Action of the differential Galois group of polylogarithms on their asymptotic expansions

Hoang Ngoc Minh, Université Lille 2, 1, Place Déliot, 59024 Lille Cédex, France.

63^{ème} Séminaire Lotharingien de Combinatoire &

XV Incontro Italiano di Combinatoria Algebrica
Bertinoro (Italia), 27-30 September 2009.

(joint work with G. Duchamp, Université Paris-Nord-LIPN)

Summary

- 1. Introduction.
- 2. From Drindfel'd equation to polyzêtas.
 - 2.1 Dindfel'd equation,
 - 2.2 Structures of polylogarithms.
- 3. Group of Drinfel'd associators,
 - 3.1 Results à la Abel for noncommutative generating series,
 - 3.2 Action of the differential Galois group of polylogarithms on their asymptotic expansions.
- 4. Conclusion.

FROM DRINDFEL'D EQUATION TO POLYZETAS

Dindfel'd equation and polylogarithms

(DE)
$$dG = (x_0\omega_0 + x_1\omega_1)G$$
, with $\omega_0(z) = \frac{dz}{z}$, $\omega_1(z) = \frac{dz}{1-z}$.

The iterated integral over ω_0 and ω_1 along the path $z_0 \leadsto z$ and associated to the word $x_{i_1} \ldots x_{i_r} \in \{x_0, x_1\}^*$ is denoted by

$$\alpha_{z_0}^{z}(x_{i_1}\ldots x_{i_r}) = \int_{z_0}^{z} \omega_{i_1}(t_1) \int_{z_0}^{t_1} \omega_{i_2}(t_2) \ldots \int_{z_0}^{t_{r-2}} \omega_{i_r}(t_{r-1}) \int_{z_0}^{t_{r-1}} \omega_{i_r}(t_r).$$

Let $\mathbf{s} = (s_1, \dots, s_r)$. Then,

$$\alpha_0^{\mathbf{z}}(x_0^{\mathbf{s}_1-1}x_1\ldots x_0^{\mathbf{s}_r-1}x_1) = \operatorname{Li}_{\mathbf{s}}(\mathbf{z}) = \sum_{n_1>\ldots>n_r>0} \frac{\mathbf{z}^{n_1}}{n_1^{\mathbf{s}_1}\ldots n_r^{\mathbf{s}_r}},$$

$$P_{s}(z) = \frac{\text{Li}_{s}(z)}{1 - z} = \sum_{N > 0} H_{s}(N) \ z^{N}, \text{ where } H_{s}(N) = \sum_{n_{1} > ... > n_{r} = 1}^{N} \frac{1}{n_{1}^{s_{1}} \dots n_{r}^{s_{r}}}.$$

If $s_1 > 1$, by a theorem of Abel, then

$$\lim_{z\to 1} \operatorname{Li}_{\mathbf{s}}(z) = \lim_{N\to\infty} \operatorname{H}_{\mathbf{s}}(N) = \zeta(\mathbf{s}) = \sum_{n_1 > \dots > n_r > 0} \frac{1}{n_1^{s_1} \dots n_r^{s_r}}$$

else?

Encoding the multi-indices by words

 $Y = \{y_k | k \in \mathbb{N}_+\}$ $(y_1 < y_2 < \dots)$ and $X = \{x_0, x_1\}$ $(x_0 < x_1)$. Y^* (resp. X^*): monoid generated by Y (resp. X).

$$\boldsymbol{s} = (s_1, \dots, s_r) \leftrightarrow w = y_{s_1} \dots y_{s_r} \leftrightarrow w = x_0^{s_1-1} x_1 \dots x_0^{s_r-1} x_1.$$

