Surprising correlations in random orientations of graphs

(or what is special with $n=27$)

Svante Linusson

KTH, Sweden

SLC'63 Bertinoro, Italy
 Sept 29, 2009

Edge percolation

- $G=(V, E)$ a graph

Edge percolation

- $G=(V, E)$ a graph

- $0 \leq p \leq 1$

Edge percolation

- $G=(V, E)$ a graph

- $0 \leq p \leq 1$
- Every edge exist with probability p independently of other edges. This model is called Edge percolation E^{p}.

Edge percolation

- $G=(V, E)$ a graph

- $0 \leq p \leq 1$
- Every edge exist with probability p independently of other edges. This model is called Edge percolation E^{P}.
- Let $s, a \in V$ be two vertices of G. We define
$P_{E^{p}(G)}(s \leftrightarrow a):=$ probability that there is a path between s and a.

Bunkbed conjecture (BBC)

Bunkbed conjecture (BBC)

$G \times K_{2}$ is called a bunkbed graph

Bunkbed conjecture (BBC)

$G \times K_{2}$ is called a bunkbed graph

Bunkbed conjecture (BBC)

$G \times K_{2}$ is called a bunkbed graph

Bunkbed conjecture (BBC)

$G \times K_{2}$ is called a bunkbed graph

Bunkbed conjecture (BBC)

$G \times K_{2}$ is called a bunkbed graph

Conjecture (Kasteleyn '85)

For any G and $0 \leq p \leq 1$ and any vertices $s, a \in V$ we have

$$
P\left(s_{0} \leftrightarrow a_{0}\right) \geq P\left(s_{0} \leftrightarrow a_{1}\right) \quad \text { in } G \times K_{2}
$$

What is known about BBC?

What is known about BBC?

O. Häggström proved the same statement in random cluster model with $q=2$.

What is known about BBC?

O. Häggström proved the same statement in random cluster model with $q=2$.

Theorem (L.'08)
$B B C$ is true for all outerplanar graphs G.

What is known about BBC?

O. Häggström proved the same statement in random cluster model with $q=2$.

Theorem (L.'08)
BBC is true for all outerplanar graphs G.
Theorem (Leander '09)
BBC is true for all wheels and subgraphs of wheels.

Correlations

Given any graph $G=(V, E)$ and three vertices $s, a, b \in V$.

Correlations

Given any graph $G=(V, E)$ and three vertices $s, a, b \in V$.

Classical fact:

Proposition

The events $\{s \leftrightarrow a\}$ and $\{s \leftrightarrow b\}$ are positively correlated in E^{p}, i.e.

$$
P_{E^{p}(G)}(s \leftrightarrow a \mid s \leftrightarrow b) \geq P_{E^{p}(G)}(s \leftrightarrow a)
$$

Correlations

Given any graph $G=(V, E)$ and three vertices $s, a, b \in V$.

Classical fact:

Proposition

The events $\{s \leftrightarrow a\}$ and $\{s \leftrightarrow b\}$ are positively correlated in E^{p}, i.e.

$$
P_{E^{p}(G)}(s \leftrightarrow a \mid s \leftrightarrow b) \geq P_{E^{p}(G)}(s \leftrightarrow a)
$$

Proof.

Uses Harris' inequality of increasing events.

Correlations

Given any graph $G=(V, E)$ and three vertices $s, a, b \in V$.

Classical fact:

Proposition

The events $\{s \leftrightarrow a\}$ and $\{s \leftrightarrow b\}$ are positively correlated in E^{p}, i.e.

$$
P_{E^{p}(G)}(s \leftrightarrow a \mid s \leftrightarrow b) \geq P_{E^{p}(G)}(s \leftrightarrow a)
$$

Proof.

Uses Harris' inequality of increasing events.
Note:
$P(s \leftrightarrow a \mid s \leftrightarrow b) \geq P(s \leftrightarrow a) \Leftrightarrow P(s \leftrightarrow a, s \leftrightarrow b) \geq P(s \leftrightarrow a) P(s \leftrightarrow b)$

Another correlation result in E^{p}

Given any graph $G=(V, E)$ and four vertices $s, t, a, b \in V$.

