixed subdivisions are bijectively mapped to the regular subdivisions.

Cayley Trick for Products of Simplices

■ consider $P_{1}=P_{2}=\cdots=P_{n}=\Delta_{d-1}=\operatorname{conv}\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$

- $\mathcal{C}(\underbrace{\Delta_{d-1}, \Delta_{d-1}, \ldots, \Delta_{d-1}}_{n}) \cong \Delta_{n-1} \times \Delta_{d-1}$

Corollary

1 For any polyhedral subdivision of $\Delta_{n-1} \times \Delta_{d-1}$ the intersection of its cells with $\left\{\frac{1}{n} \sum e_{i}\right\} \times \mathbb{R}^{d}$ yields a mixed subdivision of $\frac{1}{n} \cdot\left(n \Delta_{d-1}\right)$.
2 This correspondence is a poset isomorphism from the subdivisions of $\Delta_{n-1} \times \Delta_{d-1}$ to the mixed subdivisions of $n \Delta_{d-1}$. Further, the coherent mixed subdivisions are bijectively mapped to the regular subdivisions.

Back to Standard Example

- fine types \leadsto coarse types
- sum columns of type matrix \sim replace sets by their cardinality
- coarse types of maximal cells = vertex coordinates of mixed
subdivision

Back to Standard Example

- fine types \rightsquigarrow coarse types
- sum columns of type matrix \sim replace sets by their cardinality
- coarse types of maximal cells = vertex coordinates of mixed subdivision

Back to Standard Example

- fine types \rightsquigarrow coarse types

■ sum columns of type matrix \sim replace sets by their cardinality

- coarse types of maximal cells = vertex coordinates of mixed subdivision

A Tropical Hypersurface

- point $v_{i} \in \mathbb{T}^{d-1}=$ apex of unique max-tropical hyperplane $H^{\max }\left(v_{i}\right)$
- homogeneous linear form $h_{i} \in \mathbb{C}\{\{z\}\}\left[x_{1}, x_{x}, \ldots, x_{d}\right]$;

A Tropical Hypersurface

- point $v_{i} \in \mathbb{T}^{d-1}=$ apex of unique max-tropical hyperplane $H^{\max }\left(v_{i}\right)$
■ homogeneous linear form $h_{i} \in \mathbb{C}\{\{z\}\}\left[x_{1}, x_{x}, \ldots, x_{d}\right]$;

$$
h:=h_{1} \cdot h_{2} \cdots h_{n}
$$

Proposition

The tropical hypersurface defined by trop ${ }^{\max }(h)$ is the union of the max-tropical hyperplanes in \mathfrak{A}.

A Tropical Hypersurface

■ point $v_{i} \in \mathbb{T}^{d-1}=$ apex of unique max-tropical hyperplane $H^{\max }\left(v_{i}\right)$
■ homogeneous linear form $h_{i} \in \mathbb{C}\{\{z\}\}\left[x_{1}, x_{x}, \ldots, x_{d}\right]$;

$$
h:=h_{1} \cdot h_{2} \cdots h_{n}
$$

Proposition

The tropical hypersurface defined by $\operatorname{trop}^{\max }(h)$ is the union of the max-tropical hyperplanes in \mathfrak{A}.

Corollary
Let $p \in \mathbb{T}^{d-1} \backslash \mathfrak{A}$ be a generic point. Then its coarse type $\mathrm{t}_{\mathfrak{A}}(p)$
equals the exponent of the monomial in h which defines the unique facet of $\mathcal{P}\left(\operatorname{trop}^{\max }(h)\right)$ above p.

A Tropical Hypersurface

- point $v_{i} \in \mathbb{T}^{d-1}=$ apex of unique max-tropical hyperplane $H^{\max }\left(v_{i}\right)$
■ homogeneous linear form $h_{i} \in \mathbb{C}\{\{z\}\}\left[x_{1}, x_{x}, \ldots, x_{d}\right]$;

$$
h:=h_{1} \cdot h_{2} \cdots h_{n}
$$

Proposition

The tropical hypersurface defined by $\operatorname{trop}^{\max }(h)$ is the union of the max-tropical hyperplanes in \mathfrak{A}.

Corollary

Let $p \in \mathbb{T}^{d-1} \backslash \mathfrak{A}$ be a generic point. Then its coarse type $\mathbf{t}_{\mathfrak{A}}(p)$ equals the exponent of the monomial in h which defines the unique facet of $\mathcal{P}\left(\operatorname{trop}^{\max }(h)\right)$ above p.