 $\it u$ and $\it v$ are convergent if $\it s_1 > 1$. A word divergent is of the form

$$(\{1\}^k, s_{k+1}, \dots, s_r) \leftrightarrow y_1^k y_{s_{k+1}} \dots y_{s_r} \leftrightarrow x_1^k x_0^{s_{k+1}-1} x_1 \dots x_0^{s_r-1} x_1, \quad \text{for} \quad k \geq 1.$$

$$\operatorname{Li}: w \mapsto \operatorname{Li}_{w}(z) = \sum_{n_{1} > \dots > n_{r} > 0} \frac{z^{m_{1}}}{n_{1}^{s_{1}} \dots n_{r}^{s_{r}}},$$

$$\zeta: w \mapsto \zeta(w) = \sum_{n_{1} > \dots > n_{r} > 0} \frac{1}{n_{1}^{s_{1}} \dots n_{r}^{s_{r}}},$$

$$\operatorname{H}: w \mapsto \operatorname{H}_{w}(N) = \sum_{N \geq n_{1} > \dots > n_{r} > 0} \frac{1}{n_{1}^{s_{1}} \dots n_{r}^{s_{r}}},$$

$$\operatorname{P}: w \mapsto \operatorname{P}_{w}(z) = \sum_{N \geq n_{1} > \dots > n_{r} > 0} \frac{1}{n_{1}^{s_{1}} \dots n_{r}^{s_{r}}},$$

Let $\Pi_X: \mathbb{C}\langle\!\langle Y \rangle\!\rangle \longrightarrow \mathbb{C}\langle\!\langle X \rangle\!\rangle$ and $\Pi_Y: \mathbb{C}\langle\!\langle X \rangle\!\rangle \longrightarrow \mathbb{C}\langle\!\langle Y \rangle\!\rangle$ denote the "change" of alphabets over $\mathbb{C}\langle\!\langle X \rangle\!\rangle$ and $\mathbb{C}\langle\!\langle Y \rangle\!\rangle$ respectively.

Structures of polylogarithms

Let
$$C = \mathbb{C}[z, z^{-1}, (1-z)^{-1}]$$

Theorem (HNM, van der Hoeven & Petitot, 1998)

Putting $\text{Li}_{x_0}(z) = \log z$, $\text{Li}: w \mapsto \text{Li}_w$ becomes an isomorphism from $(\mathbb{C}\langle X \rangle, \mathbb{m})$ to $(\mathbb{C}\{\text{Li}_w\}_{w \in X^*}, .)$.

- ▶ Li_w , $w \in X^*$, are \mathcal{C} -linearly independent.
- ▶ Li_{l} , $l \in \mathcal{L}ynX$, are algebraically independent.
- ▶ $\zeta(I), I \in \mathcal{L}ynX \setminus \{x_0, x_1\}$, are generators of the \mathbb{Q} -algebra generated by convergent polyzêtas, denoted by \mathcal{Z} .

Theorem (HNM, 2003)

$$(\mathbb{C}\{P_w\}_{w\in Y^*},\odot)\cong (\mathbb{C}\langle Y\rangle,\ \text{ii}\).$$

- ▶ P_w (then H_w), $w \in Y^*$, are C-linearly independent.
- ▶ P_I (then H_I), $I \in \mathcal{L}ynY$, are algebraically independent.
- ▶ $\zeta(I), I \in \mathcal{L}ynY \setminus \{y_1\}$, are generators of the algebra \mathcal{Z} .

Towards the structure of polyzêtas

Corollary

$$\begin{split} \forall u,v \in X^*, \operatorname{Li}_u \operatorname{Li}_v &= \operatorname{Li}_{u \boxplus v} \Rightarrow \forall u,v \in x_0 X^* x_1, \zeta(u) \zeta(v) = \zeta(u \boxplus v). \\ \text{Example} & x_0 x_1 \boxplus x_0^2 x_1 &= x_0 x_1 x_0^2 x_1 + 3 x_0^2 x_1 x_0 x_1 + 6 x_0^3 x_1^2, \\ \operatorname{Li}_2 \operatorname{Li}_3 &= \operatorname{Li}_{2,3} + 3 \operatorname{Li}_{3,2} + 6 \operatorname{Li}_{4,1}, \\ \zeta(2) \zeta(3) &= \zeta(2,3) + 3 \zeta(3,2) + 6 \zeta(4,1). \end{split}$$

