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FROM DRINDFEL'D EQUATION TO POLYZETAS



Dindfel'd equation and polylogarithms
(DE) dG = (xowo + x1w1) G, with wp(z) = %,wl(z) = cizz_

The iterated integral over wg and wy along the path zy ~» z and
associated to the word xj, ...x; € {xo,x1}" is denoted by

z t1 tr—2 tr—1
ajo(x,-l...x,-,)—/ w,-l(tl)/ w,-2(t2).../ w,-,(t,_l)/ i (8).
20 20 20 20

Let s = (s1,...,s). Then,

m
s1—1 s,—1 . V4
ag(xgt x1...xg x1) = Lig(z) = g P
m>.>n>0 1 0T
N

L1 z 1
PS( = S( E H y where HS(N) = E = 5
1—-=z nyt...ony

N>0 m>..>n=1

If s; > 1, by a theorem of Abel, then

. . . 1

lejl Lls(z) = Nlinoo HS(N) = C(S) = Z nil s
n>..>n>0

else 7



Encoding the multi-indices by words

Y={wlkeN;} ((rh<y<...)and X ={x0,x1} (x0 < x1).
Y* (resp. X*) : monoid generated by Y (resp. X).
s1—1 s,—1

S=(S1,...,8) S W=Yg ...¥s, S W=X3" Xi...Xg X1

u and v are convergent if s; > 1. A word divergent is of the form

k k k sk+1—1 s,—1
{1} Skq1, -, 50) © N Vs -+ Vs, < X1 Xg Xi...xy xy, for
zMm
Li:w — LIW(Z) = E [7517[1‘?’7

m>..>n>0 1

1
C:w — ((w)= Z P
m>..>n>0 "1 0

1

H - w — HW(N) = Z ﬁ7
N>ni>...>n,>0 1 "
L w
P:w — ZHW(N ! (z)
N>0 <

Let Mx : C{Y) — C{X)) and My : C{X)) — C{Y)) denote the
“change” of alphabets over C{(X)) and C{(Y)) respectively.



Structures of polylogarithms
Let C =Clz,z71, (1 - 2)71]
Theorem (HNM, van der Hoeven & Petitot, 1998)
Putting Liy,(z) = logz, Li: w — Li,, becomes an isomorphism
from (C(X),m) to (C{Liw }wex=,.)-
» Li,,w € X*, are C-linearly independent.
» Li;,/ € LynX, are algebraically independent.

> ((/),] € LynX \ {x0,x1}, are generators of the QQ-algebra
generated by convergent polyzétas, denoted by Z.

Theorem (HNM, 2003)
(C{Pw}wey+, ©) = (C(Y), w).
» P, (then H,), w € Y*, are C-linearly independent.

» P, (then Hy), | € LynY, are algebraically independent.
> ((/),l € LynY \ {y1}, are generators of the algebra Z.



Towards the structure of polyzétas
Corollary
Yu,v € X* Li, Li, = Liym, = Vu,v € xoX*x1, ((v)((v) = {(umv).
Example XOXIXEX] = Xoxxax1 + 3xgxixox1 + 6x3xF,
LipLis = Lips+3Lisz+6Lig1,
¢(2)¢(3) = <(2,3)+3¢(3,2) +6¢(4,1).

Corollary
Yu,v e Y HH, = Hywy = VYo, v € Y5\ y1 Y, C(u)¢(v) = ((uw v).
Example yawlys = yayzs+ysy2 + s,
P)’2 © P)/3 = 'Dyz)’3 + P}/3Y2 + P)’57
HpH; = Hy3+ Hzp + Hs,
C(2)¢(3) = <(2,3)+¢(3,2) +¢(5).
€(2)C(3) = ¢(2,3) +3¢(3,2) +6¢(4,1) } _
{2)CE) = (2.3)+ 3.2 +¢E)  f 7 B =X,



Polynomial relations among {((/) }recynx\ (x5}
2,1 = <3

¢(2,1,1)
¢(4,1)
€3,2)
€B3,1,1)
€(2,2,1)
¢(2,1,1,1
¢(6

~

)
)
¢(5,1)
¢(4,2)
¢(4,1,1)
€(3,2,1)
¢(3,1,2)
¢(3,1,1,1)
¢(2,2,1,1)

¢(2,1,1,1,1)

2

glc(z)2

E<(2>2

2cer

26(5) - @K
~20(5) +36C)0O)
20(5) - ¢(2)C3)
—2C(9) +36(2)¢)
o)