Conclusion II

■ n points in $\mathbb{T}^{d-1} \leftrightarrow$ arrangement of n tropical hyperplanes in \mathbb{T}^{d-1}

- tropical polytope $=$ union of bounded cells

Conclusion II

■ n points in $\mathbb{T}^{d-1} \leftrightarrow$ arrangement of n tropical hyperplanes in \mathbb{T}^{d-1}

- tropical polytope $=$ union of bounded cells
- coarse and fine types

Conclusion II

■ n points in $\mathbb{T}^{d-1} \leftrightarrow$ arrangement of n tropical hyperplanes in \mathbb{T}^{d-1}

- tropical polytope $=$ union of bounded cells
- coarse and fine types
- regular subdivision of $\Delta_{n-1} \times \Delta_{d-1}$

Conclusion II

■ n points in $\mathbb{T}^{d-1} \leftrightarrow$ arrangement of n tropical hyperplanes in \mathbb{T}^{d-1}

- tropical polytope $=$ union of bounded cells
- coarse and fine types
- regular subdivision of $\Delta_{n-1} \times \Delta_{d-1}$
- mixed subdivision of $n \Delta_{d-1}$

Conclusion II

■ n points in $\mathbb{T}^{d-1} \leftrightarrow$ arrangement of n tropical hyperplanes in \mathbb{T}^{d-1}

- tropical polytope $=$ union of bounded cells
- coarse and fine types
- regular subdivision of $\Delta_{n-1} \times \Delta_{d-1}$

■ mixed subdivision of $n \Delta_{d-1}$

The Coarse Type Ideal

Definition

Let $\mathfrak{A}=\mathfrak{A}(V)$ be an arrangement on n tropical hyperplanes in \mathbb{T}^{d-1}. The coarse type ideal of \mathfrak{A} is the monomial ideal

$$
I_{\mathbf{t}(\mathfrak{A})}=\left\langle x^{\mathbf{t}(p)}: p \in \mathbb{T}^{d-1}\right\rangle \subset K\left[x_{1}, \ldots, x_{d}\right]
$$

where $x^{\mathbf{t}(p)}=x_{1}^{\mathbf{t}(p)_{1}} x_{2}^{\mathbf{t}(p)_{2}} \cdots x_{d}^{\mathbf{t}(p)_{d}}$.

- similar construction for (oriented) matroids
[Novik, Postnikov \& Sturmfels 2002]

Powers of the Maximal Ideal

Proposition

If $\mathfrak{A}=\mathfrak{A}(V)$ is sufficiently generic the coarse cotype ideal is

$$
I_{\mathbf{t}(\mathfrak{R})}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle^{d} .
$$

Resolutions via Coarse Tropical Convexity

Theorem (Dochtermann, Sanyal \& J. 2009+)
Let \mathfrak{A} be an arrangement of n tropical hyperplanes in \mathbb{T}^{d-1}. The colabeled complex $\mathcal{C}_{\mathfrak{A}}$ supports a minimal cocellular resolution of the coarse type ideal $I_{\mathbf{t}(\mathfrak{A})}$.

- Eliahou-Kervaire resolution of $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle^{d}$ in the
sufficiently generic case

Resolutions via Coarse Tropical Convexity

Theorem (Dochtermann, Sanyal \& J. 2009+)
Let \mathfrak{A} be an arrangement of n tropical hyperplanes in \mathbb{T}^{d-1}. The colabeled complex $\mathcal{C}_{\mathfrak{A}}$ supports a minimal cocellular resolution of the coarse type ideal $I_{\mathbf{t}(\mathfrak{A})}$.

■ Eliahou-Kervaire resolution of $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle^{d}$ in the sufficiently generic case

Minimal Free Resolutions

■ $S=K\left[x_{1}, \ldots, x_{d}\right]$ polynomial ring with \mathbb{Z}^{d}-grading $\operatorname{deg} x^{a}=a$

- free \mathbb{Z}^{d}-graded resolution \mathcal{F}_{\bullet} of monomial ideal $I \subseteq S$ is exact (algebraic) complex of \mathbb{Z}^{d}-graded S-modules:

$$
\mathcal{F}_{\bullet}: \cdots \xrightarrow{\phi_{k+1}} F_{k} \xrightarrow{\phi_{k}} \cdots \xrightarrow{\phi_{2}} F_{1} \xrightarrow{\phi_{1}} F_{0} \rightarrow 0
$$