Corollary

$$\begin{split} \forall u, v \in Y^*, & \operatorname{H}_u \operatorname{H}_v = \operatorname{H}_{u \boxminus v} \Rightarrow \forall u, v \in Y^* \setminus y_1 Y^*, \zeta(u) \zeta(v) = \zeta(u \boxminus v). \\ \text{Example} & y_2 \boxminus y_3 = y_2 y_3 + y_3 y_2 + y_5, \\ & \operatorname{P}_{y_2} \odot \operatorname{P}_{y_3} = P_{y_2 y_3} + \operatorname{P}_{y_3 y_2} + \operatorname{P}_{y_5}, \\ & \operatorname{H}_2 \operatorname{H}_3 = \operatorname{H}_{2,3} + \operatorname{H}_{3,2} + \operatorname{H}_5, \\ & \zeta(2) \zeta(3) = \zeta(2,3) + \zeta(3,2) + \zeta(5). \end{split}$$

$$\left. \begin{array}{l} \zeta(2)\zeta(3) = \zeta(2,3) + 3\zeta(3,2) + 6\zeta(4,1) \\ \zeta(2)\zeta(3) = \zeta(2,3) + \zeta(3,2) + \zeta(5) \end{array} \right\} \Rightarrow \zeta(5) = 2\zeta(3,2) + 6\zeta(4,1).$$

Polynomial relations among $\{\zeta(I)\}_{I \in \mathcal{L}ynX \setminus \{x_0,x_1\}}$

$$\zeta(2,1) = \zeta(3)$$

$$\zeta(4) = \frac{2}{5}\zeta(2)^{2}$$

$$\zeta(3,1) = \frac{1}{10}\zeta(2)^{2}$$

$$\zeta(2,1,1) = \frac{2}{5}\zeta(2)^{2}$$

$$\begin{array}{rcl}
(2,1,1) & = & -\zeta(2)^2 \\
\zeta(4,1) & = & 2\zeta(5) - \zeta(2)\zeta(3) \\
\zeta(3,2) & = & -\frac{11}{2}\zeta(5) + 3\zeta(2)\zeta(3)
\end{array}$$

$$\zeta(3,1,1) = 2\zeta(5) - \zeta(2)\zeta(3)$$

$$\zeta(3, 1, 1) = 2\zeta(5) - \zeta(2)\zeta(3)$$

$$\zeta(2, 2, 1) = -\frac{11}{2}\zeta(5) + 3\zeta(2)\zeta(3)$$

$$\zeta(2, 1, 1, 1) = \zeta(5)$$

 $\zeta(6) = \frac{8}{35}\zeta(2)^3$

$$\zeta(5,1) = -\frac{1}{2}\zeta(3)^2 + \frac{6}{35}\zeta(2)^3$$

$$\zeta(4,2) = \zeta(3)^2 - \frac{32}{105}\zeta(2)^3$$

$$\zeta(4,2) = \zeta(3)^2 - \frac{32}{105}\zeta(2)$$

$$\zeta(4,1,1) = -\zeta(3)^2 + \frac{23}{70}\zeta(2)^3$$

 $\zeta(3,2,1) = 3\zeta(3)^2 - \frac{29}{20}\zeta(2)^3$

$$\zeta(3,1,2) = -\frac{3}{2}\zeta(3)^2 + \frac{53}{105}\zeta(2)^3$$

$$\zeta(3,1,1,1) = -\frac{1}{2}\zeta(3)^2 + \frac{6}{35}\zeta(2)^3$$

$$\zeta(3, 1, 1, 1) = -\frac{1}{2}\zeta(3)^2 + \frac{6}{35}\zeta(2)^3$$

$$\zeta(2, 2, 1, 1) = \zeta(3)^2 - \frac{32}{105}\zeta(2)^3$$

$$\zeta(2,1,1,1,1) = \frac{8}{35}\zeta(2)^3$$

GROUP OF DRINDFEL'D ASSOCIATORS

Φ_{KZ} associator

$$\mathrm{L}(z) := \sum_{w \in X^*} \mathrm{Li}_w(z) \ w \quad \text{ and } \quad \mathrm{P}(z) := \frac{\mathrm{L}(z)}{1-z} = \sum_{w \in X^*} \mathrm{P}_w(z) \ w.$$