5oy

35



GROUP OF DRINDFEL'D ASSOCIATORS



&~ associator

L(z) := Z Liy(z) w and P(z):= lL(_Z)Z = Z Pw(z) w.

weX* weX*

Theorem (HNM, van der Hoeven & Petitot, 1998)

Let LynX be the set of Lyndon words. {S;}iccynx and {§/}/e£ynx
denote the transcendental basis of (C(X),m) and its dual basis

1
respectively. Then L(z) = €™ '°8 12 Lo, (2) X982, where

Lreg(z) — H eng,(Z) 5/.

leLynX,l#xq,x1
Pkz = Lieg(1).
Proposition
Let (y : C{(X)) — C be the shuffle algebra morphism defined by
> Cu(x0) = Cu(x1) =0,
» for any i > 1,Cm(x61_1x1 .. .x(;"_lxl) =((rn,..,r),
» for any u,v € X*, (m(umv) = (u(v)Cu(v).
Then Z Cu(w) w = by

weE X *




Noncommutative generating series of harmonic sums

= > Hy(N)w

weyY*
Let LynY be the set of Lyndon words over Y and let {¥;}/ccyny

and {f,},egy,,y be respectively the transcendental basis of
(C(Y), w) and its dual basis, defined by putting

2. = ¢
Y, = xX,, for | =xue€ LynY,
L ST Ly o
1y = P for w=I.. [k h<.. . <I.
1hee gt
Theorem
- [T e
leLynY

Theorem (4 la Abel, HNM, 2005)
L and H are group-like and

I|m1e1|og1 MyL(z)= I|m {ZH N)(— yl)] H(N)=Ny k7.
k>0



Asymptotic expansion of harmonic sums
Proposition

H(N) Nexp{ ZHW )" }I‘I byz.
k>1

Theorem (Costermans, Enjalbert & HNM, 2005)

There exists algorithmically computable coefficients b; € Z', the
Q-algebra generated by convergent polyzétas and by v, ki € N and

ni €L st Yw € Y*, Hy(N) i~ Z biN™ log"

Definition
For any k > 0 and for any w € Y*\ {y1}, let s (yfw) be the constant
associated to Hx,. Let Wiz := Z Cus (W) w
weyY*
Theorem (HNM, 2005)
\UKZ is group-like and \UKZ = B(yl)nyq);(z, where

B(y1) == exp [“/yl =Y ¢(k) (_f)k] ,

k>2




Generalized Euler constants
Let bpk(t1, ..., tx) be the Bell polynomials. By specializing at t; =
and for | > 2, t; = (—1)'71(/ — 1)1¢(/) and by using the identity, for any
K
u e X*, xfxou = Zx{m(xo[(—xl)k_’mu]), we get
1=0
Corollary

k k—i W i
Curtopw) = 32 LA B 574 0 ). 2000)....)
i=0

il

In particular,

Cus () = 51,..2,5;0 ﬂ(—v)“(—«;))ﬁ.n (—C(kk)>5k.

Corollary

Cws realizes also a morphism from (C(Y), w) to (C,.) s.t.
> Cw(n) =1,
> forany w € Y*\ y1 Y*, (i (w) = ((w),
> forany u,v € Y*, (e (v v) = Cua (1) (i (v).



Noncommutative generating series of regularized polyzétas

Theorem

/
Wiy = H e () T — eWIWIKZ:
leLynY

where V), is the noncommutative generating series of regularized
polyzétas {('., (W) }wey+ -

/ .
= Y Catmw= [ 0
weY* IELyNnY IF#y;
verifying
> () =0,

» forany w € Y*\ 1 Y*, ( (w) = ((w),
> for any u,v € Y*,( (uwv) = (ly (u)Clu (v)-



The meaning of the double regularization to 0

The constant (., (y1) = 7 is obtained as the finite part of the
asymptotic expansion of Hy(n) in the scale {n?log®(n)}.cz pen-

In the same way, since for any n € N, n and Hj(n) are algebraically
independent then {n?H?(n)},cz pen constitutes a new scale for
asymptotic expansions.

Let GG = Q@ xQ(X)x1 and G =Q & (Y \ {y1})Q(Y). By the
Radford theorem and its generalization over Y (due to Malvenuto
& Reutenauer), one has respectively

(@(X),HI) = Q[EynX] = Cl[X07X1]7
(Q(Y), w) = Q[LynY] = C[n].

Thus, (u(x1) =0 and ¢, (y1) = 0 can be interpreted as the finite
part of the asymptotic expansions of Li; and Hj in the scales

1—2z)log(l—=z b 2c7Z.peN and n®H?(n 2c7.beN respectively.
) 1 ;



Differential Galois group of polylogarithms

LI¢ is the smallest algebra containing C closed by derivation, by
integration w.r.t. wp and wi. It is the C-modulus generated by

{LiW}WEX* .

