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I’ll give an outline of the theory of Whitney algebras of a matroid, with the notions
of geometric product and the excahnge relations, I’ll give the letterplace superalgebra
coding of these algebras, and I’ll show how this coding allows to get the exchange
relations directly from the superstraightening laws. I’ll not speak about the Lax Hopf
algebra structure of Whitney algebras. All this is part of a work in progress with A.
Brini, H. Crapo, W. Schmitt.

For the theory of Whitney algebras, I refer to

H. Crapo, W. Schmitt; J. Combin. Theory Ser. A 91 (2000), no. 1-2, 215–263.

For the theory of letterplace superalgebras and letterplace coding of the basic algebras,
I refer to

A. Brini; Sém. Lothar. Combin. 55 (2005/07), Art. B55g
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1. Tensor powers of exterior algebras

• Tensor powers of exterior algebras

Let K be a field, V a vector space of dimension d over K.

Let Λ(V ) be the exterior algebra of V. For v1, . . . , vp in V, we have v1 · · · vp 6=
0 in Λ(V ) iff v1, . . . , vp are linearly independent; in this case, the product
v = v1, . . . , vp is called an extensor of step p, and we write s(v) = p. The
extensors of step p span a linear subspace Λp(V ) of Λ(V ), and these spaces
give rise to a Z−grading Λ(V ) = ⊕d

i=0Λi(V ) of the algebra Λ(V ).

The space tensor square Λ(V )⊗2 = Λ(V ) ⊗ Λ(V ) has a (Z × Z)−grading
Λ(V )⊗2 = ⊕d

i,j=0Λi(V ) ⊗ Λj(V ), and a structure of algebra, in which the

product is given by (u⊗ v)× (u′ ⊗ v′) = (−1)s(v)s(u′)uu′ ⊗ vv′.
Λ(V ) has a structure of bialgebra, in which the coproduct

δ : Λ(V ) → Λ(V )⊗2, δ(u) =
∑

(u)

u(1) ⊗ u(2),

is induced by setting δ(x) = x⊗ 1 + 1⊗ x, for all x ∈ V. For each pair (i, j),
the coproduct induces a linear morphism

δ(i,j) : Λ(V ) → Λi(V )⊗ Λj(V ), δ(i,j)(u) =
∑

(u)(i,j)

u(1) ⊗ u(2).

This expression is called the coproduct slice of type (i, j) of u.

• Linear versus additive relations

Let v1, v2, . . . , vp be vectors in V, and let v = v1v2 · · · vp be their product in
Λ(V ). If v1, v2, . . . , vp are linearly dependent, then we have v = 0, and

δ(i,j)(v) =
∑

(v)(i,j)

v(1) ⊗ v(2) = 0,

i.e. ”all the coproduct slices” of v are zero.

These relations give informations on the linear relations between the given
vectors. For example, if the given set of vectors is a minimal dependent set,
then we have the relation

δ(p−1,1)(v) =
∑

±v1 · · · v̂i · · · vp ⊗ vi = 0;

all the extensors in the first tensor fold are scalar multiples of one of them,
... and we can get the coefficients of ”the” linear relation between the given
vectors. Notice that the only scalars that are explicitly mentioned in this
relation are ±1.

Along these lines it can be given also an analogous form for Cramer’s rule.

• Geometric Products

For each h = 0, 1, 2, . . . we have a linear mapping

¦h : Λ(V )⊗2 → Λ(V )⊗2,
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¦h(u⊗ v) =
∑

(u)(∗,h)

u(1)v ⊗ u(2).

We call this mapping the geometric product of order h. If u, v are extensors,
associated to subspaces [u] and [v] of V, and d([u] ∩ [v]) = h, then

¦h(u⊗ v) = w ⊗ z,

where w and z are extensors, and

[w] = [u] + [v], [z] = [u] ∩ [v].

Under the assumption d([u] ∩ [v]) = h, we have also

¦h(u⊗ v) = (−1)(d[u]−h)(d[v]−h) ¦h (v ⊗ u).

These facts can be proved easily by factorizing u and v over an extensor
representing [u] ∩ [v].

Geometric products are deeply linked with Grassmann’s regressive product,
(Ausdehnungslehre, 1844).

All the topics of this discussion can be generalized to arbitrary tensor powers
Λ(V )⊗n, n = 1, 2, . . .

2. Whitney algebras of a matroid

• Whitney algebras of a matroid

Let M = M(S) be a matroid on a finite set S.