- $F_{i} \cong \bigoplus_{a \in \mathbb{Z}^{d}} S(-a)^{\beta_{i, a}}$ free \mathbb{Z}^{d}-graded S-modules
- maps ϕ_{i} homogeneous
- $F_{0}=S$ and $\operatorname{img} \phi_{1}=I$
- i-th syzygy module img $\phi_{i+1} \subset F_{i}$
- resolution minimal if $\beta_{i, a}=\operatorname{dim}_{K} \operatorname{Tor}_{i}^{S}(I, K)_{a}$
fine graded Betti numbers

(Co-)Cellular Resolutions I

- \mathcal{P} polyhedral complex
- \mathbb{Z}^{d}-labeling of cells with $\mathbf{t}_{H}=\operatorname{lcm}\left\{\mathbf{t}_{G}:\right.$ for $G \subset H$ a face $\}$
- free modules

$$
F_{i}=\bigoplus_{H \in \mathcal{P}, \operatorname{dim} H=i+1} S\left(-\mathbf{t}_{H}\right)
$$

■ differentials $\phi_{i}: F_{i} \rightarrow F_{i-1}$ given on generators by

$$
\phi_{i}(H)=\sum_{\operatorname{dim} G=\operatorname{dim} H-1} \epsilon(H, G) x^{\mathbf{t}_{H}-\mathbf{t}_{G}} G
$$

- $\mathcal{P}_{\leq b}=$ subcomplex of \mathcal{P} given by cells $H \in \mathcal{P}$ with $\mathbf{t}_{H} \leq b$ for some $b \in \mathbb{Z}^{d}$
■ b-graded component of $\mathcal{F}_{\bullet}^{\mathcal{P}}=$ cellular chain complex of $\mathcal{P}_{\leq b}$

(Co-)Cellular Resolutions II

Proposition

If for every $b \in \mathbb{Z}^{d}$ the subcomplex $\mathcal{P}_{\leq b}$ is acyclic over K, then $\mathcal{F}_{\bullet}^{\mathcal{P}}$ is a free resolution of the ideal I generated by all monomials corresponding to the vertex labels of \mathcal{P}. Moreover, if $\mathbf{t}_{F} \neq \mathbf{t}_{G}$ for all cells $F \supset G$ then the cellular resolution is minimal.

for $G \subset H$ a face $\}$

[Bayer \& Sturmfels 1998] [Miller 1998]

(Co-)Cellular Resolutions II

Proposition

If for every $b \in \mathbb{Z}^{d}$ the subcomplex $\mathcal{P}_{\leq b}$ is acyclic over K, then $\mathcal{F}_{\bullet}^{\mathcal{P}}$ is a free resolution of the ideal I generated by all monomials corresponding to the vertex labels of \mathcal{P}. Moreover, if $\mathbf{t}_{F} \neq \mathbf{t}_{G}$ for all cells $F \supset G$ then the cellular resolution is minimal.

■ cellular: $\mathbf{t}_{H}=\operatorname{lcm}\left\{\mathbf{t}_{G}:\right.$ for $G \subset H$ a face $\}$

- cocellular: $\mathbf{t}^{H}=\operatorname{lcm}\left\{\mathbf{t}_{G}\right.$: for $G \supset H$ a face $\}$
- reverse arrows: $\mathcal{F}_{\mathcal{P}}^{\boldsymbol{p}}$
[Bayer \& Sturmfels 1998] [Miller 1998]

An Example

- ideal

$$
\begin{aligned}
I= & \left\langle x_{1}^{3}, x_{1}^{2} x_{2}, x_{2}^{3}, x_{1}^{2} x_{3},\right. \\
& \left.x_{1} x_{2} x_{3}, x_{2}^{2} x_{3}, x_{2} x_{3}^{2}, x_{3}^{3}\right\rangle
\end{aligned}
$$

- lcm condition \rightsquigarrow labels for all cells

chain complex

An Example

- ideal

$$
\begin{aligned}
I= & \left\langle x_{1}^{3}, x_{1}^{2} x_{2}, x_{2}^{3}, x_{1}^{2} x_{3},\right. \\
& \left.x_{1} x_{2} x_{3}, x_{2}^{2} x_{3}, x_{2} x_{3}^{2}, x_{3}^{3}\right\rangle
\end{aligned}
$$

- lcm condition \rightsquigarrow
labels for all cells
- $f(\mathcal{P})=(8,11,4)$
- check condition for each
chain complex

$$
\mathcal{F}_{\bullet}^{\mathcal{P}}: 0 \rightarrow S^{4} \xrightarrow{\phi_{3}} S^{11} \xrightarrow{\phi_{2}} S^{8} \xrightarrow{\phi_{1}} S \rightarrow 0
$$

with $\operatorname{img} \phi_{1}=I$

An Example

- ideal

$$
\begin{aligned}
I= & \left\langle x_{1}^{3}, x_{1}^{2} x_{2}, x_{2}^{3}, x_{1}^{2} x_{3},\right. \\
& \left.x_{1} x_{2} x_{3}, x_{2}^{2} x_{3}, x_{2} x_{3}^{2}, x_{3}^{3}\right\rangle
\end{aligned}
$$