Theorem (HNM, van der Hoeven & Petitot, 1998)

Let $\mathcal{L}ynX$ be the set of Lyndon words. $\{S_I\}_{I\in\mathcal{L}ynX}$ and $\{\check{S}_I\}_{I\in\mathcal{L}ynX}$ denote the transcendental basis of $(\mathbb{C}\langle X\rangle, \mathbb{m})$ and its dual basis respectively. Then $L(z)=e^{x_1\log\frac{1}{1-z}}L_{\operatorname{reg}}(z)e^{x_0\log z}$, where

$$\mathrm{L}_{\mathrm{reg}}(z) = \prod_{l \in \mathcal{L} \mathit{ynX}, l \neq x_0, x_1} e^{\mathrm{Li}_{\check{S}_l}(z) \; S_l}.$$

 $\Phi_{KZ} := L_{reg}(1).$

Proposition

Let $\zeta_{\mathrm{III}}:\mathbb{C}\langle\!\langle X \rangle\!\rangle \longrightarrow \mathbb{C}$ be the shuffle algebra morphism defined by

- $ightharpoonup \zeta_{\rm m}(x_0) = \zeta_{\rm m}(x_1) = 0$,
- for any $r_1 > 1$, $\zeta_{\text{III}}(x_0^{r_1-1}x_1 \dots x_0^{r_k-1}x_1) = \zeta(r_1, \dots, r_k)$,
- for any $u, v \in X^*, \zeta_{\mathrm{III}}(u_{\mathrm{III}}v) = \zeta_{\mathrm{III}}(u)\zeta_{\mathrm{III}}(v)$.

Then
$$\sum_{w \in X^*} \zeta_{\mathrm{III}}(w) \ w = \Phi_{KZ}$$
.

Noncommutative generating series of harmonic sums

$$H(N) := \sum_{w \in \mathcal{M}} H_w(N) w.$$

Let $\mathcal{L}ynY$ be the set of Lyndon words over Y and let $\{\Sigma_I\}_{I\in\mathcal{L}ynY}$ and $\{\check{\Sigma}_I\}_{I\in\mathcal{L}ynY}$ be respectively the transcendental basis of $(\mathbb{C}\langle Y\rangle,\ \ \ \)$ and its dual basis, defined by putting

$$\begin{cases} \Sigma_{\varepsilon} &= \varepsilon \\ \check{\Sigma}_{I} &= x\check{\Sigma}_{u}, & \text{for } I = xu \in \mathcal{L}ynY, \\ \check{\Sigma}_{w} &= \frac{\check{\Sigma}_{l_{1}}^{l + l} \; l + l}{i_{1}! \ldots i_{k}!} \; \text{for } w = l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, l_{1} < \ldots < l_{k}. \end{cases}$$

Theorem
$$H(N) = \prod_{l \in \mathcal{L} vnY} e^{H_{\check{\Sigma}_l}(N) \; \Sigma_l}.$$

Theorem (à la Abel, HNM, 2005)

L and H are group-like and

$$\lim_{z \to 1} e^{y_1 \log \frac{1}{1-z}} \prod_Y L(z) = \lim_{N \to \infty} \left[\sum_{k > 0} H_{y_1^k}(N) (-y_1)^k \right] H(N) = \prod_Y \Phi_{KZ}.$$

Asymptotic expansion of harmonic sums

Proposition

$$\mathrm{H}(N)_{\widetilde{N\to\infty}} \exp\left[-\sum_{k>1} \mathrm{H}_{y_k}(N) \frac{(-y_1)^k}{k}\right] \Pi_Y \Phi_{KZ}.$$

Theorem (Costermans, Enjalbert & HNM, 2005)

There exists algorithmically computable coefficients $b_i \in \mathcal{Z}'$, the \mathbb{Q} -algebra generated by convergent polyzêtas and by γ , $\kappa_i \in \mathbb{N}$ and

$$\eta_i \in \mathbb{Z} \text{ s.t. } \forall w \in Y^*, \operatorname{H}_w(N)_{\widetilde{N} \to \infty} \sum_{i=0}^{\infty} b_i N^{\eta_i} \log^{\kappa_i}(N).$$

Definition

For any $k \geq 0$ and for any $w \in Y^* \setminus \{y_1\}$, let $\zeta_{\!\!\perp\!\!\perp}(y_1^k w)$ be the constant associated to $H_{y_1^k w}$. Let $\Psi_{KZ} := \sum_{w \in Y^*} \zeta_{\!\!\perp\!\!\perp}(w) w$.