Let F = ⊕x∈S Zx be the free Z−module over the set S, and let Λ(F ) be the
free exterior Z−algebra on F. The quotient

Wm(M) =
Λ(F )⊗m

I(M)

of the Z−algebra Λ(F )⊗m m−th tensor power of Λ(F ) modulo the two-sided
ideal I(M) generated by the slices

δ(p,...,q)(v) =
∑

(v)(p,...,q)

v(1) ⊗ · · · ⊗ v(m)

of words v = x1 · · · xp associated to sets {x1, . . . , xp} ⊆ S which are depen-
dent in M, is called the m−th Whitney algebra of M. The image of a tensor
product x⊗ y ⊗ · · · ⊗ z in the quotient will be denoted by x ◦ y ◦ · · · ◦ z.

In Whitney algebras there holds an identity that can be regarded as a uni-
versal form of Cramer’s rule.

• Representations

Let M = M(S) be a matroid on a finite set S, and V a vector space over
some field K. A representation of M in V is a mapping

g : S → V

such that a set A ⊆ S is independent in M iff the set g(A) is linearly
independent in V and g is one-to-one on A.
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Proposition 1. Let M = M(S) be a representable matroid, and let g : S →
V be a representation of M on a vector space V ; then for each n = 1, 2, . . .
there is exactly one ring morphism

ĝn : W n(M) → Λ⊗n(V )

such that ĝn(1 ◦ · · · ◦ x ◦ 1 ◦ · · · ◦ 1) = 1⊗ · · · ⊗ g(x)⊗ 1⊗ · · · ⊗ 1 for all x
in S.

Theorem 1. A matroid M = M(S) is representable over some vector space
V iff for every words w1, . . . , wn associated to independent subsets of S,

w1 ◦ · · · ◦ wn 6= 0 in W n(M).

• Geometric Products

Let M = M(S) be a matroid on a finite set S, and let h = 01, 2, . . . The
geometric product of order h on M is the linear mapping

¦2 : W 2(M) → W 2(M)

given by

¦h(u ◦ v) =
∑

(u)(∗,h)

u(1)v ◦ u(2).

This definition, given by appealing to representatives, is consistent.

Proposition 2. Let M = M(S) be a representable matroid, and let g : S →
V be a representation of M in some vector space V, and let ĝ2 : W 2(M) →
Λ(V )⊗2 be the corresponding ring morphism. Then

ĝ2
(¦h(u ◦ v)

)
= ¦h (g(u)⊗ g(v)) ,

for every h = 0, 1, 2, . . . .

• Geometric Products; Exchange relations

Theorem 2. Let M = M(S) be a matroid on a set S; let A,B ⊆ S be flats
in M, let u, v be words representing bases of A,B resp., and let h be the
nonnegative integer defined by ρ(A) + ρ(B) = ρ(A ∨B) + h. Then

¦h(u ◦ v) = (−1)(ρ(A)−h)(ρ(B)−h) ¦h (v ◦ u),

This theorem is one of the main results of the theory of Whitney algebras.
The proof of the analogous result in the tensor square of an exterior algebra
is far from applicable in this context; the original proof of this theorem was
based on a hard technical proposition, the ”Zipper Lemma.”

3. Letterplace superalgebras

• Letterplace superalgebras

Let L be a Z2−graded set, i.e. a set endowed with a distinguished disjoint
union decomposition L = L0∪̇L1, 0, 1 ∈ Z2. Let Ld be the set obtained from
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L by adjoining, for each x ∈ L0, the sequence of symbols x(p), p = 1, 2, . . . ,
called its divided powers. Any word w on this extended set Ld has a length
l(w) (to which each divided power contributes through its exponent), and a
Z2−grade |w|.
The supersymmetric algebra

Super(L)

on the Z2−graded set L is the unitary associative Z−algebra generated by
the elements of the extended set Ld modulo the relations

x2 = 0, for x ∈ L1;

x(p)x(q) =

(
p + q

p

)
x(p+q) for x ∈ L0;

uv = (−1)|u||v|vu, for u, v words on Ld.

This algebra has a natural Z − grading, a natural Z2−grading, and these
two gradings are compatible.

The supersymmetric algebra Super(L) is a bialgebra, in which the coproduct

δ : Super(L) → Super(L)⊗2, δ(a) =
∑

(a)

a(1) ⊗ a(2)

is induced by setting

δ(1) = 1⊗ 1,

δ(x) = x⊗ 1 + 1⊗ x, for x ∈ L1

δ(x(r)) =
∑

p+q=r

x(p) ⊗ x(q), for x ∈ L0.