- lcm condition \rightsquigarrow labels for all cells
- $f(\mathcal{P})=(8,11,4)$
- check condition for each $b \in \mathbb{Z}^{d}$
- e.g., $b=(2,2,2)$
- minimal resolution
chain complex

$$
\mathcal{F}_{\bullet}^{\mathcal{P}}: 0 \rightarrow S^{4} \xrightarrow{\phi_{3}} S^{11} \xrightarrow{\phi_{2}} S^{8} \xrightarrow{\phi_{1}} S \rightarrow 0
$$

with $\operatorname{img} \phi_{1}=I$

An Example

- ideal

$$
\begin{aligned}
I= & \left\langle x_{1}^{3}, x_{1}^{2} x_{2}, x_{2}^{3}, x_{1}^{2} x_{3},\right. \\
& \left.x_{1} x_{2} x_{3}, x_{2}^{2} x_{3}, x_{2} x_{3}^{2}, x_{3}^{3}\right\rangle
\end{aligned}
$$

- lcm condition \rightsquigarrow labels for all cells
- $f(\mathcal{P})=(8,11,4)$
- check condition for each $b \in \mathbb{Z}^{d}$
- e.g., $b=(2,2,2)$
- minimal resolution
chain complex

$$
\mathcal{F}_{\bullet}^{\mathcal{P}}: 0 \rightarrow S^{4} \xrightarrow{\phi_{3}} S^{11} \xrightarrow{\phi_{2}} S^{8} \xrightarrow{\phi_{1}} S \rightarrow 0
$$

with $\operatorname{img} \phi_{1}=I$

Digression: Tropical Convexity

Proposition

Each tropically convex set is contractible.

Digression: Tropical Convexity

Proposition

Each tropically convex set is contractible.

Proof.
■ distance of two points $p, q \in \mathbb{T}^{d-1}$:

$$
\operatorname{dist}(p, q):=\max _{1 \leq i<j \leq d}\left|p_{i}-p_{j}+q_{j}-q_{i}\right|
$$

- $(\operatorname{dist}(p, q) \odot p) \oplus q=q \quad$ and $\quad p \oplus(\operatorname{dist}(p, q) \odot q)=p$
- for point p in tropically convex set S define continuous map
- contracts the set S to the point p

Digression: Tropical Convexity

Proposition

Each tropically convex set is contractible.

Proof.
■ distance of two points $p, q \in \mathbb{T}^{d-1}$:

$$
\begin{gathered}
\operatorname{dist}(p, q):=\max _{1 \leq i<j \leq d}\left|p_{i}-p_{j}+q_{j}-q_{i}\right| \\
■(\operatorname{dist}(p, q) \odot p) \oplus q=q \quad \text { and } \quad p \oplus(\operatorname{dist}(p, q) \odot q)=p
\end{gathered}
$$

■ for point p in tropically convex set S define continuous map

$$
\eta:(q, t) \mapsto((1-t) \cdot \operatorname{dist}(p, q)) \odot p) \oplus((t \cdot \operatorname{dist}(p, q)) \odot q)
$$

- contracts the set S to the point p

Digression: Tropical Convexity

Proposition

Each tropically convex set is contractible.

Proof.
■ distance of two points $p, q \in \mathbb{T}^{d-1}$:

$$
\begin{gathered}
\operatorname{dist}(p, q):=\max _{1 \leq i<j \leq d}\left|p_{i}-p_{j}+q_{j}-q_{i}\right| \\
■(\operatorname{dist}(p, q) \odot p) \oplus q=q \quad \text { and } \quad p \oplus(\operatorname{dist}(p, q) \odot q)=p
\end{gathered}
$$

■ for point p in tropically convex set S define continuous map

$$
\eta:(q, t) \mapsto((1-t) \cdot \operatorname{dist}(p, q)) \odot p) \oplus((t \cdot \operatorname{dist}(p, q)) \odot q)
$$

- contracts the set S to the point p

Key Observation

$\mathfrak{A}=\mathfrak{A}(V)$: max-tropical hyperplane arrangement in \mathbb{T}^{d-1}

Proposition

For $p, q \in \mathbb{T}^{d-1}$ let $r \in \operatorname{tconv}^{\max }\{p, q\}$ be an arbitrary point on the max-tropical line segment between p and q. Then for arbitrary $k \in[d]:$

$$
\mathbf{t}_{\mathfrak{A}}(r)_{k} \leq \max \left\{\mathbf{t}_{\mathfrak{A}}(p)_{k}, \mathbf{t}_{\mathfrak{A}}(q)_{k}\right\}
$$

Corollary
For arbitrary $b \in \mathbb{N}^{d}$:

max-tropically convex and hence contractible.