Theorem (HNM, 2005)

 Ψ_{KZ} is group-like and $\Psi_{KZ}=B(y_1)\Pi_Y\Phi_{KZ}$, where

$$B(y_1) := \exp\left[\frac{\gamma y_1 - \sum_{k \geq 2} \zeta(k) \frac{(-y_1)^k}{k}}{k}\right].$$

Generalized Euler constants

Let $b_{n,k}(t_1,\ldots,t_k)$ be the Bell polynomials. By specializing at $t_1=\gamma$ and for $l\geq 2,$ $t_l=(-1)^{l-1}(l-1)!\zeta(l)$ and by using the identity, for any $u\in X^*$, $x_1^kx_0u=\sum_{l=1}^k x_1^l\mathrm{m}(x_0[(-x_1)^{k-l}\mathrm{m}u])$, we get

Corollary

In particular,

$$\zeta \coprod (y_1^k) = \sum_{\substack{s_1, \dots, s_k > 0 \\ s_1 + \dots + k s_k = k}} \frac{(-1)^k}{s_1! \dots s_k!} (-\gamma)^{s_1} \left(-\frac{\zeta(2)}{2}\right)^{s_2} \dots \left(-\frac{\zeta(k)}{k}\right)^{s_k}.$$

Corollary

- $\triangleright \zeta_{\perp}(y_1) = \gamma$
- for any $w \in Y^* \setminus y_1 Y^*, \zeta_{\, \boxminus}(w) = \zeta(w)$,
- for any $u, v \in Y^*, \zeta_{\!\!\!\perp\!\!\!\perp\!\!\!\perp}(u \!\!\!\perp\!\!\!\perp\! v) = \zeta_{\!\!\!\perp\!\!\!\perp\!\!\!\perp}(u)\zeta_{\!\!\!\perp\!\!\!\perp\!\!\!\perp}(v).$

Noncommutative generating series of regularized polyzêtas

Theorem

$$\Psi_{\textit{KZ}} = \prod_{\textit{I} \in \textit{LynY}}^{\nearrow} e^{\zeta \, \text{\tiny th} \, (\check{\Sigma}_{\textit{I}}) \, \Sigma_{\textit{I}}} = e^{\gamma y_1} \Psi_{\textit{KZ}}',$$

where Ψ'_{KZ} is the noncommutative generating series of regularized polyzêtas $\{\zeta'_{\perp}(w)\}_{w\in Y^*}$:

$$\Psi_{KZ}' := \sum_{w \in Y^*} \zeta_{\text{\tiny l} \pm \text{\tiny l}}'(w) \ w = \prod_{l \in \mathcal{L} ynY, l \neq y_1} e^{\zeta(\check{\Sigma}_l) \ \Sigma_l},$$

verifying

- $\downarrow \zeta'_{1+1}(y_1) = 0,$
- for any $w \in Y^* \setminus y_1 Y^*, \zeta'_{\perp}(w) = \zeta(w)$,
- for any $u, v \in Y^*, \zeta'_{\sqcup \sqcup}(u \sqcup v) = \zeta'_{\sqcup \sqcup}(u)\zeta'_{\sqcup \sqcup}(v)$.

The meaning of the double regularization to 0

The constant $\zeta_{\,\!\!\!\perp\!\!\!\perp\!\!\!\perp}(y_1)=\gamma$ is obtained as the finite part of the asymptotic expansion of $H_1(n)$ in the scale $\{n^a\log^b(n)\}_{a\in\mathbb{Z},b\in\mathbb{N}}$.