Another correlation result in E^{p}

Given any graph $G=(V, E)$ and four vertices $s, t, a, b \in V$. Condition on $\{s \nleftarrow t\}$

Another correlation result in E^{p}

Given any graph $G=(V, E)$ and four vertices $s, t, a, b \in V$. Condition on $\{s \nleftarrow t\}$

Theorem (van den Berg \& Kahn '02)
For any G the events $\{s \leftrightarrow a\}$ and $\{s \leftrightarrow b\}$ are positively correlated in E^{p}, also when we first condition on $\{s \nleftarrow t\}$, i.e.

$$
P_{E^{p}(G)}(s \leftrightarrow a \mid s \leftrightarrow b, s \leftrightarrow t) \geq P_{E^{p}(G)}(s \leftrightarrow a \mid, s \leftrightarrow t)
$$

Another correlation result in E^{p}

Given any graph $G=(V, E)$ and four vertices $s, t, a, b \in V$.
Condition on $\{s \nleftarrow t\}$

Theorem (van den Berg \& Kahn '02)

For any G the events $\{s \leftrightarrow a\}$ and $\{s \leftrightarrow b\}$ are positively correlated in E^{p}, also when we first condition on $\{s \nleftarrow t\}$, i.e.

$$
P_{E^{\rho}(G)}(s \leftrightarrow a \mid s \leftrightarrow b, s \leftrightarrow t) \geq P_{E^{p}(G)}(s \leftrightarrow a \mid, s \leftrightarrow t)
$$

Proof.

Clever use of Ahlswede-Daykin's inequality.

Random Orientations (O)

$G=(V, E)$ a graph

Random Orientations (O)

$G=(V, E)$ a graph

Every edge is independently given one of the two possible directions with equal probability.

Random Orientations (O)

$G=(V, E)$ a graph

Every edge is independently given one of the two possible directions with equal probability.

Random Orientations (O)

$G=(V, E)$ a graph

Every edge is independently given one of the two possible directions with equal probability.

Let $s, a \in V$ be two vertices of G. We define $P_{O(G)}(s \rightarrow a):=$ probability that there is a path from s to a.

Given any graph $G=(V, E)$ and three vertices $s, a, b \in V$.

Given any graph $G=(V, E)$ and three vertices $s, a, b \in V$.

We can extend classical fact:

Proposition

For any graph G the events $\{s \rightarrow a\}$ and $\{s \rightarrow b\}$ are positively correlated in model O, i.e.

$$
P_{O(G)}(s \rightarrow a \mid s \rightarrow b) \geq P_{O(G)}(s \rightarrow a)
$$

Given any graph $G=(V, E)$ and three vertices $s, a, b \in V$.

We can extend classical fact:

Proposition

For any graph G the events $\{s \rightarrow a\}$ and $\{s \rightarrow b\}$ are positively correlated in model O, i.e.

$$
P_{O(G)}(s \rightarrow a \mid s \rightarrow b) \geq P_{O(G)}(s \rightarrow a)
$$

Follows from:
Lemma (Mc Diarmid '81)
For any graph $G=(V, E)$ and $s, a \in V$ we have

$$
P_{E^{1 / 2}(G)}(s \leftrightarrow a)=P_{O_{(G)}(}(s \rightarrow a) .
$$

Given any graph $G=(V, E)$ and three vertices $s, a, b \in V$.

We can extend classical fact:

Proposition

For any graph G the events $\{s \rightarrow a\}$ and $\{s \rightarrow b\}$ are positively correlated in model O, i.e.

$$
P_{O(G)}(s \rightarrow a \mid s \rightarrow b) \geq P_{O(G)}(s \rightarrow a)
$$

Follows from:
Lemma (Mc Diarmid '81)
For any graph $G=(V, E)$ and $s, a \in V$ we have

$$
P_{E^{1 / 2}(G)}(s \leftrightarrow a)=P_{O_{(G)}(}(s \rightarrow a) .
$$

Surprising?