Let L = L0∪̇L1 and P = P0∪̇P1 be two Z2−graded sets, whose elements are
called letters and places, resp. The symbols (x|y), for x in L and y in P are
called letterplaces, they form a set (L|P ) which has a natural Z2−grading,
given by |(x|y)| = |x|+ |y|.
The letterplace superalgebra

Super(L|P )

on the Z2−graded sets L, P is the supersymmetric Z−algebra over the
Z2−graded set (L|P ).

• Biproducts, Bitableaux, Supertraightening Laws

To any two monomials u and v of the same length in Super(L) and Super(P ),
there corresponds an element

(u|v)

in Super(L|P ), called the biproduct of u and v. Biproducts satisfy all Laplace
expansions

(u1u2|v) =
∑

(v)

(−1)|u2||v(1)|(u1|v(1))(u2|v(2));
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(u|v1v2) =
∑

(u)

(−1)|u(2)||v1|(u(1)|v1)(u(2)|v2).

Biproducts are far-reaching generalizations of determinants and permanents.

By means of biproducts one can define bitableaux. The main result on
bitableaux is the following

Theorem 3. (Superstraightening Law) For any three monomials u, v, w in
Super(L), and any two monomials x, y in Super(P ), we have

∑

(v)

(
uv(1) x
v(2)w y

)
= (−1)|u||v|

∑

(u),(y)

(−1)l(u(2))

(
vu(1) xy(1)

u(2)w y(2)

)
.

The main consequence of this therorem is that the superstandard bitableaux
form a Z−linear basis of Super(L|P ).

4. Letterplace superalgebra coding of Whitney algebras

• Letterplace superalgebra coding of Whitney algebras

Let M = M(S) be a matroid on a finite set S, and let F = ⊕x∈SZx be the
free Z−module on the set S.

There is an isomorphism Λ(F ) ∼= Super(L), between the exterior Z−algebra
on F and the supersymmetric Z−algebra on the Z2−graded set L = L1 = S.

For any positive integer n, there is an isomorhism

Λ(F )⊗n ∼= Super(L|P ),

between the n−th tensor power Z−algebra of Λ(F ) and the letterplace
Z−superalgebra over the letter set L = L1 = S and the place set P =
P0 = {1, . . . , n}, induced by setting

1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · ⊗ 1 7→ (x|i),
where x ranges in S and i is the tensor fold in which it occurs.

This isomorphism maps the slices δ(p,...,q)(u) =
∑

(v)(p,...,q)
v(1) ⊗ · · · ⊗ v(n) of

type (p, . . . , q) in Λ(F )⊗n to the biproducts (v|1(p) · · ·n(q)) in Super(L|P ),
and induces an isomorphism from the quotient

W n(M) =
Λ(F )⊗m

I(M)

which defines the n−th Whitney algebra of M to the quotient

Super(L|P )

J(M)

of the letterplace Z−algebra Super(L|P ) modulo the two-sided ideal J(M)
generated by the biproducts

(v|1(p) · · ·n(q))

of words v = x1 · · · xp associated to sets {x1, . . . , xp} ⊆ S which are depen-
dent in M.
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• Geometric products; exchange relations

Under the given isomorphism, the geometric product

¦h(u ◦ v) =
∑

(u)(∗,h)
u(1)v ◦ u(2),

in the Whitney algebra W 2(M) is mapped to the bitableau

∑
(u)

(
u(1)v 1(r)

u(2) 2(h)

)
,

in the quotient.

In the latterplace setting, the excahnge theorem reads: let A,B ⊆ S be flats
in M, let u, v be words representing bases of A,B resp., and let h be the
nonnegative integer defined by ρ(A) + ρ(B) = ρ(A ∨B) + h. Then

∑

(u)

(
u(1)v 1(r)

u(2) 2(k)

)
= (−1)(|u|−h)(|v|−h)

∑

(v)

(
v(1)u 1(r)

v(2) 2(k)

)
.

One can then guess that it is a rather direct consequence of the Supertraight-
ening Law.

5. Further topics

• Polarizations

The letterplace superalgebra Super(L|P ) has a natural structure of bimod-
ule on the general linear Lie superalgebras pl(L) and pl(P ); the representa-
tions are afforded by the action of left superpolarizations Dxy, x, y ∈ L and
right superpolarizations uvD, u, v ∈ P.

Biproducts and bitableaux can be defined as the result of the action of su-
perpolarization monomials on letterplace monomials, by means of Capelli’s
method of virtual variables.

In the letterplace coding of a Whitney algebra, these superpolarizations
are indeed classical polarizations. Geometric products are coded by divided
powers of right polarizations on places. Thus, the properties of the geometric
products are consequences of the Lie bracket relations between elementary
matrices.
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