\
Let o € Gal(LIe). Then > oLi, w= [] "™ S

weX* leLyn
Since do Liy, = od Li, = w; then o Li,, = Li,; +c,;.
O'Lig O’Lilék
. I /
More generally, o Lig = [ wy——" - ——— + ¢
! "ol ! !

N\
Consequently, Z ocLi, w=1L H e = LeCe.
weX* 1€Lyn

The action of o € Gal(LI¢) over {Liy, }wex+ is equivalent to the
action of e € Gal(DE) over the exponential solution L. So,

Theorem (HNM, 2003)
Gal(LI¢) = Gal(DE) = {e€ | C € Liec{(X)}.



Action of Gal(DE) on the asymptotic expansions

Theorem (Group of associators theorem)

For any commutative Q-algebra A, let ® € A(X)) and W € A(Y)) be
group-like elements such that W = B(y,)[y®. There exists an unique
C € Liea((X)) such that ® = dyzeC and ¥ = WyzMyeC.

If C € Liea{(X)) then L’ = LeC is group-like and e € Gal(DE). Let
H'(N) be the n.c.g.s. of the Taylor coefficients, belonging the harmonic
algebra, of {(1 — z)7'L/ (2)}wey~. Then H'(N) is group-like.

L/(1-—
Gl E)Ne_(1+xl)'°g€¢;<zec = H'(N)g~—H(N)Mye®.

e e—0t

Let k,, be the constant part of H/,(N). Then,

Z kw W = WyzMyeS, oreqivalenty My Z By W = B_l(xl)dJKzeC.
wey* weyY*

We put then W := WyzMyeC and ¢ := dyze¢ (and V' := V) Mye").



Examples (action of the monodromy group)

For t €]0, 1[, the monodromies around 0,1 of L are given
respectively by (p = 2im)

MoL(t) = L(t)erO and MlL(t) — L(t)q)E}e—pxlq)KZ

= L(t)e"™,
N iy
where mg=x9 and m; = H e_C(s’)adS/(—xl).

1€Lyn,l#x0,x1

> If C = pmo then ¢ = CDKzePXO and
W:eXP =Y C(k) ]I‘I Prz = Vkz.
k>2
» If C = pmy then & = ¢ leCDKz and

V=ep|(Qpn - D 4k

k>2

]HY(DKZ =e PWgz.



CONCLUSION



Polynomial relations among generators of polyzétas
Let B'(y1) := e ™ B(y1). Then,

Viz = B(y1)NMyPkz < Vi, = B’ (y1)MyPkz.

Theorem ()"
N > k=
H SN S — o k>2 My H () X
leLynX, IELynY,
1#x0,x1 B I#y1
—Y1
s -2.¢ (10 p ) N
— H SENE o k22 My H eC(5) S
IELYnY, leLynX,
I#y1 I#x0:x1

{{m(g/)}/ggynx and {Cw (i/)}/eﬁyny are respectively generators
of the algebras Z and Z’.
By identifying the local coordinates, in the Lyndon-PBW basis, we

get polynomial relations among these generators.



A challenge in computer algebra

How to extract the polynomial relations among {C(/) }iecyny\ {11}
or equivalently {C(/)}iecynx\{xox}?
{CGu(}iecynx and {Cw (1) }iecyny are also generators respectively

of the algebras Z and Z’. Let {7}l6£ynX and {7}/E£yny be the dual
basis of the Lyndon basis over X and Y respectively. One also gets

Theorem ( )k
x
\ DO )
H SN 1 — ok>2 My H eSO 1
leLynX, leLynY,
I#x0,x1 I#£y1

Since VI € LynY <= Mxl € LynX \ {xo} then

Corollary

For any | € LynY \ {y1}, let P; be the decomposition of Nx] in
the Lyndon-PBW basis, over X, and let P, be its dual. Then
Mx!/ — P, € ker C. Moreover, if x| = P, then C(1) is irreductible.



Towards the transcendence of v over Z

By considering the commutative indeterminates t1, t, ..., then let
A= @[tl, b, .. ]
Lemma

For any ® € {®kzeC|C € Liea( X))}, one get

V= B(yl)ny(D <~ V= B/(yl)rlyd).

Theorem

For all ® € {®yzeC|C € Lieg((X)}, the identies W = B(y;)Myd
yield all polynomial relations among convergent polyzétas.
Moreover, these relations are algebraically independent on .
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