In the same way, since for any $n \in \mathbb{N}$, n and $\mathrm{H}_1(n)$ are algebraically independent then $\{n^a\mathrm{H}_1^b(n)\}_{a\in\mathbb{Z},b\in\mathbb{N}}$ constitutes a new scale for asymptotic expansions.

Let $C_1=\mathbb{Q}\oplus x_0\mathbb{Q}\langle X\rangle x_1$ and $C_2=\mathbb{Q}\oplus (Y\setminus \{y_1\})\mathbb{Q}\langle Y\rangle$. By the Radford theorem and its generalization over Y (due to Malvenuto & Reutenauer), one has respectively

$$(\mathbb{Q}\langle X\rangle, \mathbf{m}) \cong \mathbb{Q}[\mathcal{L}ynX] = C_1[x_0, x_1],$$

$$(\mathbb{Q}\langle Y\rangle, \mathbf{m}) \cong \mathbb{Q}[\mathcal{L}ynY] = C_2[y_1].$$

Thus, $\zeta_{\mathrm{III}}(x_1)=0$ and $\zeta'_{\mathrm{LLI}}(y_1)=0$ can be interpreted as the finite part of the asymptotic expansions of Li_1 and H_1 in the scales $\{(1-z)^a\log(1-z)^b\}_{a\in\mathbb{Z},b\in\mathbb{N}}$ and $\{n^a\mathrm{H}_1^b(n)\}_{a\in\mathbb{Z},b\in\mathbb{N}}$ respectively.

Differential Galois group of polylogarithms

 $\mathrm{LI}_{\mathcal{C}}$ is the smallest algebra containing \mathcal{C} closed by derivation, by integration w.r.t. ω_0 and ω_1 . It is the \mathcal{C} -modulus generated by $\{\mathrm{Li}_w\}_{w\in X^*}$.

Let
$$\sigma \in \operatorname{Gal}(\operatorname{LI}_{\mathcal{C}})$$
. Then $\sum_{w \in X^*} \sigma \operatorname{Li}_w \ w = \prod_{l \in \mathcal{L}yn} e^{\sigma \operatorname{Li}_{\S_l} S_l}$. Since $d\sigma \operatorname{Li}_{X_i} = \sigma d \operatorname{Li}_{X_i} = \omega_i$ then $\sigma \operatorname{Li}_{X_i} = \operatorname{Li}_{X_i} + c_{X_i}$. More generally, $\sigma \operatorname{Li}_{\S_l} = \int \omega_{x_i} \frac{\sigma \operatorname{Li}_{\S_{l_1}}^{i_1}}{i_1!} \cdots \frac{\sigma \operatorname{Li}_{\S_{l_k}}^{i_k}}{i_k!} + c_{\S_l}$. Consequently, $\sum_{w \in X^*} \sigma \operatorname{Li}_w \ w = \operatorname{L} \prod_{l \in \mathcal{L}yn} e^{c_{\S_l} S_l} = \operatorname{Le}^{C_{\sigma}}$.

The action of $\sigma \in \operatorname{Gal}(\operatorname{LI}_{\mathcal{C}})$ over $\{\operatorname{Li}_w\}_{w \in X^*}$ is equivalent to the action of $e^{C_{\sigma}} \in \operatorname{Gal}(DE)$ over the exponential solution L. So,

Theorem (HNM, 2003) $C_{1}(LL_{1}) \simeq C_{1}(DE) = C_{1}^{C} + C_{2}^{C} + C_{3}^{C}$

$$\operatorname{Gal}(\operatorname{LI}_{\mathcal{C}}) \cong \operatorname{Gal}(DE) = \{e^C \mid C \in \mathcal{L} ie_{\mathbb{C}}\langle\!\langle X \rangle\!\rangle\}.$$

Action of Gal(DE) on the asymptotic expansions

Theorem (Group of associators theorem)

For any commutative \mathbb{Q} -algebra A, let $\Phi \in A\langle\!\langle X \rangle\!\rangle$ and $\Psi \in A\langle\!\langle Y \rangle\!\rangle$ be group-like elements such that $\Psi = B(y_1)\Pi_Y\Phi$. There exists an unique $C \in \mathcal{L}ie_A\langle\!\langle X \rangle\!\rangle$ such that $\Phi = \Phi_{KZ}e^C$ and $\Psi = \Psi_{KZ}\Pi_Ye^C$.