Key Observation

$\mathfrak{A}=\mathfrak{A}(V)$: max-tropical hyperplane arrangement in \mathbb{T}^{d-1}

Proposition

For $p, q \in \mathbb{T}^{d-1}$ let $r \in \operatorname{tconv}^{\max }\{p, q\}$ be an arbitrary point on the max-tropical line segment between p and q. Then for arbitrary $k \in[d]:$

$$
\mathbf{t}_{\mathfrak{A}}(r)_{k} \leq \max \left\{\mathbf{t}_{\mathfrak{A}}(p)_{k}, \mathbf{t}_{\mathfrak{A}}(q)_{k}\right\}
$$

Corollary

For arbitrary $b \in \mathbb{N}^{d}$:
$\left(C_{\mathfrak{A}}\right)_{\leq b}:=\left\{p \in \mathbb{T}^{d-1}: \mathbf{t}_{\mathfrak{A}}(p) \leq b\right\}=\bigcup\left\{C \in \mathcal{C}_{\mathfrak{A}}: \mathbf{t}_{\mathfrak{A}}(C) \leq b\right\}$
max-tropically convex and hence contractible.

Example

$$
n=d=3, \quad V=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad b=(2,2,2)
$$

Main Result, Revisited

\mathfrak{A} : arrangement of n tropical hyperplanes in \mathbb{T}^{d-1}
$\Sigma_{\mathfrak{A}}$: associated mixed subdivision of $n \Delta_{d-1}$

Theorem (Dochtermann, Sanyal \& J. 2009+)
The colabeled complex $\mathcal{C}_{\mathfrak{A}}$ supports a minimal cocellular resolution of the coarse type ideal $I_{\mathbf{t}(\mathfrak{A l})}$.

Corollary

The labeled polyhedral complex $\Sigma_{\mathfrak{A}}$ supports a minimal cellular resolution of the coarse type ideal $I_{\mathbf{t}(\mathfrak{A})}$.

A Sufficiently Generic Example

$$
\begin{aligned}
& I_{\mathbf{t}(\mathfrak{A})}=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle^{3} \\
& 0 \rightarrow S^{10} \rightarrow S^{24} \rightarrow S^{15} \rightarrow S \rightarrow 0
\end{aligned}
$$

Ideal Generated by Non-generic Points

$$
\begin{aligned}
I= & \left\langle x_{1}^{3}, x_{1}^{2} x_{2}, x_{2}^{3}, x_{1}^{2} x_{3},\right. \\
& \left.x_{1} x_{2} x_{3}, x_{2}^{2} x_{3}, x_{2} x_{3}^{2}, x_{3}^{3}\right\rangle
\end{aligned}
$$

$$
0 \rightarrow S^{4} \rightarrow S^{11} \rightarrow S^{8} \rightarrow S \rightarrow 0
$$

Conclusion and Remarks III

- tropical hypersurfaces
- general tropical varieties defined as subfan of Gröbner fan [Sturmfels]
- tropical curves, coordinate-free approach [Mikhalkin]
- tropical convexity
- max-plus linear algebra \rightsquigarrow optimization
- exterior descriptions
- tropical Grassmannians
- (co-)cellular resolutions of coarse cotype ideals
- goal: characterize these ideals

Conclusion and Remarks III

- tropical hypersurfaces
- general tropical varieties defined as subfan of Gröbner fan [Sturmfels]
■ tropical curves, coordinate-free approach [Mikhalkin]
- tropical convexity
- max-plus linear algebra \rightsquigarrow optimization
- exterior descriptions
- tropical Grassmannians
- (co-)cellular resolutions of coarse cotype ideals
- goal: characterize these ideals

Conclusion and Remarks III

- tropical hypersurfaces
- general tropical varieties defined as subfan of Gröbner fan [Sturmfels]
■ tropical curves, coordinate-free approach [Mikhalkin]
■ tropical convexity
- max-plus linear algebra \rightsquigarrow optimization
- exterior descriptions
- tropical Grassmannians
- (co-)cellular resolutions of coarse cotype ideals
- goal: characterize these ideals