Proven most easily via a generalization.

Proven most easily via a generalization.

Define in model O the out-cluster $\vec{C}_{s}(G) \subset V$ as the (random) set of all vertices u for which there is a directed path from s to u.

Proven most easily via a generalization. Define in model O the out-cluster $\vec{C}_{s}(G) \subset V$ as the (random) set of all vertices u for which there is a directed path from s to u. Let also $C_{s}(G) \subset V$ be the (random) cluster around s in model E^{p}, i.e. all vertices u for which there exists a path between s and u.

Proven most easily via a generalization.

Define in model O the out-cluster $\vec{C}_{s}(G) \subset V$ as the (random) set of all vertices u for which there is a directed path from s to u. Let also $C_{s}(G) \subset V$ be the (random) cluster around s in model E^{p}, i.e. all vertices u for which there exists a path between s and u.

Lemma

For any graph $G=(V, E), s \in U \subseteq V$ we have

$$
P_{E^{1 / 2}}\left(C_{s}=U\right)=P_{O}\left(\vec{C}_{s}=U\right)
$$

Proven most easily via a generalization.

Define in model O the out-cluster $\vec{C}_{s}(G) \subset V$ as the (random) set of all vertices u for which there is a directed path from s to u.
Let also $C_{s}(G) \subset V$ be the (random) cluster around s in model E^{p}, i.e. all vertices u for which there exists a path between s and u.

Lemma

For any graph $G=(V, E), s \in U \subseteq V$ we have

$$
P_{E^{1 / 2}}\left(C_{s}=U\right)=P_{o}\left(\vec{C}_{s}=U\right)
$$

Proof.

We have the recursion $P_{E^{p}}\left(C_{S}(G)=U\right)=$

$$
\sum_{W: s \in W \subseteq U \backslash v} P_{E^{p}}\left(C_{s}(G \backslash v)=W\right)\left(1-q^{r}\right) P_{E^{p}}\left(C_{v}(G \backslash W)=U \backslash W\right)
$$

Question:

Are the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ negatively correlated in any graph G ?

Question:

Are the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ negatively correlated in any graph G ?

Answer (Sven Erick Alm): No, counterexample on 4 nodes.

Question:

Are the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ negatively correlated in any graph G ?

Answer (Sven Erick Alm): No, counterexample on 4 nodes. From now on everything is joint work with Alm.

Question:

Are the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ negatively correlated in any graph G ?

Answer (Sven Erick Alm): No, counterexample on 4 nodes. From now on everything is joint work with Alm.

Theorem (Alm \& L. '09)
In model O the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$:
are negatively correlated in K_{3},
are independent in K_{4},
are positively correlated in $K_{n}, n \geq 5$, are negatively correlated in trees and cycles.

Random Orientation on $G(n, p)$

The previous theorem seems to suggest that the events are postively correlated in dense graphs.

Random Orientation on $G(n, p)$

The previous theorem seems to suggest that the events are postively correlated in dense graphs.
Let $G(n, p)$ be the random graph obtained by edge percolation with probability p on K_{n}. Then we give this random graph random orientation on the edges as in model O.

Random Orientation on $G(n, p)$

The previous theorem seems to suggest that the events are postively correlated in dense graphs.
Let $G(n, p)$ be the random graph obtained by edge percolation with probability p on K_{n}. Then we give this random graph random orientation on the edges as in model O.

Theorem (Alm \& L.'09)

For fixed p, as $n \rightarrow \infty$ we have:
the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively correlated if $p<1 / 2$, the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are positively correlated if $p>1 / 2$.

Random Orientation on $G(n, p)$

The previous theorem seems to suggest that the events are postively correlated in dense graphs.
Let $G(n, p)$ be the random graph obtained by edge percolation with probability p on K_{n}. Then we give this random graph random orientation on the edges as in model O.