If $C \in \mathcal{L}ie_A\langle\!\langle X \rangle\!\rangle$ then $L' = Le^C$ is group-like and $e^C \in \operatorname{Gal}(DE)$. Let $\operatorname{H}'(N)$ be the n.c.g.s. of the Taylor coefficients, belonging the harmonic algebra, of $\{(1-z)^{-1}\operatorname{L}'_w(z)\}_{w \in Y^*}$. Then $\operatorname{H}'(N)$ is group-like.

$$\frac{\mathrm{L}'(1-\varepsilon)}{\varepsilon} \underbrace{\widetilde{\varepsilon}_{\to 0^+}} e^{-(1+x_1)\log \varepsilon} \Phi_{KZ} e^{\boldsymbol{C}} \quad \Rightarrow \quad \mathrm{H}'(N) \underbrace{\widetilde{N}_{\to \infty}} \mathrm{H}(N) \Pi_Y e^{\boldsymbol{C}}.$$

Let κ_w be the constant part of $H'_w(N)$. Then,

$$\sum_{w \in Y^*} \kappa_w \ w = \Psi_{KZ} \Pi_Y e^{\mathbf{C}}, \quad \text{or eqivalenty} \quad \Pi_X \sum_{w \in Y^*} \kappa_w \ w = B^{-1}(x_1) \Phi_{KZ} e^{\mathbf{C}}.$$

We put then $\Psi:=\Psi_{KZ}\Pi_Ye^{\mathbf{C}}$ and $\Phi:=\Phi_{KZ}e^{\mathbf{C}}$ (and $\Psi':=\Psi'_{KZ}\Pi_Ye^{\mathbf{C}}$).

Examples (action of the monodromy group)

For $t\in]0,1[$, the monodromies around 0,1 of L are given respectively by $(p=2i\pi)$

$$\begin{split} \mathcal{M}_0\mathrm{L}(t) &= \mathrm{L}(t)e^{\rho\mathfrak{m}_0} \quad \text{and} \quad \mathcal{M}_1\mathrm{L}(t) = \mathrm{L}(t)\Phi_{KZ}^{-1}e^{-\rho x_1}\Phi_{KZ} \\ &= \mathrm{L}(t)e^{\rho\mathfrak{m}_1}, \end{split}$$
 where $\mathfrak{m}_0 = x_0$ and $\mathfrak{m}_1 = \prod_{l \in \mathcal{L}yn, l \neq x_0, x_1} e^{-\zeta(\check{S}_l)\operatorname{ad}_{S_l}}(-x_1).$

If
$$C = pm_0$$
 then $\Phi = \Phi_{KZ}e^{px_0}$ and
$$\Psi = \exp\left[\gamma y_1 - \sum_{k>2} \zeta(k) \frac{(-y_1)^k}{k}\right] \Pi_Y \Phi_{KZ} = \Psi_{KZ}.$$

If
$$C = pm_1$$
 then $\Phi = e^{-px_1}\Phi_{KZ}$ and
$$\Psi = \exp\left[\left(\frac{\gamma - p}{k}\right)y_1 - \sum_{k \ge 2} \zeta(k) \frac{(-y_1)^k}{k}\right] \Pi_Y \Phi_{KZ} = e^{-py_1} \Psi_{KZ}.$$

CONCLUSION

Polynomial relations among generators of polyzêtas

Let
$$B'(y_1) := e^{-\gamma y_1} B(y_1)$$
. Then,

$$\Psi_{KZ} = B(y_1)\Pi_Y \Phi_{KZ} \iff \Psi_{KZ}' = B'(y_1)\Pi_Y \Phi_{KZ}.$$

Theorem

$$\prod_{\substack{l \in \mathcal{L}ynX, \\ l \neq x_0, x_1}} e^{\zeta(\check{S}_l) S_l} = e^{\sum_{k \geq 2} \zeta(k) \frac{(-x_1)^k}{k}} \Pi_X \prod_{\substack{l \in \mathcal{L}ynY, \\ l \neq y_1}} e^{\zeta(\check{\Sigma}_l) \Sigma_l} \\
\iff \prod_{\substack{l \in \mathcal{L}ynY, \\ l \neq y_1}} e^{\zeta(\check{\Sigma}_l) \Sigma_l} = e^{\sum_{k \geq 2} \zeta(k) \frac{(-y_1)^k}{k}} \Pi_Y \prod_{\substack{l \in \mathcal{L}ynX, \\ l \neq x_0, x_1 \\ l \neq x_0, x_1}} e^{\zeta(\check{S}_l) S_l}.$$

 $\{\zeta_{\coprod}(\check{S}_I)\}_{I\in\mathcal{L}ynX}$ and $\{\zeta_{\coprod}(\check{\Sigma}_I)\}_{I\in\mathcal{L}ynY}$ are respectively generators of the algebras \mathcal{Z} and \mathcal{Z}' .

By identifying the local coordinates, in the Lyndon-PBW basis, we get polynomial relations among these generators.

A challenge in computer algebra

How to extract the polynomial relations among $\{\zeta(I)\}_{I\in\mathcal{L}ynY\setminus\{y_1\}}$, or equivalently $\{\zeta(I)\}_{I\in\mathcal{L}ynX\setminus\{x_0,x_1\}}$?

 $\{\zeta_{\mathrm{III}}(I)\}_{I\in\mathcal{L}ynX}$ and $\{\zeta_{\mathrm{III}}(I)\}_{I\in\mathcal{L}ynY}$ are also generators respectively of the algebras \mathcal{Z} and \mathcal{Z}' . Let $\{\hat{I}\}_{I\in\mathcal{L}ynX}$ and $\{\hat{I}\}_{I\in\mathcal{L}ynY}$ be the dual basis of the Lyndon basis over X and Y respectively. One also gets

Theorem

$$\prod_{\substack{l \in \mathcal{L}ynX, \\ l \neq x_0, x_1}} e^{\zeta(l)\,\hat{l}} = e^{k \geq 2} \sum_{k \geq 2} \zeta(k) \frac{(-x_1)^k}{k} \prod_{\substack{l \in \mathcal{L}ynY, \\ l \neq y_1}} e^{\zeta(l)\,\hat{l}}.$$

Since $\forall I \in \mathcal{L}ynY \iff \Pi_X I \in \mathcal{L}ynX \setminus \{x_0\}$ then

Corollary

For any $l \in \mathcal{L}ynY \setminus \{y_1\}$, let P_l be the decomposition of $\Pi_X \hat{l}$ in the Lyndon-PBW basis, over X, and let \check{P}_l be its dual. Then $\Pi_X l = \check{P}_l \in \ker \zeta$. Moreover, if $\Pi_X l \equiv \check{P}_l$ then $\zeta(l)$ is irreductible.

Towards the transcendence of γ over \mathcal{Z}

By considering the commutative indeterminates $t_1, t_2, ...$, then let $A = \mathbb{Q}[t_1, t_2, ...]$.

Lemma

For any $\Phi \in \{\Phi_{KZ}e^{\mathbf{C}}|\mathbf{C} \in \mathcal{L}ie_{A}\langle\!\langle X \rangle\!\rangle\}$, one get

$$\Psi = B(y_1)\Pi_Y\Phi \iff \Psi' = B'(y_1)\Pi_Y\Phi.$$

Theorem

For all $\Phi \in \{\Phi_{KZ}e^C | C \in \mathcal{L}ie_{\mathbb{Q}}\langle\langle X \rangle\rangle\}$, the identies $\Psi = B(y_1)\Pi_Y\Phi$ yield all polynomial relations among convergent polyzêtas. Moreover, these relations are algebraically independent on γ .

THANK YOU FOR YOUR ATTENTION