Theorem (Alm \& L.'09)

For fixed p, as $n \rightarrow \infty$ we have:
the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively correlated if $p<1 / 2$, the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are positively correlated if $p>1 / 2$.

Proof.

Identify main cases and then long tricky computations.

We also fixed n and computed $P(s \rightarrow a)$ and $P(s \rightarrow a, b \rightarrow s)$ using exact recursions. With this we computed the value of critical p as in the following table:

n	critical p
4	1
5	0.729
6	0.276
7	0.152
8	0.107
9	0.082
10	0.067
11	0.056
12	0.049
13	0.043
14	0.038
15	0.035
16	0.032

Converges to $1 / 2 ? ? ? ?$

Recall:

Theorem (Alm \& L.'09)
For fixed p, as $n \rightarrow \infty$ we have in model O of $G(n, p)$: the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively correlated if $p<1 / 2$, the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are positively correlated if $p>1 / 2$.

Recall:

Theorem (Alm \& L.'09)

For fixed p, as $n \rightarrow \infty$ we have in model O of $G(n, p)$: the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively correlated if $p<1 / 2$, the events $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are positively correlated if $p>1 / 2$.

In fact we proved

$$
1-\frac{P(b \nrightarrow s)}{P(b \nrightarrow s \mid s \rightarrow a)} \rightarrow \frac{2 p-1}{3}, \quad \text { as } n \rightarrow \infty
$$

This is a plot of $1-\frac{P(b \rightarrow s)}{P(b \rightarrow s \mid s \rightarrow a)}$ for $n=10 . .24$

What was wrong? We spent many days looking for an error.

Then I plotted $1-\frac{P(b \rightarrow s)}{P(b \not s \mid s \rightarrow a)}$ for $n=8 . .20$ and all p :

What would happen for larger n ?

Plot of $1-\frac{P(b \rightarrow s)}{P(b \rightarrow s \mid s \rightarrow a)}$ for $n=12 . .30$ as a function of p :

Starting from $n=27$ we get 3 critical values of p.

Some open problems

- Can one characterize in which graphs $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively (positively) correlated for all choices of $a, b, s \in V$. Is this a monotone graph property?

Some open problems

- Can one characterize in which graphs $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively (positively) correlated for all choices of $a, b, s \in V$. Is this a monotone graph property?
- Conjecture: For most graphs it will depend on the choice of $a, b, s \in V$.

Some open problems

- Can one characterize in which graphs $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively (positively) correlated for all choices of $a, b, s \in V$. Is this a monotone graph property?
- Conjecture: For most graphs it will depend on the choice of $a, b, s \in V$.
- Conjecture: If the degree of s is 2 , then we will have negative correlation.

Some open problems

- Can one characterize in which graphs $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively (positively) correlated for all choices of $a, b, s \in V$. Is this a monotone graph property?
- Conjecture: For most graphs it will depend on the choice of $a, b, s \in V$.
- Conjecture: If the degree of s is 2 , then we will have negative correlation.
- Understand the three critical values of p for fixed n as $n \rightarrow \infty$.

Some open problems

- Can one characterize in which graphs $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively (positively) correlated for all choices of $a, b, s \in V$. Is this a monotone graph property?
- Conjecture: For most graphs it will depend on the choice of $a, b, s \in V$.
- Conjecture: If the degree of s is 2 , then we will have negative correlation.
- Understand the three critical values of p for fixed n as $n \rightarrow \infty$.
- Correlations of other paths?

Some open problems

- Can one characterize in which graphs $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively (positively) correlated for all choices of $a, b, s \in V$. Is this a monotone graph property?
- Conjecture: For most graphs it will depend on the choice of $a, b, s \in V$.
- Conjecture: If the degree of s is 2 , then we will have negative correlation.
- Understand the three critical values of p for fixed n as $n \rightarrow \infty$.
- Correlations of other paths?
- Prove the Bunkbed Conjecture for all graphs!

